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ABSTRACT

In this paper, we demonstrate the existence of fair end-to-end window-based congestion control protocols for packet-
switched networks with FCFS routers. Our de�nition of fairness generalizes proportional fairness and includes
arbitrarily close approximations of max-min fairness. The protocols use only information that is available to end
hosts and are designed to converge reasonably fast.

Our study is based on a multiclass 
uid model of the network. The convergence of the protocols is proved using
a Lyapunov function. The technical challenge is in the construction of the protocols.
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1. INTRODUCTION

We study the existence of fair end-to-end congestion control schemes. More precisely, the question is that of the
existence of congestion control protocols that converge to a fair equilibrium without the help of the internal network
nodes, or routers. Using such a protocol, end-nodes, or hosts, monitor their connections. By so doing, the hosts
get implicit feedback from the network such as round-trip delays and throughput but no explicit signals from the
network routers. The hosts implement a window congestion control mechanism. Such end-to-end control schemes
do not need any network con�guration and therefore could be implemented in the Internet without modifying the
existing routers nor the IP protocol.

The Internet congestion control is implemented in end-to-end protocols. The motivation for such protocols is
that they place the complex functions in the hosts and not inside the network. Consequently, only the hosts that
want to implement di�erent complex functions need to have their software upgraded. Another justi�cation, which is
more di�cult to make precise, is that by keeping the network simple it can scale more easily.

TCP is the most widely used end-to-end protocol in the Internet. When using TCP,1 a source host adjusts its
windows size, the maximum amount of outstanding packets it can send to the network, to avoid overloading routers
in the network and the destination host.

Many researchers have observed that, when using TCP, connections with a long round-trip time that go through
many bottlenecks have a smaller transmission rate that the other connections.2{4 A bottleneck is a node where
packets are backlogged so that its transmission rate limits the rate of the connections that go through it. The observed
bias can be explained as follows. While a host does not detect congestion, it increases its window size by one unit
per round-trip time of the connection. Accordingly, the window size of a connection with a short propagation delay
increases faster than that of a connection with a longer propagation delay. Consequently, a long-delay connection
looses out when competing with a short-delay connection.

Based on this observation, Floyd and Jacobson5 proposed a \constant rate adjustment" algorithm. Handerson et
al6 simulated a variation of this scheme. They report that if the rate of increase of the window size is not excessive,
then this scheme is not harmful to the other connections that use the original TCP scheme. Moreover, as expected,
this scheme results in better performance for connections with longer propagation time. However, choosing the
parameters of such algorithms is still an open problem.

Thus, although end-to-end protocols such as those implemented in TCP are very desirable for extensibility and
scalability reasons, they are unfair. Roughly, a fair scheme is one that does not penalize some users arbitrarily.
Accordingly, the question that arises naturally is the existence of fair end-to-end congestion protocols.
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In an early paper, Ja�e7 shows that power cannot be optimized in a distributed manner.

Chiu and Jain8 show that in a network with N users that share a unique bottleneck node, a linear increase
and multiplicative decrease algorithm converges to an e�cient and fair equilibrium. Most current implementations
of TCP window-based control use a linear increase and multiplicative decrease of the window size, as suggested
by Jacobson.1 However, these implementations control the size of their window and not their transmission rate.
Moreover, simple examples show that the result does not hold for networks with multiple bottleneck nodes.

Shenker9 considers a limited class of protocols and argues that \no aggregate feedback control is guaranteed fair."
This statement suggests that end-to-end control cannot guarantee convergence to a fair equilibrium. Unfortunately,
the class of protocols that he considers excludes many implementable end-to-end protocols. Jain and Charny refers
to Shenker9 to justify the necessity of switch-based control for fairness.10,11

Recently, Kelly et al12 exhibited an aggregate feedback algorithm that converges to a proportionally fair point.
In their scheme, each user is implementing a linear increase and multiplicative decrease of its rate based on an
additive feedback from the routers the connection goes through. This protocol requires that the routers can signal
the di�erence between their load and their capacity. In our protocol, each host controls its window size not its
rate, based on the total delay. Window-based algorithms are used to control errors. A rate-based control must be
augmented with another retransmission protocol for error control. The window-based control algorithm integrates
these two functions of error and congestion control. Although the delay is an additive congestion signal, this is less
informative than Kelly's. Our protocol can be viewed as a re�nement of TCP congestion control algorithms.

