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Abstract- Image processing in hexagonal grid is very much 
advantageous than in the conventional rectangular grid. The 
advantages include higher angular resolution, consistent 
connectivity and higher sampling efficiency. A wide class of 
operations on images can be performed directly in the wavelet 
domain by operating on its coefficients of the images. Operating 
in wavelet domain enables to operate on different resolutions, 
manipulate features at different scales and localize the operation 
in both spatial and frequency domains. A new method of 
designing hexagonal wavelets using lifting scheme in the spiral 
addressing scheme is proposed in this thesis. It is computationally 
efficient because they are not based on Fourier transforms, and 
could be performed in place. 

Index Terms:- wavelets,lifting scheme,spiral addressing, 
hexagonal grid 

I.  INTRODUCTION 

Image processing uses a rectangular grid for image 
representation and processing. Hexagonal grid is an 
alternative pixel tessellation scheme besides the 
conventional square grid for sampling and representing 
images. Using hexagonal grids to represent digital images 
have been studied for more than 40 years. Increased 
processing capabilities of graphic devices and recent 
improvements in CCD technology have made hexagonal 
sampling attractive for practical applications. Continuous 
studies in this field brought new interests to this topic. A 
hexagonal coordinate system is simply a system which 
replaces the common square lattice and describes the images 
in favor of a hexagonal lattice. From the perspective of 
computer vision, hexagonal coordinate system closely 
resembles the layout of photo-receptors in the human retina. 
Research suggests that the simulation of at least some of the 
capabilities possessed by human eye and the visual 
processing areas of the brain can be easily executed on the 
images that are laid out on a hexagonal lattice. Sampling on 
a hexagonal lattice is a promising solution which has been 
proved to have better efficiency and less aliasing [1]. Its 
computational power for intelligent vision pushes forward 
the image processing field. Many reports describing the 
advantages of using such a grid type are found in the 
literature. The major advantages are higher degree of 
circular symmetry, uniform connectivity, greater angular 
resolution, lesser storage and reduction in computation for 
image processing operations. Mersereau [2] has shown that 
for circularly band limited signals, 13.4% fewer sampling 
points are required with the hexagonal grid to maintain the 
equal information with the rectangular grid.  
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Many resampling techniques were proposed like brick wall, 
quincunx sampling, least squares approximation of splines, 
etc [3]. Using wavelets an image can be decomposed into a 
multiresolution hierarchy of localized information at 
different spatial frequencies. Operating in the wavelet 
domain enables one to perform various operations 
progressively in a coarse-to-fine fashion, operate on 
different resolutions, manipulate features at different scales, 
trade off accuracy for speed, and localize the operation in 
both the spatial and the frequency domains. Lifting scheme 
[5],[6],[7] is a simple and efficient technique for the creation 
of wavelets. It is computationally efficient because they are 
not based on Fourier transforms and could be calculated in-
place. In this work, the first part deals with basics of 
hexagonal image processing followed by the spiral 
addressing scheme. Then it covers the construction of 
wavelets using lifting scheme. We propose one new method 
of designing hexagonal wavelets using lifting scheme in the 
spiral addressing scheme. 

II.  HEXAGONAL SAMPLING SCHEME 

A digital image a [m, n] described in a 2-D discrete space is 
derived from an analog image a (x, y) in a 2D continuous 
space through a sampling process that is frequently referred 
to as digitization. The 2D continuous image a (x, y) is 
divided into N rows and M columns. The intersection of a 
row and a column is termed a pixel. The value assigned to 
the integer coordinates [m, n] with { m=0,1,2,…,M–1 } and         
{ n=0,1,2,…,N–1} is a [m, n]. Following are the various 
tessellation schemes used for the digitization of the image. 

2.1 Three possible regular tessellation schemes 

There exist only three possible regular tessellation schemes 
to tile a plane without overlapping among the samples and 
gaps between them, namely the tessellation with hexagons, 
with squares, and with regular triangles (Fig.1). Any other 
types of spatial tessellation will result in either unequal 
distance between neighboring pixels, or introduce gaps or 
overlaps among samples. 

