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Summary 

In recent years the amount of biological data has exploded to the point where much useful 

information can only be extracted by complex computational analyses. Such analyses are 

greatly facilitated by metadata standards, both in terms of the ability to compare data 

originating from different sources, and in terms of exchanging data in standard forms, e.g. 

when running processes on a distributed computing infrastructure. However, standards 

thrive on stability whereas science tends to constantly move, with new methods being 

developed and old ones modified. Therefore maintaining both metadata standards, and all 

the code that is required to make them useful, is a non-trivial problem.  Memops is a 

framework that uses an abstract definition of the metadata (described in UML) to 

generate internal data structures and subroutine libraries for data access (application 

programming interfaces - APIs - currently in Python, C and Java) and data storage (in 

XML files or databases). For the individual project these libraries obviate the need for 

writing code for input parsing, validity checking or output. Memops also ensures that the 

code is always internally consistent, massively reducing the need for code reorganisation. 

Across a scientific domain a Memops-supported data model makes it easier to support 

complex standards that can capture all the data produced in a scientific area, share them 

among all programs in a complex software pipeline, and carry them forward to deposition 

in an archive.  The principles behind the Memops generation code will be presented, 

along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy 

and structural biology. 

1 Introduction 

In recent times, the combination of digitization, high-throughput approaches and modern 

computing techniques has revolutionized the relationship between scientists and data in terms 

of size and access. These advances present great opportunities but also create considerable 

problems. Most data now exists in electronic form at some point in its life, and it is therefore 

extremely important that data can be passed seamlessly between the many different programs 

that might be used to process and analyse it. If all scientific software was always written to 

some common data standard then this would not be difficult. In practice, however, this is a 

non-trivial problem. Science is primarily driven by the need to generate results rather than 

conform to standards, even if such standards existed and could be agreed upon in constantly 

evolving fields.  
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The need for standards remains, however. As high throughput methodologies have 

proliferated, and networks have made it increasingly simple to move data to wherever it is 

needed, there has been increased interest in defining data standards across a large number of 

fields where there are immense amounts of data that need to be organised and exploited. 

Recent reviews by Brazma et al., [1] on data standards and by Swertz and Jansen [2] on 

software infrastructure give a good account of both current efforts and the underlying 

considerations. Pitfalls abound: Top-down imposed standards may be universally ignored, but 

just hoping that communities will self-organise can be a recipe for anarchy; new and 

developing fields are too fluid for standardisation, while mature fields are too settled to 

change, even for the better; minimal standards can leave too much out, while detailed 

standards may become too unwieldy to be adopted.  

 

Data handling in practice starts with the individual program. Every program has a data 

model, if only implicitly, and every program needs to consider reading and validating input, 

organising internal data, and producing output. Much of the required work is trivial, yet 

input/output and data handling routines can make up a surprisingly large fraction of the code 

(and the bugs) for a program. Programmers thus have an incentive to choose the simplest 

possible data models in order to maintain an overview and minimize the workload. 

Standardising and automating the writing of data access code has the potential to save 

significant developer time, in addition to making the resulting code more clearly defined, and 

easier to maintain and to interface with. More generally, making it easier to maintain complex 

underlying models will free resources to support both interoperability and additional 

functionality. 

There are other practical considerations when considering how models, and the scientific code 

that implements them, are developed and maintained in reality.  Science constantly moves 

forwards, both in terms of knowledge and methodology, so it is unrealistic to expect data 

models that describe scientific areas to remain static. In addition data model development in 

an academic environment is normally carried out by very small teams - typically one or two 

people. It is therefore helpful to have a system that scales well in terms of model maintenance 

and that has good mechanisms for extension.  These are areas where code generation can help 

enormously. Hand-written code tends to deteriorate over time as developers add quick patches 

following user requests etc. Eventually refactoring becomes essential, and this can be 

extremely time consuming and hard to fund for a large code base. Generated code is not as 

flexible but tends to remain uncluttered for longer. A practical solution to this trade-off is to 

provide hooks in the code generation machinery that allow for a limited amount of 

maintenance-intensive but flexible handwritten code. 

 

Structural biology has a long track-record of data standardisation. The determination of 

atomic resolution structures is both complex and expensive, and it was appreciated very early 

on in the history of X-ray crystallography that global archives of structures would have 

considerable value. It was also appreciated that such archives would be much more useful if 

the data were represented systematically. Thus macromolecular X-ray crystallography was 

arguably the first biology-related community to embark on data standardisation. The Protein 

Data Bank formalised their internal procedures into the v2.3 PDB coordinate format [3] while 

a more extensive set of definitions were defined in mm-CIF [4]. At the same time as these 

standards for archiving were being developed, CCP4 [5] was coordinating the establishment 

of standards covering the intermediate stages of structure determination, defining software 

pipelines based on PDB and reflection files that contain data, and a standard command line 
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interface to run programs. CCPN, the project that has developed Memops, was created in part 

to emulate CCP4 in the NMR field. 

 

In macromolecular NMR spectroscopy, the interpretation and analysis phase of a project is 

traditionally done by a single person interactively over weeks and months, and the total 

amount of data generated in this phase runs to tens of Mb for a single project. The raw data 

are NMR spectra – generally in the order of tens, each up to a few hundred Mb in size. Each 

spectrum is a simple numerical matrix, calculated once and for all, and stored in binary form 

in one of a few proprietary formats. The need for standardisation is not so much here, but in 

the more varied and complex data used for spectrum headers, experiment description, 

interpreted data, generated structures, and validation output. 