In this paper we revisit the fundamental question of the existence of fair end-to-end protocols and we provide a
positive answer by constructing explicitly such protocols.

2. MODEL

Window 
ow control is usually modeled as a closed queuing network.13{15 For instance, Mitra et al13 study the
window 
ow control of a single connection with �xed propagation delay in a product form network. They derived
the optimal window size and an adaptive window-based control scheme based on the analytical model.

In this paper we consider a closed multiclass 
uid network with M links and N connections. We de�ne that
model next. The sender of connection i (i = 1; : : : ; N ) exercises a window-type 
ow control and adjusts the window
size wi of the connection. A connection follows a route that is a set of links. Link j (j = 1; � � � ;M) has capacity,
or transmission rate, cj . We de�ne the matrix A = (Aij ; i = 1; : : : ; N; j = 1; � � � ;M ) where Aij = 1 if connection
i uses link j and Aij = 0, otherwise. Let also Ai� := fjjAij = 1g be the set of links that connection i uses and
A�j := fijAij = 1g the set of connections that use link j.

Each connection i has a �xed round-trip propagation delay di, which is the minimum delay between the sending
of a packet by the sender host and the reception of its acknowledgment by the same host. We assume that the
processing times are negligible. A typical acknowledgment delay comprises di and some additional queuing delay in
bottleneck routers. Let xi be the 
ow rate of the i-th connection for i = 1; : : : ; N . For j = 1; � � � ;M , we assume that
every link j has an in�nite bu�er space and we designate by qj the work to be done by link j. By de�nition, qj is
the ratio of the queue size in the bu�er of link j divided by the capacity cj . The service discipline of the links is �rst
come - �rst served (FCFS).

We consider a 
uid model of the network where the packets are in�nitely divisible and small. This model is
represented by following equations:

ATx� c � 0 (1)

Q(ATx� c) = 0 (2)

X(Aq + d) = w (3)

x � 0; q � 0 (4)

where

x = (x1; : : : ; xN)
T ; c = (c1; : : : ; cM)T ;

q = (q1; : : : ; qM)T ; d = (d1; : : : ; dN )
T ;

X = diag(x); Q = diag(q):



The inequalities (1) express the capacity constraints: the sum of the rates of 
ows that go through a link cannot
exceed the capacity of the link. The identities (2) can be written as

qj[(A
Tx)j � cj] = 0; for j = 1; : : : ;M:

The j-th identity means that if the rate (ATx)j through link j is less than the capacity cj of the link, then the queue
size qj at that link is equal to 0. Finally, the identities (3), which can be written as

xi[(Aq)i + di] = wi; i = 1; : : : ; N;

mean that the total number of packets wi for each connection i; i = 1; : : : ; N , is equal to the number xidi of packets
in transit in the transmission lines plus the total number xi(Aq)i of packets of connection i stored in bu�ers along
the route. To clarify the meaning of xi(Aq)i, note that

xi(Aq)i = xi
X
j

Aijqj =
X
j

Aijxiqj:

Now, cjqj is the number of packets in the bu�er of link j and a fraction xi=cj of these packets are of connection i.
Thus, (cjqj)(xi=cj) = xiqj is the backlog of packets of connection i in the bu�er of link j. Summing over all j such
that connection i goes through link j shows that xi(Aq)i is the total backlog of packets of connection i.

Note that our model assumes that, for each link j, the contribution to the queue size of connection i is proportional
to its 
ow rate xi. This assumption is consistent with the 
uid assumption under which the packets are in�nitely
divisible.