 

Fig. 1 Three schemes of regular tessellation 
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2.2 Efficient Sampling Scheme 

An insufficient sampling rate can always introduce 
unwanted effects in the reconstructed signal, referred as 
aliasing. Middleton [8] investigated sampling and 
reconstructing wave number limited multi-dimensional 
functions of signals. They concluded that the rectangular 
lattice is not the most efficient sampling lattice which uses 
minimum number of sampling points to achieve exact 
reconstruction.A similar conclusion was obtained by 
Mersereau [2] and Vitulli [5], who showed that for signals 
which are band-limited over a circular region in Fourier 
space, 13.4% fewer sampling points are required with the 
hexagonal grid to maintain equal high frequency image 
information with the rectangular grid, thus less storage and 
less  computation time are required. An example is that in 
image coding application, one may expect that the coding 
efficiency can be increased by using the hexagonal sampling 
scheme. On the hexagonal grid, digitization displays a better 
connectivity and is perceived as being approximated by 
small poly lines, whereas on the square grid, digitization is 
still perceived as being approximated by pixels. Such a 
perception of single pixels disturbs the impression of 
continuity of the discretized line. This is due to the fact that 
in the square grid neighbors of a pixel are not placed all at 
the same distance. Moreover, two diagonal neighbors in the 
square grid have only one point in common, whereas two 
horizontal or vertical neighbors of the square grid, and all 
the neighbors of a pixel in the hexagonal grid, have one 
segment in common with their neighbor. 

III.  SPIRAL ADDRESSING SYSTEM 

Middleton and Sivaswamy [8] proposed a one-dimensional 
addressing system, as well as two operations based on this 
addressing system, for hexagonal structure. This system is 
called as Spiral Architecture (Fig.2). Spiral Architecture 
(SA) is inspired from anatomical consideration of the 
primate's vision system. 

 

Fig. 2 Spiral addressing 
The address in the spiral architecture grows from the centre 
of image in powers of seven along a spiral like curve. This 
addressing scheme combined with two mathematical 
operations, spiral addition and spiral multiplication is the 
base of Spiral Architecture. The spiral addition and spiral 
multiplication correspond to image translation and image 
rotation respectively. Middleton and Sivaswamy [8] also 
proposed a single-index system for pixel addressing by 
modifying the Generalized Balanced Ternary system, as 
shown in Fig.3. 

 

(a)                                                (b) 

Fig. 3 (a) Hexagonal image structure with indices (b) 
Balanced ternary addition 

Neighborhood operations are often used in image 
processing. Finding the neighbor in a hexagonal image 
makes use of the spiral addition operation [8]. In a seven-
pixel cluster, the neighborhood relation can be determined 
by spiral addition as follows. 

 

(a) Neighborhood relationship (b) An example of neighborhood 

Fig. 4 Neighborhood relationship with spiral 
architecture 

Let the spiral address of the central pixel, as shown in Fig. 
4(a), be denoted by a, Then the spiral address of its neighbor 
pixel can be described by spiral addition denoted by +, with 
a certain number of displacements, as shown in Fig. 4 (a). 
An example is given in Fig. 4(b). For the whole image, the 
spiral rotation direction is as shown in Fig. 5, one can find 
out the spiral address of any hexagonal pixel with centre on 
a certain hexagonal pixel whose spiral address is known. 

 

Fig. 5 Spiral rotation direction 
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The Spiral Architecture has some distinguishing features 
compared to the square image processing. The one 
dimensional addressing scheme leads to an efficient storage 
and the placement of the origin at the centre of the image 
simplifies geometric transformations of a given image. 
Hexagonally sampled image allows non-traditional 
neighborhoods with consistent boundary connectivity, 
which is useful for many computer vision applications. 

IV.  WAVELETS 

Wavelets were developed independently in the fields of 
mathematics, quantum physics, electrical engineering and 
seismic geology. Interchanges between these fields during 
the last ten years have led to many new wavelet applications 
such as image compression, human vision, radar, earth 
quake prediction and various other image processing 
operations. The transform is computed at various locations 
of the signal and for various scales of the wavelet. If the 
process is done in a smooth and continuous fashion (i.e., if 
scale and position is varied very smoothly) then the 
transform is called Continuous Wavelet Transform (CWT). 
If the scale and position are changed in discrete steps, the 
transform is called Discrete Wavelet Transform (DWT).  
Mathematically, a wavelet can be denoted as  
     