 

Automatic code generation is a well established software technique [6] increasingly used as 

a time-saving way of generating variants of verbose and repetitive code. It is related to the 

Model Driven Architecture (MDA) concept promoted by the Object Management Group 

(OMG). In MDA an abstract model of the system under study is used as a starting point first 

for platform-specific models and ultimately for the finished software product. MDA does not 

require code generation per se, and the specific models and final code are often generated 

completely or partially by hand. 

 

The Memops framework [7] (from MEta-MOdelling Programming System) is designed to 

enable a small development team to build and maintain a large complement of code libraries. 

This is achieved by generating the necessary subroutine code directly and automatically from 

an abstract data model. Memops is an easy way of getting fully functional libraries handling 

data access, I/O, consistency and validity checking for several different languages and storage 

implementations in parallel. It was initially proposed as part of a project to make a data 

standard for macromolecular NMR spectroscopy data. Memops reduces the overhead of 

developing standards, particularly in cases where the model is developing rapidly, in a 

number of ways: 

 The use of an abstract model with a diagrammatic representation (in UML) makes it 

easier to oversee the structure of the model and to discuss changes. This is important, 

as rigorous initial definition of a model can drastically improve its long term 

usefulness. 

 The automatic generation of data access, I/O, and validation code provides high 

quality libraries, allowing developers to concentrate on application development rather 

than housekeeping code. 

 The model change process is extremely fast. This makes it easier to modify a model, 

which can be extremely useful both when fine-tuning the model, and when extending 

it to include new features. The data compatibility system ensures that old format data 

can be read by new versions, and for many changes (additions, deletions, renamings) 

compatibility code is generated automatically. 

 In some cases it is possible to hide model changes, or complexities, from programs 

that are unaware of them. An attribute can be replaced transparently by a function call 

(a 'derived attribute'), which behaves as if the attribute was stored in the normal way. 

This feature can be used to present data in a simple manner even where the structure 

of the data model is actually more complicated.  
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The resulting data access subroutines provide efficient means for integrating software either 

sequentially into pipelines or through concurrent access, both due to the ability to maintain 

complex models and because of the nature of the data storage implementation. All related data 

are kept in a single network of interlinked objects with individual access to each object and 

precisely defined relations between data items. Programs can navigate the network starting 

from a root object, accessing only the data they need while maintaining consistent links to 

other data that are not relevant in this context. For instance a LIMS application, X-ray 

crystallography software, and NMR software could work off a single data set, keeping all the 

information consistent, without any need for e.g. the crystallography software to be aware of 

the NMR data structures. The facility to connect application-specific data to each data object 

further allows program-specific information to be stored and kept through a pipeline. 

Software integration and ultimately data quality are also improved by the precise and 

comprehensive nature of the data model. The combination of standard access code, precise 

definitions, model constraints, and built-in validation leaves much less scope for ambiguity. 

In writing the CcpNmr FormatConverter, for instance, it was found that the most difficult step 

was disambiguating and connecting up the information being read in from external formats. 

Once the information was inside the data standard and thus well defined, exporting to other 

programs was invariably straightforward. By contrast, even something as simple and well 

established as the PDB coordinate file format was in practice often used in ways that were 

incompatible between different programs, or that did not respect the specification. 

This paper presents the version 2.0 of the Memops architecture, and evaluates its impact over 

a number of applications. A more detailed view of the implementation can be found in the 

Supplementary Material.  

2 Development of standards in the NMR community 

In order to describe how Memops has been used in practice, and to highlight the strengths and 

weaknesses of the approach, it is helpful to look at the development of the associated standard 

in the NMR community and how it tackles issues that had long proven difficult to solve. 

Software for macromolecular NMR is dominated by isolated programs with little provision 

for integration or the forming of software pipelines. The effectiveness of NMR studies is often 

compromised by the difficulties of transferring data between programs. The answer to this 

problem lies in some form of data exchange standard. However, the precise nature of this 

standard needs to take into account the sheer complexity of the data under consideration, and 

the fact that NMR experimental methods are constantly evolving so that any standard has to 

be future-proofed. It must also take into account the relatively low level of resources available 

for not purely scientific objectives like ease of use or adherence to external standards. 

Memops was developed to address these problems by providing a framework for integrating 

existing NMR software through a highly complex, readily extensible standard that can 

reasonably be developed and maintained by a small team. 

 

Data standard: Organisation. The goal of a data exchange standard is interoperability 

between programs from different origins, within a software pipeline that generates data. The 

set of exchanged data must be so comprehensive, detailed, and consistent that it can be used 

directly as input for calculation. An exchange standard must work with programs that use 

different approaches and architecture, and must maintain consistency for continuously 

changing data without relying on data curation. It has to be possible to validate data files 

electronically against the standard, to ensure compliance in a heterogeneous environment. 

Any standard that satisfies these requirements must of necessity be large and complex. Yet the 
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fragmented state of macromolecular NMR software, which is what makes a data exchange 

standard desirable in the first place, means that the standard would have to be adopted by a 

large number of independent, under-resourced groups using different programming languages 

and storage implementations. We felt that our goals could only be achieved if storing data in 

the standard became an integral part of each application. We therefore needed to make the 

standard as attractive and useful for application programmers as possible. 

To satisfy these goals it was decided: 

 to target the standard at application programmers, who are presumably more tolerant 

of complex models than research biologists 

 to establish a standard object-oriented Application Programming Interface (API) rather 

than a standard format 

 to describe the standard in an Abstract Data Model and ensure that the API(s) exactly 

reflected the model 

 to provide working API implementations for several languages, and for data storage in 

at least XML formatted files and SQL relational databases  

 to include complete validation of all model rules and constraints in the API 

implementations 

 to make data access transparent and independent of the underlying storage mechanism 

 to provide utility code and features, such as event notification, backwards 

compatibility support, and distribution of reference data 

 

Data standard: Content. The actual content of the data standard for macromolecular NMR 

was determined by CCPN over a series of community workshops where a wide range of 

stakeholders were consulted [7,8,9]. The resulting standard was built on the work of the 

BioMagResBank on NMR data [10] and the PDB on macromolecular topology [3]. It covers 

NMR spectroscopy and structure generation; macromolecules (topology, structure, 

coordinates, and simulation); laboratory information management; and utility data (citations, 

people etc.). The structure of the data model is illustrated in Supplementary Figures 4 and 5. 

