
www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

Absolute and Relative Error Control in Composite Interpolatory

Quadrature: the CIRQUE Algorithm

J.S.C. Prentice

Department of Applied Mathematics, University of Johannesburg,

P.O. Box 524, Auckland Park, 2006, South Africa

Tel: 271-1559-3145 E-mail: jprentice@uj.ac.za

Received: February 9, 2011 Accepted: March 3, 2011 doi:10.5539/jmr.v3n3p63

Abstract

We introduce the CIRQUE algorithm, for approximating definite integrals of continuous, univariate, real-valued functions,
using positive-coefficient composite interpolatory quadrature. CIRQUE estimates and controls absolute and/or relative
error, without the need for a prior estimate of the magnitude of the integral. The limiting effects of roundoff error are
catered for, and CIRQUE is able to provide estimates of error bounds as output. Moreover, if these bounds are deemed
too large, it is a simple matter to rerun CIRQUE once to obtain an acceptable bound. We have demonstrated the algorithm
using the Trapezium rule, Simpson’s rule and four-point Gauss-Legendre quadrature.
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1. Introduction

Say we wish to find an approximation Qf to a definite integral I f of a continuous, univariate, real-valued function f (x) ,
such that ∣∣∣I f − Qf

∣∣∣∣∣∣I f

∣∣∣ � ε, (1)

where ε is a user-defined tolerance. In other words, we seek to control the relative error in the approximation.

Obviously, if we have a good estimate of the integral, Ĩ f ≈ I f , we can easily test whether or not the tolerance is satisfied
by Qf , and if it is not, then we can, possibly, refine Qf . However, if we do not have Ĩ f , we cannot test the quality of Qf .
One way around this problem is to use a numerical method of high order to compute Ĩ f , and a method of lower order
to compute Qf ; such an approach requires the assumption that Ĩ f is suitably accurate without any means to verify such
assumption and, furthermore, two different methods must be employed (Krommer and Ueberhuber, 1998).

So, the question is, can we design an algorithm that allows the relative error to be estimated and controlled without prior
knowledge of I f , and without using more than one numerical method? Such an algorithm is the subject of this paper. Our
algorithm, designated CIRQUE (an acronym formed from the initial letters of Relative Error Control in Interpolatory
QUadrature), will also detect whether or not absolute error control is appropriate, instead of relative error control; we will
provide a criterion for such a selection based on the magnitude of I f . Also, our algorithm will cater for any limitations
arising from the presence of roundoff error.

In the next section, we briefly discuss concepts, terminology and notation relevant to the algorithm. These include inter-
polatory quadrature, error bounds in composite interpolatory quadrature, error control, roundoff error, and a distinction
between relative and absolute error control based on computational efficiency. In Section 3 we describe the CIRQUE
algorithm, and thereafter we present a few numerical examples. We also discuss a procedure for refining the algorithm’s
estimates of error bounds. In Section 6, we list the sequence of operations in CIRQUE, as a summary of the algorithm.

2. Relevant Concepts, Terminology and Notation

In this section, we provide appropriate background information. Most of the concepts used in this paper are well-
established “classical” ideas and are drawn from numerous books on numerical analysis and computational integration.
Such a list, which constitutes our general bibliography, includes Burden and Faires (2011), Davis and Rabinowitz (1984),
Engels (1980), Ghizetti and Ossiccini (1970), Isaacson and Keller (1994), Kincaid and Cheney (2002), Krommer and
Ueberhuber (1998), Stroud (1974), and Stroud and Secrest (1966).

