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Abstract

In this paper we develop robust estimators of the
Rényi information divergence (I-divergence) given a
reference distribution and a random sample from an
unknown distribution. Estimation is performed by
constructing a minimal spanning tree (MST) passing
through the random sample points and applying a
change of measure which flattens the reference distri-
bution. In a mixture model where the reference distri-
bution is contaminated by an unknown noise distribu-
tion one can use these results to reject noise samples
by implementing a greedy algorithm for pruning thek-
longest branches of the MST, resulting in a tree called
thek-MST. We illustrate this procedure in the context of
density discrimination and robust clustering for a planar
mixture model.

1. Introduction

Let Xn = fx1; x2; : : : ; xng denote a sample of i.i.d.
data points inRd having unknown Lebesgue multivari-
ate densityf(xi) supported on[0; 1]d. Define the order
� Rényi entropy off [7]

H�(f) =
1

1� �
ln

Z
f�(x)dx (1)

1This work was supported in part by AFOSR under MURI grant:
F49620-97-0028.

and, for a dominating Lebesgue densityfo, the Rényi
information divergence off with respect tofo

I�(f; fo) =
1

1� �
ln

Z �
f(x)

fo(x)

��

fo(x)dx (2)

The quantityI�(f; fo) is a special case of I-divergence
which is called the Chernoff distance or the Renyi cross-
entropy betweenf andfo [1]. The I-divergence takes
on its minimum value (equals zero) if and only iff =
fo (a.e.). The R´enyi information divergenceI�(f; fo)
specializes to the R´enyi entropyH�(f) whenfo is equal
to a uniform density over[0; 1]d. Other special cases of
interest are obtained for� = 1

2
for which one obtains the

log Hellinger distance squared

I 1
2

(f; fo) = ln

�Z p
f(x)fo(x)dx

�2

and for � ! 1 for which one obtains the Kullback-
Liebler divergence

lim
�!1

I�(f; fo) =

Z
fo(x) ln

fo(x)

f(x)
dx:

The problem of estimating the I-divergence arises in
the very large class of density classification problems
for clustering and pattern recognition [1, 3]. In these
problems one applies a threshold test to an estimate of
I�(f; fo) in order to decide whetherf is equal tofo. I-
divergence estimation also arises in image registration
where the I-divergence can be directly related to mutual
information between two imagesf andfo [8]. For an
overview of entropy and I-divergence estimation appli-
cations the reader can refer to [2] and [1].



In this paper we present a methodology robust esti-
mation ofI�(f; fo) for unknownf and arbitrary dom-
inating densityfo. This methodology performs a non-
linear transformation on the data sampleXn, producing
a transformed data sampleYn, and constructs a graph,
called thek-minimal spanning tree (k-MST), on a min-
imal k-point subsetYn;k of the transformed data. The
k-MST is a graph which connectsk out of n of the
data points in a manner that minimizes the total length
of the graph, where length is defined as the sum of the
interconnection distances (called edges) raised to a user-
specified power 2 (0; d). This results in a strongly
consistent and unbiased estimate ofI� which has de-
sirable properties including: the estimator does not re-
quire performing the difficult step of density estimation;
estimates of various orders� of I� can be obtained by
varying teh edge power exponent; the sequence of trees
Yn;2; : : :Yn;n = Yn provides a natural extension of rank
order statistics for multidimensional data.

To illustrate our results we will show ROC curves for
the MST estimates of R´enyi information divergence and
give an application to robust clustering for the case that
f is a planar mixture density of the form

f = (1� �)f1 + �fo; (3)

wherefo is a known outlier density andf1, � 2 [0; 1] are
unknown.