We rewrite the i-th identity of (3) as follows:

xi =
wi
Di

where Di = di + (Aq)i: (5)

The identity (5) means that the 
ow rate xi of connection i is equal to the ratio of the window size wi of the
connection divided by its total round-trip delay Di. The total delay Di consists of �xed propagation delay di plus a
variable queuing delay which depends on congestion in the network. Accordingly, the 
ow rate xi of connection i is
a function of not only the window size wi of the connection but also of the window sizes of the other connections.
When the network is not congested, q = (q1; : : : ; qM) = 0 and the 
ow rates are proportional to the window sizes.
However, as congestion builds up, q 6= 0 and the rates are no longer linear in the window sizes.

We prove that the 
ow rates x are a well-de�ned function of the window sizes w. This result is intuitively clear and
its proof is a con�rmation that the model captures the essence of the physical system. Before proving the uniqueness
of the rate vector x, we �rst show the existence of a rate vector x that solves the relations that characterize the 
uid
model. All the proofs of this paper are given in Mo et al.16

Theorem 1. For given values of (w;A; d; c), there exists at least one rate vector x which satis�es the relations
(1)-(4).

Theorem 2. Given (w;A; d; c), the 
ow rate x = (x1; � � � ; xM) satisfying the equations (1)- (4) is unique.

Although the rate vector is uniquely determined from the window sizes, the workload vector q generally is not, as
the following example shows. Consider a network with two bottleneck links in series with the same capacity c and a
single connection with window size w. If w

d
> c, then the queues build up in the links. For this network, any vector

(q1; q2) such that q1 + q2 =
w
c
� d is a solution of the equations (1) - (3).

The following corollary shows a su�cient condition for q to be determined uniquely. Let AB be the sub-matrix
of A corresponding to set B of bottlenecks.

Corollary 1. If rank(AB) is equal to the number jBj of bottleneck links, then (w;A; c; d), uniquely determines the
vector q. The following lemma provides su�cient conditions for links not to be bottlenecks.

Lemma 2.1. For any given window size vector w, 0� 1 matrix A, and diagonal matrix D,

� (a) if A�j
TD�1w � cj, then qj = 0.



� (b) ATD�1w � c if and only if q = 0.

The above lemma can be proved if we observe that wi

di
is an upper bound on xi.

The converse of part (a) is not always true, as can be seen from the next example. Let M = 2; N = 2; C =
(5; 5)T ; d = (1; 1)T ; and

A =

�
1 1
1 0

�
:

If w = (10; 20), clearly, q2 = 0, the 
ow rate out of resource 1 � 5, but AT
�2D

�1w = 10 > 5.

Let F : W!X be the mapping from the window space W to a 
ow rate space X de�ned by (1)-(4). F
is a continuous function but is not always di�erentiable as the next example shows. Consider the network and
connections in �gure 1(a). Two users are sharing one link and each uses another link. Figure 1(b) is a plot of x1
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Figure 1. (a)network topology (b) 
ow rate x vs. window size (c) mapping between x and w

along the horizontal dotted line 1 in �gure 1(c). Figure 1(b) shows that x1 is a continuous nondecreasing function
of the window size w1, but is not di�erentiable at the points where the set of bottlenecks changes. Each region
I,II,III, and IV corresponds to di�erent sets of bottlenecks. For example, in region I, user 1 does not su�er from any
bottlenecks, but user 2 does.

Figure 1(c) shows the mapping x = F (w). If w 2 (0), there is no queue, and w and x are such that wi = xidi,
so that x = F (w) is di�erentiable in that region. If w 62 (0), F is no longer one to one. For instance, F (w) = (1; 2)
for all w 2 (2) and F (w) = (2; 1) for all w 2 (4).

Let F�1(x) = fwjF (w) = xg: The dimension of F�1(x) is related to the number of bottlenecks. To be precise, the
dimension of F�1(x) is same as the rank of AB . This property follows from w = Xd+XAq. Since XAq = XABqB,
F�1(w) is a positive cone of XAB with vertex Xd, as we now illustrate in �gure 1(c). When q = 0, the inverse image
of F is a point, of which the dimension is 0. When x = (1:5; 1:5), F�1(x) is the dotted line 2 in the �gure, whose
dimension is 1. When x = (2; 1) or (1; 2), the number of bottlenecks is 2, which is the dimension of F�1(x).