2.1 Interpolatory Quadrature

The integral of f (x) on [a, b] is denoted

I
[
f ; a, b

] ≡ b∫
a

f (x) dx. (2)
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The quadrature of f (x) on [a, b] is denoted

Q
[
f ; a, b

] ≡ n∑
i=1

wi f (xi) , (3)

wherein wi are the quadrature weights, and xi are the quadrature nodes. Clearly, Q
[
f ; a, b

]
is a linear combination of

values of f sampled at n discrete nodes on [a, b], and is intended to be an approximation to I
[
f ; a, b

]
. The precise nature

of the weights depends on the nature of the quadrature but, generally speaking, they are dependent on the length of [a, b].
In this paper, we restrict our considerations to a particular class of quadrature, known as interpolatory quadrature. We
will not provide details of this class here (the reader is referred to the bibliography given earlier for extensive discussions
of interpolatory quadrature), suffice it to say that the form of the absolute approximation error in interpolatory quadrature
is ideally suited to our objectives, and we discuss this feature in the next section. Hence, from here on, Q

[
f ; a, b

]
refers

to interpolatory quadrature.

If [a, b] is subdivided into N subintervals (denoted Dj), and Q
[
f ; Dj

]
is applied on each subinterval, then the integral of

f (x) on [a, b] is simply the sum of these individual quadratures. We denote such composite interpolatory quadrature by

CQ
[
f ; a, b

] ≡ N∑
j=1

Q
[
f ; Dj

]
≡
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

wi f (xi)

⎤⎥⎥⎥⎥⎥⎦
j

, (4)

where the double sum notation indicates the sum of quadrature on each of N subintervals Dj.

It is possible, and often convenient, to write Q
[
f ; a, b

]
in terms of a stepsize parameter h, as in

Q
[
f ; a, b, h

] ≡ h

n∑
i=1

ci f (xi) , (5)

where ci = wi/h.We choose to take this stepsize as the average separation of the nodes on [a, b] ; we will say more about
h in the next section. We must make mention of the fact that in Q

[
f ; a, b, h

]
the nodes xi are not necessarily uniformly

distributed on [a, b]; nor are the endpoints of [a, b] necessarily nodes. If the nodes are uniformly/not uniformly spaced,
Q
[
f ; a, b, h

]
is said to have uniform/nonuniform stepsize. If a is a node, and b is not a node, then Q

[
f ; a, b, h

]
is said to be

left-open; a similar definition holds for right-open quadrature. If neither endpoint is a node, Q
[
f ; a, b, h

]
is termed open.

Lastly, if all weights wi in Q
[
f ; a, b

]
are positive, then

n∑
i=1

wi = b − a, (6)

a feature that we will exploit later.

2.2 Error Bounds in Composite Interpolatory Quadrature

The absolute error in composite interpolatory quadrature is bounded as∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, h

]∣∣∣ � |A| (b − a) max
[a,b]

∣∣∣ f (θ) (x)
∣∣∣ hr, (7)

where A, θ and r are dependent on the number of nodes n in the underlying quadrature rule Q
[
f ; Dj, h

]
(Isaacson and

Keller, 1994). For example, the composite Simpson’s rule has A = 1
180 , θ = 4 and r = 4 (r indicates the order of the

method). If we impose a tolerance ε on the approximation, then the inequality

|A| (b − a) max
[a,b]

∣∣∣ f (θ) (x)
∣∣∣ hr � ε (8)

allows the stepsize h to be determined, such that h is consistent with the maximum possible error and the imposed
tolerance. Of course, if the maximum error is less than the imposed tolerance, then the actual error will also satisfy the
tolerance. Once h has been determined, it is a simple matter to compute CQ

[
f ; a, b, h

]
. Indeed, h is given by

h =
b − a

(n ± 1)
⌈

b−a
(n±1)h∗

⌉ (9)

h∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ε

|A| (b − a) max
[a,b]

∣∣∣ f (θ) (x)
∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
r

, (10)
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where �· · · � indicates rounding up to the nearest integer, and ± refers to Q
[
f ; a, b, h

]
as being open (+) or closed (−).