For further information on the contents of the model see the CCPN web site and the API 

documentation found there. Note that in the particular context of macromolecular NMR it was 

critical that the standard was extremely detailed; it had to be able to be mapped onto by a 

large number of subtly different implicit data models within the various NMR software 

packages, and accommodate extensions as the science developed. However, the Memops 

approach can be applied to any field, and to far simpler data models. 

 

Code generation in the context of NMR is made more complex by the fact that external 

software developers require implementations for a number of different computing languages. 

This means that the generation machinery has to be capable of maintaining and synchronising 

several API implementations in tandem. The need for backwards compatibility at the 

application level further complicates matters. If each implementation was written and 

maintained by hand, coding and synchronisation testing would require resources far beyond 

what could realistically be provided. As the number of implementations increased, even 

providing separate code generators for each implementation would become a demanding task; 

ideally the system should also make it possible to add new implementations with a minimum 

of additional work. 
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Fortunately code for data access (getting and setting values, creating and persisting objects) is 

highly repetitive and can be easily deduced from the data model. This makes it possible to 

replace handwritten API implementations by a combination of generic code and model 

lookup. The advantages are clear: There is less code to write and maintain; the generic code 

does not depend on the model and so can be debugged once and for all; and synchronisation 

between API implementations and data model is guaranteed.  

3 The Memops Machinery 

The initial development of the Memops code generation framework has been described 

previously [7]. The generation process is summarized in Figure 1. Details can be found in the 

„Memops Machinery‟ section of the Supplementary Material. Memops currently supports 

parallel generation of Python+XML, Java+XML, Java+database, and C+XML 

implementations, all from a single model. The source for all generated code is the data model 

that describes the structure of the data to be stored, including constraints on which data values 

are allowed. The machinery can work with any model that follows the Memops modelling 

rules, whatever the underlying subject matter.  

 

Figure 1: Organisation of the Memops framework. The data model, edited in UML [11 ] is split 

into packages, so that different domain experts can curate different areas, and so that 

applications can choose to work with only a subset of the model. Packages have one-way 'import' 

links to other packages that they depend on. XML and database schemas, persistence code, and 

the actual API implementations are generated automatically from the model. Over 99% of the 

final code is generated automatically. The remainder, including code for complex model 

constraints and non-standard functions, is added as language specific code snippets to the UML, 

so that the generated code is fully functional without manual modifications. Applications, written 

by third parties, ideally do all their data access by direct API calls. 

Memops produces object-oriented code. Information is organised as a set of linked data 

structures (objects) with attributes, using methods to get, set, and modify values and links. For 

the C implementation object orientation is not possible and so is emulated using structures 

and complex function definitions. The model can be enriched by adding 'derived attributes' 

that behave like stored attributes but are calculated from the stored information at runtime – 

together with the function code needed to derive them. Data are fetched from disk 

automatically when needed, one data package at a time. The implementations include full 

validation of new data against all model constraints and protection of internal data structures 

from casual modification ('encapsulation'). A model event notifier (callback) facility has been 

integrated with the API. Any application can register a function to be called when a given API 
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function is executed or a given type of object is modified. This allows e.g. graphical user 

interfaces to keep themselves up-to-date as the model data are modified. 

Our first prototype was written as generic code that interrogated the model description at run-

time (an 'interpreter'). However, this approach proved to be slow, complex to program and 

debug, and hard to extend from the original Python to a statically typed language like Java. 

For subsequent implementations we opted for a generator that interrogates the model at code 

generation time and writes the run-time code for each API function out in full (a 'compiler'). 

This approach provides faster execution times and easier debugging, at the cost of having a 

large and repetitive body of code in the API. For simplicity we concentrated on generating a 

single, efficient subroutine library for each language+storage combination, albeit with some 

possibility for fine-tuning the database structure in the database implementation. 

The degree of synchronization we need requires essentially 100% automation, as any manual 

post-generation modifications to the code would have to be repeated endlessly every time the 

generation script was re-run. When the project started no existing framework could provide 

for this need. Frameworks like Hibernate can now produce a functional data access API 

implementation for Java+database automatically from a single input file. Memops is unique in 

providing several data access implementations in parallel from a single model specification. 

In addition Memops makes it relatively simple to add generators for new implementations. 

 

Additional features.  Since the first publication [7], the data model and generation machinery 

have been extensively tested and optimised through practical use. Key changes to the internals 

of Memops have been made at two levels. At the level of the code generation machinery 

itself, the Python code has been refactored to make it simpler to add support for additional 

languages (see Supplementary Figures 2 and 3). At the level of the generated APIs, 

backwards compatibility code for data files from older model versions is now integrated with 

the Python+XML API. Most backwards compatibility can be handled automatically as part of 

XML file loading. Large model changes may be beyond the capabilities of this mechanism, 

but these can be handled by a more complex installation. For example, changing data from 

version 1 to 2 of the CCPN framework is possible through a web service. 

A Java API over a database persistence layer has also been developed. In outline, Hibernate is 

used to map between the database and the Java layer. Java code that is compatible with the 

standard XML I/O routines is generated along with a Hibernate mapping file that is also used 

to generate the database schema using standard Hibernate tools. For additional customisation, 

hooks within the Memops generation machinery can be used to define additional Hibernate 

mappings and database triggers. 