2. MST’s and Entropy Estimation

A spanning treeT through the sampleXn is a con-
nected acyclic graph which passes through all then
points fxigi in the sample. T is specified by an or-
dered list of edge (Euclidean) lengthseij connecting
certain pairs(xi; xj), i 6= j, along with a list of edge
adjacency relations. The power weighted length of the
treeT is the sum of all edge lengths raised to a power
 2 (0; d), denoted by:

P
e2T jej

 . The minimal span-
ning tree (MST) is the tree which has the minimal length
L(Xn) = minT

P
e2T jej

 . For any subsetXn;k of k
points inXn defineTXn;k thek-point MST which spans
Xn;k. Thek-MST is defined as thatk-point MST which
has minimum length. Thus thek-MST spans a subset
X �n;k defined by

L(X �n;k) = min
Xn;k

L(Xn;k)

The planark-MST problem was shown to be NP-
complete in [6]. Raviet al proposed a greedy polyno-

mial time algorithm for the planark-MST problem with
approximation ratioO(k

1

4 ).
Let� 2 (0; 1) be defined by� = (d�)=d and define

the statistic

Ĥ�(X
�
n;k) =

1

1� �
ln
�
n��L(X �n;k)

�
+ �(�; d) (4)

where� is a constant equal to the R´enyi antropy of
the uniform density on[0; 1]d. In [5] Hero and Michel
presented ad-dimensional extension of the planark-
MST approximation of Ravi et al, called the greedyk-
MST approximation. In that paper we proved that when
k = �n, � 2 [0; 1], and the lengthL(X �n;k) of this ap-
proximation is substituted into (4) one obtains a strongly
consistent and robust estimator of the R´enyi entropy (1):

Ĥ�(X
�
n;k) ! min

A:P (A)��

1

1� �
ln

Z
A

f�(x)dx (a:s:)

where the minimization is performed over alld-
dimensional Borel subsets of[0; 1]d having probability
P (A) =

R
A
f(x)dx � �. This result was used in [4]

to specify robust estimators of R´enyi entropy which per-
form outlier rejection for the case thatf is a mixture
density of the form (3) withfo uniform.

3. Extension: I-Divergence Estimation

Let g(x) be a reference density on IRd which
dominates the densityf(x) of a sample pointx =
[x1; : : : ; xd]T in the sense that for allx such that
g(x) = 0 we havef(x) = 0. For anyx such that
g(x) > 0 let g(x) have the product representation
g(x) = g(x1)g(x2jx1) : : : g(xdjxd�1; : : : ; x1) where
g(xkjxk�1; : : : ; x1) denotes the conditional density as-
sociated withg(x) of thek-th component. In what fol-
lows we will ignore the setfx : g(x) = 0g since, as
f(x) = 0 over this set, it has probability zero. Now con-
sider generating the vectory = [y1; : : : ; yd]T 2 IRd by
the following vector transformation

y1 = G(x1) (5)

y2 = G(x2jx1)

...
...

yd = G(xdjxd�1; : : : ; x1)

where G(xk jxk�1; : : : ; x1) =R xk
�1

g(~xkjxk�1; : : : ; x1)d~xk is the cumulative con-
ditional distribution of thek-th component, which is
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monotone increasing except on the zero probability
setfx : g(x) = 0g. Thus, except for this probability
zero set, the conditional distribution has an inverse
xk = G�1(ykjxk�1; : : : ; x1) = G�1(ykjyk�1; : : : ; y1)
and it can be shown (via the standard Jacobian formula
for transformation of variables) that the induced joint
density,h(y), of the vectory takes the form:

h(y) =
f(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1))

g(G�1(y1); : : : ; G�1(ydjyd�1; : : : ; y1))
(6)

Let L(Y�n;k) denote the length of the greedy approx-
imation to thek-MST constructed on the transformed
random variablesy, whereY�n;k is the set ofk points
spanned by thisk-MST approximation. Then, from the
results of [5] cited in the previous section, we know that

Ĥ�(Y
�
n;k) !