If it is left-open or right-open, then we use n in place of n ± 1. We note here that if the underlying quadrature rule has
nonuniform stepsize, such as a Gaussian rule, then h given in (9) is the average separation of the nodes and endpoints
on [a, b] . For uniform stepsize rules, such as Newton-Cotes rules, h in (9) is the separation of any two adjacent nodes,
because in such a rule the nodes are uniformly spaced. Note that

N =

⎧⎪⎪⎨⎪⎪⎩
⌈

b−a
(n±1)h∗

⌉
open (+) or closed (−) quadrature⌈

b−a
nh∗

⌉
left- or right-open quadrature

(11)

and each subinterval has length (n ± 1) h (open (+) or closed (−) quadrature) or nh (left- or right-open quadrature), so that
(n ± 1) hN or nhN is the length b − a of the interval of integration.

If we choose to impose a tolerance ε on the relative error, we must demand∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, h

]∣∣∣∣∣∣I [ f ; a, b
]∣∣∣ � ε

⇒ ∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, h

]∣∣∣ � ε ∣∣∣I [ f ; a, b
]∣∣∣ , (12)

so that
ε
∣∣∣I [ f ; a, b

]∣∣∣
serves as an absolute tolerance, and h must be determined from

|A| (b − a) max
[a,b]

∣∣∣ f (θ) (x)
∣∣∣ hr � ε

∣∣∣I [ f ; a, b
]∣∣∣ . (13)

The difficulty is immediately obvious: we do not know
∣∣∣I [ f ; a, b

]∣∣∣ .
2.3 Inclusion of Roundoff Error

Taking into account the presence of roundoff error, we write

CQ
[
f ; a, b, h

]
=
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

wi

(
1 + μwi

)
f (xi)

(
1 + μ fi

)⎤⎥⎥⎥⎥⎥⎦
j

, (14)

where wi and f (xi) are exact, μwi
is the roundoff error in the computed value of wi, μ fi is the roundoff error in the

computed value of f (xi) , and the double sum notation has been explained previously. Obviously, it is now understood
that CQ

[
f ; a, b, h

]
indicates an approximation computed with a finite-precision device.

Thus,

CQ
[
f ; a, b, h

]
=
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

wi f (xi)

⎤⎥⎥⎥⎥⎥⎦
j

+
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

wi f (xi)
(
μwi
+ μ fi + μwi

μ fi

)⎤⎥⎥⎥⎥⎥⎦
j

. (15)

We define the second term on the RHS of (15) as the roundoff error RO in CQ
[
f ; a, b, h

]
, and so

|RO| ≡
∣∣∣∣∣∣∣∣
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

wi f (xi)
(
μwi
+ μ fi + μwi

μ fi

)⎤⎥⎥⎥⎥⎥⎦
j

∣∣∣∣∣∣∣∣
� max

[a,b]
| f (x)|

∑
N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

|wi|
(
2μ + μ2

)⎤⎥⎥⎥⎥⎥⎦
j

≈ 2μmax
[a,b]

| f (x)|
∑

N

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

|wi|
⎤⎥⎥⎥⎥⎥⎦

j

, (16)

where μ is an upper bound on
∣∣∣μwi

∣∣∣ and
∣∣∣μ fi

∣∣∣ (on our platform μ ∼ 10−16), and in the last line we have ignored μ2. Now, if
we use a quadrature rule in which all weights are positive (so that their sum is equal to the length of the interval on which
they are defined), we then have (Burden and Faires, 2011; Isaacson and Keller, 1994)

|RO| � 2μmax
[a,b]

| f (x)| (b − a) , (17)

and if both max
[a,b]

| f (x)| and b − a are less than or equal to unity, we have

|RO| � 2μ. (18)
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This last case is mentioned because it will be relevant later.

As regards absolute error control, roundoff error is incorporated as

|A| (b − a) max
[a,b]

∣∣∣ f (θ) (x)
∣∣∣ hr + |RO| � ε, (19)

which gives

h∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ε − |RO|
|A| (b − a) max

[a,b]

∣∣∣ f (θ) (x)
∣∣∣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
r

. (20)

If ε � |RO| , h∗ is negative, imaginary or zero, none of which is admissible. We therefore require that

ε > |RO| .
In other words, |RO| sets a lower limit on the tolerance that can be imposed. For relative error control, the condition
becomes

ε
∣∣∣I [ f ; a, b

]∣∣∣ > |RO| ⇒ ε > |RO|∣∣∣I [ f ; a, b
]∣∣∣ .