Further changes include the new C+XML API, complex object types that compare by value, 

globally unique identifiers (GUID), simplifying the core model package, and various 

optimisations.  

 

Scalability. Memops is most effective where the handled data are complex, but not 

particularly large. This is precisely the situation in the NMR field, where a typical project may 

contain 2 million objects covering 300 classes and taking up 70 Mb when stored as XML 

files. Loading such a project with the Python+XML implementation takes roughly 30 seconds 

on a modern Linux PC with 2.16 GHz dual-core processor, and requires 600 Mb of memory 

when fully loaded. However, these load times are somewhat misleading as individual data 

files are only loaded when required, massively reducing the dwell times in actual application. 

The load times for the Java+database implementation depend largely on the behaviour of 

Hibernate. Currently searching starts to slow down noticeably for tables above 10
6
 rows, 
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where performance becomes limited by of the overhead of creating proxy objects within the 

Hibernate layer. However, by judicious use of customisation, and using the Hibernate layer to 

query SQL directly when most appropriate it is possible to work with larger data sets.  

 

Availability. The Memops framework is available under the GPL license, the data exchange 

standard with generated subroutine libraries under the LGPL license. Both may be found 

wither on the CCPN web site, or at SourceForge. 

4 Applications 

Memops provides application developers with a set of APIs consistent with a formal data 

model and with a high level of built-in housekeeping functionality. In the context of 

macromolecular NMR, this makes it relatively easy for programs to communicate with each 

other, either directly through the standard API I/O functionality generated by Memops, or 

through wrappers. This approach has proven extremely successful in developing new 

applications and addressing the data exchange problems that plagued the NMR community. 

Some examples are described below: 

 

The CcpNmr suite was developed as part of the CCPN project. It was based entirely on the 

CCPN API from the start, using the Python+XML implementation (Supplementary Figure 6, 

top). The CcpNmr programs served as pilot applications for the NMR and molecular parts of 

the data model.  

 

CcpNmr Analysis is a program for visualisation and assignment/analysis of macromolecular 

NMR data, and is often used to set up structure generation. The program includes a rich set of 

features supporting various NMR tasks, and has several hundred users worldwide. Version 

2.1.3, based on the most recent Memops APIs has recently been released. Macromolecular 

NMR spectrum analysis is arguably a matter of viewing spectrum contour plots and filling 

information into a highly complex data model. The demands on the user interface are high, as 

a single project may require many weeks of continuous interaction with the program. Data 

access in CcpNmr Analysis is carried out through the Memops-generated API (except for the 

large numeric matrices of the NMR spectra), with some limited transfer to internal data 

structures for speed. The graphical user interface (GUI) is built on the Memops notifier 

facility, and relies on the internal checking in the API implementation for enforcing data 

consistency. CcpNmr Analysis needs to store both user profiles and session information like 

window positions, current colour settings etc. - neither of which has any place in a general 

data exchange standard. To this end CCPN has added two Analysis-specific packages to the 

model. Using the Memops machinery also for this purpose was faster than writing file I/O by 

hand and had the advantage that all data were available through a single interface.  

Overall, using Memops aided development in three main ways. Firstly, the complexity 

allowed by Memops made it possible to develop the data model to represent the underlying 

science correctly from the start. Simplifying assumptions were confined to higher level code, 

and so could be changed with relative ease as users needed ever more complicated cases to be 

taken into account. Secondly, the time required to extend the model is extremely fast. Once 

the desired semantics have been confirmed, the code update can take as little as half a day, 

even for a complex extension. Where problems were found in the model – Analysis had its 

own bespoke model packages and was co-developed with central parts of the data model – 

this again sped up the development of new features considerably. Thirdly, the generated code 
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is completely systematic, which means that developers can easily and accurately understand 

what each function does without constantly having to check documentation. The users of 

Analysis are mainly academics, many of whom require new features to test out ideas, and 

using Memops means that feature requests can be handled quickly and accurately.  

 

CcpNmr FormatConverter is a universal format converter for NMR and structural biology 

that can read data from and write data to over 30 different current and legacy data formats. It 

works by first converting all input data to CCPN format, querying the user where necessary 

for disambiguating the data, and then re-exporting to the target format. It is a single 

application with its own format parsers and writers. The architecture exploits the fact that the 

CCPN format is precisely defined, highly detailed, and able to store all relevant data. 

Ambiguities can be resolved at the import stage, simplifying the subsequent export. The use 

of a central data definition format means that you can convert between n formats with 2n 

(rather than n**2) converters.  

A key point here is that for FormatConverter to work, it is essential that the underlying data 

model is complex. Indeed, each piece of existing software has its own, often implicit, 

underlying data model, and the role of FormatConverter is to resolve these assumptions in the 

context of an all-encompassing data model that can handle all the individual cases. The ability 

to convert between formats efficiently is a key step for both meta-analysis, and for data 

exchange / pipelining. FormatConverter is widely used in the field of macromolecular NMR 

and in the eNMR project, in particular the CASD-NMR structure calculation competition [12] 

(see Supplementary Figure 8). The ability to consistently store large amounts of information 

from external data files is especially powerful; the FormatConverter and CCPN framework 

are used for data curation at the NMR deposition database BioMagResBank [13,14], and have 

provided data for the RECOORD structure recalculation project [15]. They are essential tools 

in new data organisation and analysis efforts [16,17].  