Let B(w) be the set of bottlenecks for the window sizes w. We call w an interior point if there is � > 0 such that
B( �w) are same for all �w 2 neighborhood, N�(w), of w. Otherwise, w is said to be a boundary point.

Claim 1. F is a continuous function of w.

Claim 2. F is di�erentiable except at the boundary points.

Corollary 2. Let D+
u F = lim�#0

F (w+�u)�F (w)
� : Then D+

u F exists for all w.



3. FAIRNESS

3.1. Fairness

Fairness has been de�ned in a number of di�erent ways. One of the most common fairness de�nitions is max-
min or bottleneck optimality criterion.17{20,10 A feasible 
ow rate x is de�ned to be max-min fair if any rate xi
cannot be increased without decreasing some xj which is smaller than or equal to xi.18 Many researcher have
developed algorithms achieving max-min fair rates.18,20,10 But computing the max-min fair vector requires global
information,21 and most of those algorithms require exchange of information between network and hosts. Hahne19

suggested a simple round-robin scheduling that achieves max-min fairness. However, this algorithm requires that all
the links perform round-robin scheduling and that packets of all users are always ready for all links.

Kelly22 proposed proportionally fairness. A vector of rates x is proportionally fair if it is feasible, that is x� � 0
and ATx� � c, and if for any other feasible vector x, the aggregate of proportional changes is negative:

X
i

xi � x�i
x�i

< 0: (6)

Kelly et al12 suggested a simple linear increase and multiplicative decrease algorithm that converges to the propor-
tionally fair point.

Recently, game theory has been applied to 
ow control.23{25 These authors model users as players competing for
common shared resources. The concept of Nash Equilibrium provides a framework for de�ning fairness and proper
operating points for the network. The game can be viewed as non-cooperative24 or cooperative.23

Next, we generalize the concept of proportional fairness. Consider the following optimization problem:
(P )

maximize g =
P

i pif(xi) (7)

subject to ATx � c (8)

over x � 0 (9)

where f is an increasing strictly concave function and the pi are positive numbers. Since the objective function (7)
is strictly concave and the feasible region (8)-(9) is compact, the optimal solution of (P ) is exist and unique. Let
L(x; �) = g(x) + �T (c �ATx). The Kuhn-Tucker conditions26 for a solution x� of (P ) are

rgT � �TAT = 0 (10)

�j(cj � AT
�jx

�) = 0 for j = 1; � � � ;M (11)

ATx� � c (12)

x� � 0; � � 0 (13)

where rgT = (p1f 0(x1); � � � ; pnf 0(xn)). When there is only one link and N connections, the optimal solution of (P )
is xi =

c
N

for all i: All the connections have an equal share of the bottleneck capacity, irrespective of the increasing
concave f . Indeed, (10) implies f 0(xi) = � for all i, so that xi = f 0�1(�) for all i. If x is a proportionally fair vector
then it solves (P ) when f(x) = logx with pi = 1 for all i. Thus, a proportionally fair vector is one that maximizes
the sum of all the logarithmic utility functions. The situation is not the same when there are multiple bottlenecks.
Consider the following network with 2 di�erent bottlenecks and 3 connections. The max-min fair rate vector of this

USER2

USER1

USER3

C1 C2

Figure 2. Network with multiple bottlenecks

network is ( c1
2 ;

c1
2 ; c2�

c1
2 ) if c1 < c2, while the proportionally fair rate vector is di�erent, since by decreasing the rate



of user 1, the sum of the utility functions f increases. Hence the optimal vector x depends on the utility function f
when there are at least two bottlenecks.

It is the concavity of the function f that forces fairness between users. If f is a convex increasing function instead
of concave, then to maximize the objective function g of (P ), the larger 
ow rate xi should be increased, since the
rate of increase of f(xi) is increasing in xi. When f is linear, the rate of increase of f is the same for all x. When f
is concave, a smaller xi favored, since f

0(x) > f 0(y) if x < y.