Once h∗ has been determined, we determine a new stepsize h using (9), consistent with an integer value of N. This new
stepsize h is the actual stepsize used in computing the quadrature.

A very important point must be made here: in (20), h∗ clearly depends on |RO| so that, in (11), |RO| must be known in
order to determine N. However, in (16), we see that |RO| is computed by summing over N subintervals; this is impossible
if N is not known. Only if we use positive-coefficient quadrature can we eliminate the need to know N in computing |RO| .
We will emphasize this point again in Section 3.

2.4 Absolute and Relative Error Control

We give a criterion for choosing between absolute and relative error control. We have∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, h

]∣∣∣ = Bhr, (21)

where B is an appropriate coefficient. Hence, for relative error control,

Bhr
R =

∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, hR

]∣∣∣ � ε ∣∣∣I [ f ; a, b
]∣∣∣

⇒ hR �
⎡⎢⎢⎢⎢⎢⎣ε

∣∣∣I [ f ; a, b
]∣∣∣

B

⎤⎥⎥⎥⎥⎥⎦
1
r

, (22)

and, for absolute error control,

Bhr
A =

∣∣∣I [ f ; a, b
] −CQ

[
f ; a, b, hA

]∣∣∣ � ε
⇒ hA �

[
ε

B

] 1
r

. (23)

Now, if ∣∣∣I [ f ; a, b
]∣∣∣ > 1, (24)

then
hR > hA,

and if ∣∣∣I [ f ; a, b
]∣∣∣ � 1, (25)

then
hA � hR.

In the case
∣∣∣I [ f ; a, b

]∣∣∣ > 1, we use relative error control because of the larger stepsize. In the case
∣∣∣I [ f ; a, b

]∣∣∣ � 1, we
use absolute error control, also due to the larger stepsize. Using a larger stepsize implies greater efficiency, because fewer
nodes are required on [a, b] . In other words, our criterion for implementing absolute or relative error control is based on
considerations of computational efficiency. The choice is clearly dictated by the magnitude of I

[
f ; a, b

]
.

66 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 3; August 2011

3. The CIRQUE Algorithm

We seek to estimate and control the error in a numerical approximation to

I
[
f ; a1, b1

] ≡ b1∫
a1

f (x) dx.

We first make a change of variables

x = (b1 − a1) z + (a1 − a2 (b1 − a1)) (26)
≡ mz + c,

where
z ∈ [a2, b2 ≡ a2 + 1] . (27)

In other words, we transform the integral to one defined on a unit interval. Any unit interval will do, provided f (mz + c)
is bounded thereon.

So, we now have

I
[
m f̃ ; a2, b2

]
≡

b2∫
a2

f̃ (z) mdz, (28)

f̃ (z) ≡ f (mz + c)

as the integral we must approximate.

Next, we define

g (z) ≡ m f̃ (z)
M
, (29)

where

M = max
{

1, max
[a2,b2]

∣∣∣∣m f̃ (z)
∣∣∣∣} , (30)

so that M � 1, always, and |g (z)| � 1. If max
[a2,b2]

∣∣∣∣m f̃ (z)
∣∣∣∣ � 1, then |g (z)| � 1, so it is not necessary for M to be less than

unity, since the purpose of M is merely to ensure that |g (z)| � 1. Note that

Mg (z) = m f̃ (z) ⇒ MI
[
g; a2, b2

]
= I

[
m f̃ ; a2, b2

]
⇒ M =

I
[
m f̃ ; a2, b2

]
I
[
g; a2, b2

] . (31)

Stated otherwise,

I
[
m f̃ ; a2, b2

]
= M

b2∫
a2

g (z) dz.