 

Extend-NMR is a software development and integration project for macromolecular NMR 

spectroscopy funded under the EU FP6 program. The integration aspect involves combining 

scientific software from eight different developers into a single integrated pipeline, 

encompassing NMR data acquisition, processing, analysis, structure generation, docking, 

validation, and deposition (see Supplementary Figure 7). The pipeline includes a shared GUI 

that can launch all the different applications. It is an example of using the API 

implementations generated by Memops for data exchange, and involves pre-existing 

applications with their own separate code base. The end-of-project integrated pipeline has just 

been released. The integrated programs include: 

 

TOPSPIN (Bruker BioSpin GmbH). Bruker is a major equipment manufacturer for NMR 

spectrometers, and TOPSPIN is the Bruker software for data acquisition, processing, and 

analysis of NMR data. The current TOPSPIN release (v2.1) can export NMR spectrum and 

peak data to a CCPN project, and the upcoming release (v3.0) will have increased export 

capabilities. TOPSPIN is written in Java, and the data are exported to a CCPN data structure 

in memory by direct calls to the CCPN Java+XML API implementation.  

 

ARIA [18] is one of the most popular programs for generating macromolecular structures from 

NMR data. It reads a molecular sequence, NMR shifts, peaks and structural constraints, and 

runs an iterative calculation to generate an ensemble of structures and a filtered version of the 
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input data. ARIA versions from v2.2 (2007) support the complete input and export of data and 

analyses through either ARIA files or a CCPN data structure. ARIA is a Python program with 

associated CNS scripts, calling the CNS structure calculation engine [19, 20]. It uses its own 

data structures internally, and transfers data to and from CCPN by calling the Python+XML 

API implementation.  

 

HADDOCK [21,22] is an information-driven macromolecular docking program. It was 

developed from an earlier version of ARIA (see above) and uses the same architecture. 

Haddock and CCPN have jointly developed a Haddock-specific model package to hold both 

input data and Haddock switches and parameters, so that all information needed for launching 

Haddock can be held in a CCPN project. This model is used by the CCPN Analysis software 

to create all necessary input files to launch HADDOCK directly or, alternatively, to generate a 

single HADDOCK server parameter file that can be uploaded to the HADDOCK web server 

for a fully automatic docking run. 

 

CING is a validation suite for NMR-derived structures, encompassing and expanding on a 

number of pre-existing validation tools.  The top layers of CING are written in Python, and 

data transfer to and from the CCPN data standard is through direct API calls. A data model 

package for structure validation data – not specific to CING – has been developed in 

collaboration between the CCPN and CING teams. 

The successful completion of the Extend-NMR project relied on the all-encompassing, 

detailed nature of the data model and the facility for tailoring additions to specific programs. 

The availability of implementations in different programming languages made it possible to 

distribute the work required to integrate the various components of the pipeline to the 

individual software development teams, each with their specific language expertise. 

 

EUROCarbDB aims to create a distributed deposition database for glycobiology and 

glycomics data (currently NMR, MS and HPLC), with associated bioinformatics tools. The 

project includes an atomic-level molecular description framework for carbohydrate fragments, 

developed in collaboration with CCPN. The NMR component of EUROCarbDB consists of a 

Memops Java+database API for the NMR and molecular description packages of the standard 

CCPN data model (Supplementary Figure 6, bottom). The database with the NMR data is 

merged into the core EUROCarb database by merging the CCPN and EUROCarbDB 

Hibernate mapping files. Additional links connect the Memops root object to the central 

EUROCarb tables. Information is mainly uploaded one CCPN project at a time, with some 

facility for editing the deposited data. Data extraction is mostly through Java API calls.  

The Java+database API was tested in EUROCarbDB with over 1300 data sets loaded. Some 

data-intensive or time-critical operations required special-purpose queries in Hibernate Query 

Language (HQL). These can be customized at individual sites. Where required, hooks within 

the Memops generation machinery were used to generate and maintain denormalised tables in 

the database. These tables allowed rapid searching across key areas of the database without 

needing to load large amounts of data through the Hibernate layer, and served to identify 

objects of interest for later retrieval. 
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5 Conclusion 

Code generation techniques are a valuable tool for speeding up development and maintaining 

the integrity of code. As with any structured system, there is a trade off between flexibility 

and efficiency. In Memops this manifests itself in a number of ways. Firstly, it is relatively 

difficult to “hack” short term changes into the generated APIs. In terms of the long-term 

development of the code this should actually be seen as an advantage, as multiple layers of 

such changes inevitably lead to bugs, and eventually the need for refactoring. In other words, 

it enforces a systematic approach that may seem inconvenient in the short term, but is 

beneficial in the long term. Secondly, Memops makes it easier to maintain data models that 

accurately describe complex relationships and include difficult and unusual cases. The 

complexity is no longer limited by your ability to maintain oversight of the model. The main 

problem becomes the need for handling common situations simply while still including all 

relevant subtleties, and even this can be alleviated by the use of derived attributes. The case 

studies above demonstrate that being able to support a complex data model can be a critical 

feature in data exchange and meta-analyses where the underlying data are fundamentally 

complex, as is often the case in the life sciences. As web services and the GRID evolve, and 

networks permit the movement of large datasets, questions of interoperability are expected to 

become increasingly important. In the case of NMR there would be considerable advantages 

to developing the Extend-NMR pipeline further so that arbitrary workflows could be defined 

and the individual steps farmed out to remote services. 

Memops implements a general approach for the generation of housekeeping code from an 

abstract data model, and as such is potentially applicable to a wide range of domains. 

However, it is anticipated that it would be most powerful in cases where the underlying data 

are described by a complex data model which needs to be maintained by a small, highly 

trained development team – a very common scenario in the life sciences. 
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Supplementary Material: 
 MEMOPS: Data modelling and automatic code generation 

Rasmus H. Fogh, Wayne Boucher, John M.C. Ionides, Wim F. Vranken, Tim J. Stevens, 
and Ernest D. Laue 

 

1 Memops machinery 

The code generation process is shown in Figure 1. 