       
                                                                  (1)
    b – Location parameter 

    a – scaling parameter 

For the function to be a wavelet, it should be time limited. 
For a given scaling parameter ‘a’, we translate the wavelet 
by varying the parameter ‘b’. Design of wavelets is done in 
two methods. One is the filter bank method which uses the 
filters, analysis and synthesis filter banks and the other is the 
lifting scheme method. Here we consider the lifting method 
and how it is used to construct wavelets in spiral addressing 
scheme. The lifting scheme [5] is a method for constructing 
wavelets in the spatial domain. It consists of three steps: 

1) Splitting the data into two subsets,  

2) Computing the wavelet coefficients as the failure to 
predict one subset based on the other (high pass),  
3) Computing the scaling function coefficients by updating 
the remaining subset (low pass). 
Any discrete wavelet transform can be factored into lifting 
steps [9], thus allowing in-place computation of the wavelet 
transforms, faster computation, asymptotically reducing the 
complexity by a factor of four and construction of wavelet 
transforms that map integers to integers [10]. 

V. CONSTRUCTION OF WAVELETS USING 
LIFTING METHOD 

We present the construction of wavelets on a hexagonal 
lattice based on the method of lifting which is an efficient 
way to compute wavelets[11]. In contrast to Laine [12] the 
hexagonal wavelet thus derived does not use a Fourier 
transform method.  Lifting scheme here explained is based 
on the spiral addressing scheme which is implemented on 
the HIP framework explained in [8]. Construction of the 
wavelet is performed in three phases: splitting, predicting, 
and updating. Splitting partitions the data into two subsets A 
and B. Predicting computes wavelet coefficients at A using 
the points in B. Updating changes the points in B in order to 
preserve the mean value. All, these operations are computed 
in-place and reversing them can produce the inverse 
transform. A complete wavelet transform of a hexagonal 
image requires repeated application of the splitting, 
predicting, and updating steps. These are now described via 

the first case for a two layer HIP image )(xh , Gx∈ 2 and 
a general case. 

5.1 First case 

Initially, the lifting scheme partitions the data into even and 
odd pairs corresponding to up sampling and down sampling 
the data by a factor of 2. Specifically for an image on a 
square lattice this corresponds to a partitioning scheme 
based upon the 4-neighbours of a point. However, due to the 
topology of the hexagonal lattice this is not really plausible. 
In fact the 3 symmetric axes make it impossible to provide 
such a partitioning using any of the 6-neighbours of a 
hexagonal point. Thus, the method illustrated in Fig. 6(a) is 
performed.  

 

Fig. 6  Partitioning of the hexagonal image using lifting 
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The green points ({0, 15… 66}), collectively denoted as A0, are analogous to up sampling, while the red points ({1, 2….. 
65}), denoted as B0, are analogous to down sampling. Using the following set operation : 

}64,53,42,31,26,15,{)( ++++++= xxxxxxxxS                                       (2) 

Here ‘+’, is the addition operation defined in the context of the HIP framework. The set of points in  A0 can thus be defined 
recursively as follows: 

)64()15()0()0( 1110 −−−== nnnn SSSSA LLUU                       (3) 

 

B0 can be defined simply as G0 − A0. The next step in lifting 
is to predict the values at addresses given in A0  using the 
nearest neighbors in B0. This can be performed using a  
linear interpolation. Thus for a given member in A0  labeled 
ai the prediction step is :   

∑
∈

−=
B
a

ii

Ng

ghahah )(
6

1
)()(                                               

               (4) 

Here, g are the nearest neighbors in B0   to point ai ε A0.  In 
this case it corresponds to 

}6,,1{ ++= ii aaN B
a L      

 The values for h (ai) are  omputed in-place. Once 
this has been computed the values in B0 can be updated to 
preserve the image mean, via 

∑
∈

+=
A
b

ii

Ng

ghbhbh )(
9

1
)()(

                                     

              (5) 

Here, g is the nearest neighbors in A0   to point bi ε B0.  In 
this case it corresponds to {bi+1, bi+3, bi+5} or {b i+2, bi+4, 
bi+6}  depending on the value of bi. 