It is a matter of controversy what is a fair rate allocation for the network in �gure 2. It can be argued that the
max-min fair rate is desirable. On the other hand, connection 1 is using more resources than the others under the
max-min fair rate. Generally, the problem is how to compromise between the fairness to users and the utilization of
resources. The max-min de�nition gives the absolute priority to the fairness.

We generalize the concept of proportional fairness as follows.

Definition 1 ((p; �)-proportionally fair).

Let p = fp1; : : : ; pNg and � be positive numbers. A vector of rates x� is (p; �)-proportional fair if it is feasible
and for any other feasible vector x, X

i

pi
xi � x�i
x�i

� < 0: (14)

Note that (14) reduces to (6) when p = (1; � � � ; 1)T and � = 1.

The following lemma clari�es the relationship between the above de�nition and the problem (P ).

Lemma 3.1. De�ne the function f� as follows:

f�(x) :=

8<
:

x1�� if 0 < � < 1
logx if � = 1
�x1�� if � > 1:

Then the rate vector x� solves the problem (P ) with f = f� if and only if x� is (p; �)-proportionally fair.

The next lemma explains the relationship between max-min fair rate and the parameter �.

Lemma 3.2. If h is increasing concave negative function, the solution of (P ) with fn = �(�h)n approaches the
max-min fair rates as n!1.

Since
f 0n(x)

f 0n(x+ �)
=

�
h(x)

h(x+ �)

�n�1
h0(x)

h0(x+ �)
!1 as n!1;

the function fn gives more priority to smaller 
ows as n increases.

Corollary 3. The (p; �)- proportionally fair rate vector approaches the max-min fair rate vector as �!1.

3.2. Window Size and Fairness

In this subsection we study the relationship between window sizes and fairness.

TCP Vegas27 uses the estimated total backlog of a connection as a decision function. In our notation, the total
backlog of connection i is wi� xidi. In TCP Vegas, a host increases its window size if the estimated total backlog is
smaller than a target value and decreases it otherwise.

We now establish the relationship between the total backlogs and fairness. Let pi > 0 for i = 1; � � � ; N . De�ne

si = wi � xidi � pi, for i = 1; � � � ; N: (15)

The next theorem shows that any window vector w such that si = 0 for all i corresponds to a (p; 1)-proportionally
fair rate vector x.

Theorem 3. There is a unique window vector w such that si = 0 for i = 1; � � � ; N: Moreover, the corresponding rate
vector x(w) de�ned by the equations (1)-(4) is a (p; 1)-proportionally fair rate vector.



Proof. The key observation is q plays the role of Lagrange multiplier of (P ). Refer to [16] for a detailed proof.

This theorem implies that by controlling the total backlogs of the network, we can operate the network at the
(p; 1)-proportionally fair point.

This theorem can be extended to the (p; �)-proportionally fair case. Let pi > 0 for i = 1; � � � ; N and � > 1.
De�ne

s�i = wi � xidi �
pi

x��1i

, for i = 1; � � � ; N: (16)

Theorem 4. There is a unique window vector w such that s�i = 0 for all i. Moreover, the corresponding rate vector
x(w) de�ned by the equations (1)-(4) is a (p; �)- proportionally fair rate vector.

4. FAIR END-TO-END ALGORITHM

4.1. (p,1)-Proportionally Fair Algorithm

In this section we construct an end-to-end control that converges to the proportionally fair point. De�ne

�di = di + Ai�q, for i = 1; � � � ; N:

That is, �di is the measured round-trip delay of connection i. Fix � > 0.

Consider the following system of di�erential equations:

d

dt
wi(t) = ��

di
�di

si
wi

(17)

si = wi � xidi � pi for i = 1; � � � ; N: (18)

Theorem 5. Let V (w) =
PN

i=1

�
si
wi

�2
. Then V is a Lyapunov function for the system of di�erential equations

(17)-(18). The unique value minimizing V is a stable point of this system, to which all trajectories converge.

Proof. We show in [16] that d
dt
V (w(t)) = �

P
j

P
i
si
wi

dri
dwj

_wj < 0 for all t.