 

Supplementary Figure 1: Workflow for code generation. CCPN software is coloured in blue, 

while external software is coloured in orange. Boxes with thick black borders are files generated 

by the CCPN code. 

The data model is edited in UML class diagrams augmented with tagged values. We are 

currently using ObjectDomain, a commercial editor, but in principle any UML editor could be 

used. The model description is transferred to an in-memory representation, specified as 

Python objects using the Memops metamodel (see below), and stored in a Memops XML 

format. Exporting the model description from the UML editor is the only part of the workflow 

that depends on the editor - all subsequent code generation steps work solely from the in-

memory model description. The Memops metamodel is similar to the MOF 1.4 standard of 

the OMG. 

The abstract data model is language- and implementation- neutral. Language-specific 

information is stored as sets of tagged values, one for each language (and each storage 

implementation, if necessary). It consists mainly of code snippets for the body of manually 

coded methods or constraints, for integration into the code by the API generation machinery.  
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The Memops framework is written entirely in Python. We have found Python a good choice: 

flexible, object oriented, and well suited to the complex model queries and inheritance 

hierarchies of our generation scripts. First the model is read from XML and passed through an 

adaptation stage. Standard operations (get, set, etc.) and their parameters are added to the 

model at this stage, relieving the UML modellers of the work. The model adaptation also 

customizes the model to the specific implementation, e.g. by adding features that are specific 

for individual languages like Java. 

 

 

Supplementary Figure 2: Organisation of API generator code. Many tasks are independent of 

the language or storage implementation being generated. By separating out the code, common 

actions need only be coded once, and new implementations can be added with minimum effort. 

The adapted model is then passed to the code generator scripts, the main ones being those that 

generate the API and the XML I/O mappings. To simplify the writing and maintaining of 

generators, we have split the generation code into reusable modules. Figure 2 shows the 

organization, while Figure 3 shows the modules used in the Python+XML API generation. 

The logic for API generation resides mainly in ApiGen. Tasks that differ between 

implementations are delegated to functions that are called from ApiGen but defined lower 

down in the inheritance hierarchy. Particularly complex output code is written directly, e.g. 

from PyFileApiGen, but most code is produced by calling functions from PyLanguage, 

JavaLanguage etc. The level of organization should be evident from some sample function 

names: setVar, newCollection, startLoop, endIf, callFunc, comparison, stringIsNotEmpty, ... 

Formally the set of functions in the Language modules define a programming language, 

which the generators use to define the APIs. A more general solution would have been to 

implement automatic translation from an existing language like OCL. We settled for an 

internal ad-hoc solution because 1) it was easier to implement, 2) we could limit ourselves to 

constructs that occurred with some frequency in our APIs, 3) we could add special-case 

functions to optimize the generated code, like e.g. reraiseException or 

collectionNotNoneAndNotEmpty. 
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Supplementary Figure 3: API generator modules, specifically for the Python+XML API 

implementation. Each box represents a class. Inheritance is shown by dotted arrows from 

subtype to supertype – note that Python has no problems with multiple inheritance. The diagram 

for a Java+database implementation would have the same structure, with PyLanguage replaced 

by JavaLanguage, PyFileApiGen by JavaDbApiGen, etc. All classes are abstract, except for 

PyFileApiGen. The four 'ApiGen' classes contain the API generation logic – with ApiGen 

accounting for about half the code and FileApiGen for a third. ModelTraverse contains general 

looping and traversing code, while TextWriter contains code for writing to file. PyLanguage and 

PyType hold low-level language-specific code. 

2 API Implementations 

Data structure. The model consists of classes of DataObjects with attributes, links, 

operations, and constraints, DataTypes, and Complex Data Types. These are grouped in 

packages (see Figure 4). The model description is organised using the Memops metamodel 

(see below). 

 

Supplementary Figure 4: Examples of packages from the CCPN data standard. Packages are 

used to partition both the model description, the API implementation code, and the data storage 

for file implementations. MolStructure contains coordinates, MolSystem atomic level description 

of molecular complexes, Molecule sequences, and ChemComp residue templates. Dotted arrows 

show dependency relationships; e.g. MolStructure depends on MolSystem and on ChemComp 

(not shown). 

At run-time data are held in memory as linked objects with simple attributes or links 

(henceforth 'attributes'). The attributes may be single values or collections of various 

cardinalities, modifiable or frozen. Collections may be unique (sets), ordered (lists) or both 

(unique lists). The model may contain derived attributes, whose values are not stored but 
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(re)calculated when queried. Most objects are DataObjects, which are mutable, compare by 

identity and can appear in only one context in the model. As an alternative Complex Data 

Type objects are immutable, have simple attributes but no links, and compare by value. 

Complex Data Types are used for structured values that can appear in different contexts, such 

as Urls or orientation matrices. Finally, Constraints, which can be attached to attributes, 

classes, and simple or complex data types, are used to restrict which data values are allowed 

by the model. Constraints are evaluated at the beginning of attribute modifiers, at the end of 

object creation, and by the special checkValid function. Constraints are added as code 

snippets in all supported languages, and can be arbitrarily complex. 

 

 

Supplementary Figure 5: Example package – 'MolStructure', used for storing molecular 

coordinate ensembles, with associated classes from other packages (names beginning with 'ccp.'). 

Classes are connected by 'parent-child' links (composition links - black diamonds). Each package 

has a TopObject class (here the StructureEnsemble) that is a child of the MemopsRoot (not 

shown). Links between classes are shown as dark lines – role names are derived from the names 

of the classes, except where explicitly overridden (e.g. 'coordChains'). One-way links are shown 

as arrows. Most methods are generated automatically. The few explicit operations in the 

diagram, like the Chain.getChain function, have non-standard code and are used to define 

derived attributes. 