In the normal lifting scheme the steps just described would 
be reapplied repeatedly to the remaining low frequency parts 
of the image (Bi). However, examination of Fig.6(a) shows 
that the remaining points do not have the same topology as 
the original. In fact, it looks like a group of hexagonal rings. 
For this reason we have to reexamine the splitting, 
predicting, and updating steps. As each hexagonal ring 
consists of 6 points it is possible to just split the space in 
half but again due to topological constraints it is not possible 
to choose odd and even points. The specific partition is 
illustrated in          Fig. 6(b). The cyan points (1, 3,… 60), 
denoted by C0 are the high frequency points and the 
magenta points (2, 4,…,65), denoted by D0 are the low 
frequency points. As the spacing between points in C0 is 
equivalent to that in A0 the points can be recursively 
defined: 

)63()16()1()1( 1110 −−−== nnnn SSSSC ULLUU                                    (6) 

We can notice the change of origin. The set of addresses 
corresponding to the low frequency image data is defined as 
D0 = B0 − C0. The predicted values of ci can be computed as 
a linear interpolation, thus: 

∑
∈

−=
D
c

ii

Ng

ghchch )(
3

1
)()(

                      (7) 

Here, g are the nearest neighbors in D0   to point ci ε C0.  In 
this case it is { ci+1, ci+3, ci+5} . Similarly we can compute 
the updating step as follows: 

∑
∈

+=
C
d

ii

Ng

ghdhdh )(
6

1
)()(

                                            

                       (8) 

Here, g are the nearest neighbors in C0   to point di ε D0.  In 
this case it is {di+2, di+4, di+6} . 

Notice the similarity between the two sets 
D

c
N   and 

C

d
N  

and the one employed in the update step for B0. This implies 
that the update step for B0 thus requires just prior knowledge 
of the neighbors for C0 and D0 to compute. 

5.2   General case 

At the end of the first iteration of the lifting procedure we 
have computed the high frequency values corresponding to 
A0 and C0 are left with set D0 from which to continue the 
process. There are many possibilities but the only 
requirement is that it should be simple to apply. 
Examinations of Fig. 6(c), which are the points in D0, show 
two features. Firstly, the original origin is no longer in the 
data set so a shift is required. Secondly, the radius of the 
hexagonal ring has expanded by √3 and rotated by 300. 
Fortunately, due to the vector nature of HIP addresses the 
shift can just be accommodated by an addition of the 
address to the origin and the rotation and scaling can be 
accommodated by a multiplication. There are many valid 
possibilities that can be used but for the work presented here 
an offset of 2 and a scaling of 15 were chosen. 
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Using these ideas the general case can be derived. This is 
achieved by rewriting the cases for the first case and 
introducing an origin shift, ‘o’, and a transformation, ‘r’, 
defined as: 

215   ,0 10 +== −nn ooo  

∏
=

=
n

i

nr
0

15                                                           (9) 

Using these, steps previously outlined can be redefined. By 
redefining the partitioning operation to be  

}64,,15,{)( mm ryryyySm ++= LL    (10) 

where moxy += . 

The first splitting is: 
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The second splitting is :  

mmm
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                                               (12) 

The neighborhoods are also changed to include these factors 
as follows: 

}6,,1{ mimi
B
a raraN ++= L  

mimimimi
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A
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                   (13) 

Equations given in the prediction and updating section can 
now be applied directly to compute the wavelet. The inverse 
wavelet uses the same sets of addresses though the signs are 
swapped in the prediction and updating steps. 

VI.  IMPLEMENTATION 

In this approach we use the Hexagonal Image Processing 
(HIP) framework which is implemented in Python language. 
Using this, image can be resampled into hexagonal using the 
spiral addressing scheme. Construction of wavelets using 
the lifting scheme is done in this framework. In this 
framework number of layers required to represent an image 

with M x N size is approximately   
7 log

)log()log( NM +
. 

 

 

       (a) original image                      (b) 2-layer                  (c) 3-layer              (d) 4-layer                     (e) 5-layer 

Fig 7 Hexagonal sampling of flower. jpg image in HIP framework 

Original size of the image is 128 x 128. So the number of 
layers required to display this image fully in HIP framework  
is given by  

5  987.4
845.0

214.4

log7

128 log 128 log ≈==+=λ . 

 

VII.  CONCLUSION  

The possibility of constructing wavelets on spiral addressing  
scheme using lifting method was studied extensively. Since 
there is no dedicated hardware available for hexagonal-
based image capture and display, conversion has to be done 
from square to hexagonal image before hexagonal-based 
image processing. The difference will be clear only if we 
have hexagonal based image capture and display systems. 
The use of these wavelets can be extended to many pattern 
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recognition operations like object recognition and 
segmentation. The properties of the hexagonal wavelets are 
to be studied extensively in order to apply it to 
multiresolution image processing operations. 
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