1

1� �
ln

Z
h�(y)dy (a:s:) (7)

Making the inverse transformationy ! x specified by
(5) in the above integral, noting that, by the Jacobian
formula,dy = g(x)dx, and using the expression (6) for
h, it easy to see that the integral in the right hand side of
(7) is equivalent to the R´enyi information divergence of
f(x) with respect tog(x)

1

1� �
ln

Z
h�(y)dy =

1

1� �
ln

Z �
f(x)

g(x)

��

g(x)dx:

Hence we have established thatĤ�(Y
�
n;k) is a strongly

consistent estimator of the R´enyi information divergence
above. The results of [5] can thus be easily be extended
to classification against anyarbitrary distribution fo,
and not just the uniform distribution studied in [4].

4. Applications

256 samples were simulated from a triangle-uniform
mixture densityf = (1 � �)f1 + �f0 wheref1(x) =
( 1
2
� jx1 � 1

2
j)( 1

2
� jx2 � 1

2
j) is a (separable) triangular

shaped product density andf0 = 1 is a uniform den-
sity, both supported on the unit squarex = (x1; x2) 2
[0; 1]2. The Rényi information divergencesI(f; f0) and
I(f; f1) were estimated bŷH�(Xn) and Ĥ�(Yn), re-
spectively, for� = 1

2
( = 1 in the k-MST con-

struction). Yn was obtained by applying the mapping
y = (y1; y2) = (F1(x

1); F1(x
2)) to the data sample

Xn, whereF1(u) is the marginal cumulative distribution
function associated with the triangular density.

In a first sequence of experiments the estimates
Ĥ�(Xn) and Ĥ�(Yn) of the respective quantities
I(f; f0) and I(f; f1) were thresholded to decide be-
tween the hypothesesH0 : � = 0 vs. H1 : � 6= 0 and
H0 : � = 1 vs. H1 : � 6= 1, respectively. The receiver
operating characteristic (ROC) curves are indicated in
Figures 1 and 2. Note that, as expected, in each case
the detection performance improves as the difference be-
tween the assumedH0 andH1 densities increases.

In a second sequence of experiments we selected two
realizations of the triangle-uniform mixture model for
the values� = 0:1 and� = 0:9. For the former case
the triangular is the dominating density and for the latter
case the uniform is the dominating density. In each case
thek-MST was implemented (k = 90) as a robust clus-
tering algorithm to identify data points from the dom-
inating densities - in the former case thek-MST was
applied directly toXn while in the latter case it was ap-
plied toYn. The resultingk-MST quantitiesĤ�(Xn;k)

and Ĥ�(Yn;k) can be interpreted as robust estimates
of the uncontaminated R´enyi information divergences
I(f1; f0) andI(f0; f1). respectively. Figure 3-5 illus-
trate the effectiveness of these estimates as “outlier re-
jection” algorithms.
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Figure 1. ROC curves for the Ŕenyi informa-
tion divergence test for detecting triangle-uniform
mixture densityf = (1 � �)f1 + �f0 (H1)
against the uniform hypothesisf = f0 (H0).
Curves are decreasing in� over the range� 2
f0:1; 0:3; 0:5; 0:7; 0:9g.
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Figure 2. Same as Figure 4 except test is against
triangular hypothesisf = f1 (H0). Curves are
increasing in�.
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Clustering in Original Data Domain

Figure 3. A scatterplot of a 256 point sample
from triangle-uniform mixture density with� =
0:1. Labels ’o’ and ’*’ mark those realizations
from the uniform and triangular densities, respec-
tively. Superimposed is thek-MST implemented
directly on the scatterplotXn with k = 230.
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Figure 4. A scatterplot of a 256 point sample
from triangle-uniform mixture density with� =
0:9 in the transformed domainYn. Labels ’o’
and ’*’ mark those realizations from the trian-
gular and uniform densities, respectively. Super-
imposed is thek-MST implemented on the trans-
formed scatterplotYn with k = 230
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Figure 5. Same as Figure 4 except displayed in
the original data domain.
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