An example of a model package is shown in Figure 5. All (non-abstract) classes are required 

to have a mandatory, frozen 'parent' link to another class (in the same package), as well as a 

natural key - attributes and links that identify the object uniquely in the context of its parent. 

The parent links join all objects together in a tree, rooted in the MemopsRoot object. The tree 

is also used to define the containment relationships used in XML file storage. Each package 

must contain one single class (a TopObject) that is a child of MemopsRoot. The combination 

of links and keys ensures that there is a natural navigation path to each object and in general 

gives structure to the web of objects. Mostly parent links and keys reflect the logical structure 

of the data. In Figure 5, for instance, the Residue is a child of the Chain (key seqId) and the 

Atom is a child of the Residue (key name). An object of a given class can be uniquely 

identified by navigating from the MemospRoot through parent-child links to the object and 

keeping the natural key at each step. The resulting list of natural keys forms the full key.  

TopObjects are used to divide data into separate extents. For each package, the children and 

descendants of a single TopObject are stored as a separate XML file (in file implementations).  

It is not possible to form links between objects from the same package belonging to different 
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TopObjects. This prevents e.g. forming a bond between atoms from different amino acid 

templates. TopObjects are given a globally unique identifier (GUID) on creation. This can be 

used to distinguish between objects created by different operators with accidentally / 

unavoidably overlapping key attributes.  

Connections between objects that are not parent-child links are called crosslinks. It is the 

crosslinks that makes the object web differ from a tree. Most crosslinks are navigable from 

either side. An example would be the link between Model and Coord in Figure 5, where you 

could access both Model.coords and Coord.model. There may also be one-way links that can 

be navigated from one side only. These are often derived, like all the one-way links in Figure 

5. Data defining two-way links are stored in the objects on both sides of the link. This allows 

rapid queries, at the cost of causing complications in modifying objects that would have been 

prohibitive in handwritten, non-generated code. The most complex parts of the code 

generation software tend to involve crosslinks. Modifying a crosslink requires changing the 

internal state of objects on both sides of the link, which makes the API classes strongly 

coupled. Pre-modification checks must likewise be carried out on objects on both sides of the 

link. The required code differs depending on the link cardinality (-to-one or -to-many, 

mandatory or optional) whether the link is modifiable, whether it is one-way or two-way, 

whether it is to an object in the same or another package, and which constraints, if any, apply. 

 

API functions. Information in the objects is protected from casual modification by 

encapsulation; it can only be accessed by API function calls or through an explicit override 

mechanism. The Python API exposes the following functions: 

 get, set, add, remove. For all attributes, depending on cardinality and modifiability 

 sorted. For collections of DataObjects; returns the objects sorted by full key (see above). 

 findFirst (e.g. Chain.findFirstResidue(seqCode=42, ...)) and findAll. For collections of 

DataObjects or Complex Data Types; returns first (all) object(s) with e.g. obj.seqCode == 

42. 

 new (e.g. Chain.newResidue(seqId=39, seqCode=42, ...)). For parent classes. Factory 

function, taking keyword arguments, that creates a new child object on the parent. 

 delete (e.g. Model.delete()). For DataObjects (not Complex Data Types). Cascading 

delete. When an object is deleted, all other objects rendered invalid by the deletion are 

deleted recursively. For instance deleting an object of class Model will trigger the deletion 

of all Coord objects linked to it, since the Coord.model link is mandatory. 

 checkValid, checkAllValid. Validity check of object resp. recursive check of object and all 

child objects. 

The API further provides the normal object constructor for each language, and may provide 

extra functions for some languages, e.g. overloaded function forms for Java. For Python the 

normal attribute syntax (val = obj.attr; obj.attr = val) is also supported. 

 

The Java API mirrors the Python API as far as possible. The only major difference arises 

because Java does not allow you to pass in keyword=value arguments to functions.  To make 

up for this, findFirst, findAll and constructor functions come in several overloaded variants. 

In the standard variant, keyword=value arguments are packed into a dictionary that is passed 

in as an argument (which is what Python is doing ‘under the hood’). Other variants are 

provided to avoid this rather cumbersome procedure. For the constructor, there is a variant 

where the function parameters are the mandatory attributes/links that do not have default 
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values (in alphabetic order). For findFirst and findAll there are variants for zero through four 

keyword/value pairs. 

 

The C API faces the same problems as the Java API, so again there are variant forms for the 

findFirst, findAll and constructor functions.  Since C does not allow function overloading as 

in Java, the variant forms in C each have slightly differing names. A more important problem 

is that C has a global namespace. To avoid possible name conflicts the short version of the 

package name and the class name is prepended to all function names, making them globally 

unique. The current version of the C API piggybacks off the Python API. Python itself is 

coded in C, and there is a well specified way of accessing Python objects from C.  The C API 

just calls the corresponding functions in the Python API.  C is not object oriented so structures 

are used for the classes instead, in the same way as the C subroutines that underlie Python. 

 

File storage implementation. We have chosen to handle data persistence transparently – the 

implementation fetches data into memory as required. For file implementations the directory 

structure and file names are standardized. Only the topmost directory locations are under user 

control; the relevant information being kept in the Implementation package together with the 

MemopsRoot. In file implementations data are split into multiple files (one file per 

MolSystem and one file per StructureEnsemble, in the example from Figure 5) that are saved 

and loaded independently. This allows the use of lazy loading. The actual file I/O is handled 

by a generic routine based on a standard parser, with an autogenerated I/O map storing the 

correspondence between XML tags and model operations. The organisation of the 

Python+XML implementation is shown in Figure 6 (top). 