Kelly et al12 proposed a rate control algorithm that converges to the proportionally fair point. The algorithm
changes the rate as follows:

d

dt
xi(t) = �(pi � xi(t)Ai��(t))

where
�j(t) = ((ATx)j �Cj + �)=�2:

The source i gets the explicit feedback
P

j �j(t) , sum of residual capacities, from the links and changes its rate
accordingly. The increase is linear and the decrease is multiplicative. Each �j(t) play the role of a Lagrange
multipliers of the problem P as �!0.

Our algorithm, however, controls the window size instead of the rate explicitly. The rate is a function of all
windows. The algorithm (17)-(18) can be written as follows:

d

dt
wi(t) = �(

pi
wi

+
di
�di
� 1)

di
�di

where
�di = di +

X
j2A

�i

qj:

Here, the measured delay �di plays the role of the feedback. This delay is the summation of qj plus di. Thus, qj in our
algorithm is comparable to �j in Kelly's. They are both Lagrange multipliers of (P ). However, we do not linearly
increase and multiplicatively decrease the window. When the network is not congested, q = 0, _w = � pi

wi
. and the

increasing rate is a decreasing function of w.



4.2. (p,�)-Proportionally Fair Algorithm

In this subsection, we consider an algorithm that converges to an (p; �)- proportionally fair rate vector. We know
that if s�i = wi�xidi�

pi
xi��1 = 0 for all i, then the rate vector is (p; �)-proportionally fair. We call pi

xi��1 the \target
queue length," since wi � xidi is the estimated queue length in the network. Note that target queue length goes to
in�nity when the rate is very small. When � = 1, the target queue length is constant regardless of the rate. On the
other hand, when � > 1, the target queue length is a function of x, which is varying and is a decreasing function of
the rate. Hence, when the 
ow rate is large, the algorithm tries to maintain smaller queue and vice versa.

One unfavorable property of the target queue length function pi
xi��1 is that when xi < 1, this function becomes

very large and the target queue length 
uctuates and makes the control unstable. Consequently, we consider pi
(xi+1)��1

instead of pi
xi��1 , since the variation of the former is smaller than that of the latter.

The objective function h� such that the solution of (P ) corresponds to �s� = wi � xidi �
pi

xi+1��1 = 0 is

h�(x) =

8<
:

logx if � = 1;
log( x

x+1 ) if � = 2;

log( x
x+1 ) +

P��2
i=1

1
i(x+1)i if � � 3:

Note that h0� = 1
x(x+1)��1 and limx!1 h� = 0. These observations show that hap is increasing concave and

nonnegative, and by the claim 3.2, the solution of (P ) with objective function h� converges to max-min rate vector.

Consider the system of di�erential equations

d

dt
wi = ��xisiui (19)

where

si = wi � xidi �
pi

(xi + 1)��1
and ui = di � (�� 1)

pi
(xi + 1)�

: (20)

Theorem 6. If pi < di
��1 for all i, the function V (w) = 1

2

P
i s

2
i is a Lyapunov function for the system of

equations (19)-(20). The unique value w minimizing V (w) is a stable point of the system to which all trajectories
converge.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have addressed the fundamental question of the existence of fair end-to-end window-based congestion
control. We have shown the existence of window-based fair end-to-end congestion control using multiclass closed 
uid
model. We showed that the 
ow rates are a well de�ned function of the window sizes and characterized this function.
We generalized the proportional fairness and related the fairness to the optimization problem. Our de�nition of
fairness addresses the compromise between user fairness and resource utilization. With the help of optimization
problem, we have related window sizes and the fair point. We have developed an algorithm which converges to the
fair point and proved its convergence using a Lyapunov function.

Our algorithm uses the propagation delay di, measured delay �di, and window size wi. Unfortunately, the end
user cannot know the exact value of propagation delay. Furthermore, the value of propagation delay could change
in the case of rerouting in packet-switched networks. TCP Vegas uses the minimum of delays observed so far as an
estimated propagation delay. TCP-Vegas fails to adapt to the route change when the changed route is longer than
original route. Refer to La et al28 for more detail. The challenging question that remains is the implementability of
this protocol.
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