 

Database storage implementation. Some applications require concurrent multi-user access 

to the data and in such cases a database persistence layer has considerable advantages over 

storing data in XML files. Currently Memops provides database storage for the Java version 

of the API. The database version of the API is functionally identical to the XML version.  

Rather than develop our own object-relational mapping infrastructure, we use Hibernate for 

the Java+database API implementation. Hibernate mapping and configuration files are 

generated from the data model and the database DDL is generated from the mapping files 

using standard Hibernate tools.  The database version of the API contains some subtle 

differences in the way that data are organized. In particular, we wanted to support sharing 

reference data among projects, and loading more than one project into the database in order to 

facilitate mining of information across a collection of projects. When searching across 

multiple projects, care has to be taken not to create Hibernate proxy objects corresponding to 

the entire database, since this would be prohibitively slow. To mitigate this problem we 

support the use of special-purpose queries in Hibernate Query Language (HQL), as discussed 

for the EUROCarbDB application in the main text.  As an additional advantage, these can be 

customized at individual sites. To further potentiate this option the machinery includes hooks 

to add special denormalized search tables to the database. 

The database dialects supported are essentially limited to those supported by Hibernate. All 

applications to date have used Postgres. However, it is anticipated that Oracle and MySQL  

will be actively supported soon, in addition to Postgres. Additional I/O calls to support 

laboratory information management system applications (LIMS) are also being developed. 

The organisation of the Java database implementation is shown ion Figure 6 (bottom). 
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Supplementary Figure 6: Runtime code organization for an application using a Python+XML 

Implementation (top) or a Java+database implementation (bottom). CCPN software is in blue, 

external software is in orange, and code specific for the application is in red. Boxes with thick 

black borders are files generated by CCPN code. The application is connected to the API 

through an optional layer of utility functions. These execute common tasks that require extensive 

data model manipulations, e.g. ‘Create a molecule from a string of one-letter codes’.  

3 Data exchange and software integration 

The purpose of a data exchange standard is to support the flow of data between unrelated 

programs within a single field. At the lowest level even a reliable conversion of data between 
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different file formats (translation, as it were), is a great improvement. This is the function of 

CcpNmr FormatConverter, as discussed in the main text. Efficient integration requires 

smooth, lossless transfer of data between the actual applications, rather than their output files. 

For ease of use, data transfer must become an integral part of running the programs, without a 

specific transfer step. This has the further advantage that there is then no separate format 

conversion code that needs to be updated following program changes.  

The experience of building a software pipeline for macromolecular NMR spectroscopy, 

chiefly through the Extend-NMR collaboration, has provided a number of illustrative 

examples of how to achieve integration. In general we find that there is a trade-off, so that 

more indirect integration is easier to set up but less complete and harder to maintain, 

especially for applications that are still developing. More direct integration with the data 

standard requires more work to set up for existing applications, but is easier to maintain in the 

long term, and comes with less potential for information loss and  less need for user 

intervention. Figure 7 shows the typical integration approaches used in the macromolecular 

NMR software pipeline. 

 

 

Supplementary Figure 7: Software integration approaches:  

Top: Data exchange through proprietary files. This approach is possible without modifying the 

application code, but requires continued maintenance of program-specific I/O and mappings. 

Integration of application output is often problematical, as output data items can be hard to 

match with input data items, let alone with the CCPN objects that gave rise to them. 

Middle: In-memory data conversion. Requires a program-specific conversion layer, but relies on 

existing CCPN (and often application) I/O. Integration is easier as all information relative to 

data flow remains available. 

Bottom: Direct data access through CCPN API. Does away with the need for conversion or 

separate I/O code. All information is connected to the data standard throughout. Requires the 

application to be (re)written specifically for the data standard. 

The CCPN data standard is also at the centre of a series of applications built around the 

deposition databases for macromolecular NMR data (BMRB) and structures (PDBe) – see 

Figure 8. The eNMR project forms a distributed facility that makes NMR analysis and 
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structure generation software available on grid servers. It includes many of the programs also 

integrated in the Extend-NMR pipeline, such as ARIA, HADDOCK, and CING. CASD-NMR 

is a part of the eNMR project that sets up blind tests for NMR assignment and structure 

generation programs along the lines of the CASP protein structure prediction project. An 

interesting resource is the RECOORD database of NMR structures recalculated from the 

original with standardized calculation methods. The input for the RECOORD calculation was 

the FRED database of cleaned-up original deposited restraints, which was generated using the 

CcpNmr FormatConverter. 

 

 

Supplementary Figure 8 showing how the FormatConverter and CCPN project files are used in 

ongoing projects in NMR. The FormatConverter deals with import of NMR file formats, often 

from archives such as the BMRB or PDB. The data is then made available or analysed as CCPN 

projects or as files in other file formats exported through the FormatConverter. 

4 Memops Metamodel 

The in-memory representation of the data model uses the Metamodel shown in Figure 9. For 

code generation purposes this is implemented as a series of Python classes, with modelled 

entities as objects.  
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Supplementary Figure 9: shows the metamodel used for storing the data model description. 

Broad-headed red arrows are used for inheritance, black lines for object-to-object links. In 

addition to the operations shown in the diagram the model includes get and set functions for all 

attributes and roles (not shown). All MetaPackages must be contained within another 

MetaPackage, except for the topmost one which serves as root. Underlined attributes are not 

currently used and are fixed at the given default values – they are implemented as class (static) 

attributes.  

For portability the MetaModel has been limited to single inheritance, which means that some 

type constraints could not be represented properly in the diagram – these are enforced 

separately by the underlying code. Specifically, MetaAttribute.valueType must be a 

MetaDataObjType or MetaDataType, and MetaOperation.target must be an AbstractDataType, 

a ClassElement, or a MetaOperation. 
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