Now,
I
[
g; a2, b2

] � max
[a2,b2]

|g (z)| (b2 − a2) � 1, (32)

and so absolute error control is appropriate for approximating I
[
g; a2, b2

]
.

We demand ∣∣∣I [g; a2, b2
] −CQ

[
g; a2, b2, h

]∣∣∣ � εg, (33)

where CQ
[
g; a2, b2, h

]
is any composite positive-coefficient interpolatory quadrature of g on [a2, b2] , and εg is a user-

defined tolerance with εg > 2μ (as stated earlier, 2μ is the maximal roundoff error associated with composite positive-
coefficient interpolatory quadrature of a function with magnitude less than or equal to unity on a unit interval). We use (9)
and (20) to find the largest stepsize h consistent with this inequality; it goes without saying that here we use max

[a2,b2]

∣∣∣g(θ) (z)
∣∣∣ ,

not max
[a1,b1]

∣∣∣ f (θ) (x)
∣∣∣ , in determining h. A useful relationship between these two quantities is

max
[a2,b2]

∣∣∣g(θ) (z)
∣∣∣ = (mθ+1

M

)
max
[a1,b1]

∣∣∣ f (θ) (x)
∣∣∣ . (34)
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Now, we have ∣∣∣I [g; a2, b2
] −CQ

[
g; a2, b2, h

]∣∣∣ � εg

⇒ ∣∣∣MI
[
g; a2, b2

] − MCQ
[
g; a2, b2, h

]∣∣∣ � Mεg

⇒
∣∣∣∣I [m f̃ ; a2, b2

]
−CQ

[
m f̃ ; a2, b2

]∣∣∣∣ � Mεg. (35)

Hence, ∣∣∣∣I [m f̃ ; a2, b2

]
−CQ

[
m f̃ ; a2, b2

]∣∣∣∣ � Mεg

⇒
∣∣∣∣I [m f̃ ; a2, b2

]
−CQ

[
m f̃ ; a2, b2

]∣∣∣∣ �
∣∣∣∣∣∣∣∣
I
[
m f̃ ; a2, b2

]
I
[
g; a2, b2

]
∣∣∣∣∣∣∣∣ εg

⇒
∣∣∣∣I [m f̃ ; a2, b2

]
−CQ

[
m f̃ ; a2, b2

]∣∣∣∣∣∣∣∣I [m f̃ ; a2, b2

]∣∣∣∣ �
εg∣∣∣I [g; a2, b2

]∣∣∣
⇒

∣∣∣I [ f ; a1, b1
] −CQ

[
f ; a1, b1

]∣∣∣∣∣∣I [ f ; a1, b1
]∣∣∣ �

εg∣∣∣I [g; a2, b2
]∣∣∣ ≈ εg∣∣∣CQ

[
g; a2, b2, h

]∣∣∣ . (36)

The last inequality is due to the fact that the change of variable preserves both the integral and the quadrature (Krommer
and Ueberhuber, 1998; Stroud, 1974). The LHS of the last inequality is the relative error in I

[
f ; a1, b1

] ≈ MCQ
[
g; a2, b2, h

]
,

so that εg∣∣∣CQ
[
g; a2, b2, h

]∣∣∣ (37)

is an estimated upper bound on this relative error. Moreover, this estimate is good if εg is small (because then the
approximation CQ

[
g; a2, b2, h

]
is reliable).

Note the following:

1. If we find that
∣∣∣MCQ

[
g; a2, b2, h

]∣∣∣ � 1, then absolute error control is appropriate, and we can accept MCQ
[
g; a2, b2, h

]
as the approximation, consistent with the absolute tolerance Mεg. If Mεg is unacceptably large, then we simply redo
the computation with a suitably smaller absolute tolerance εg.

2. Obviously, choosing εg so that Mεg is of acceptable magnitude would avoid having to redo the computation, in the
event that absolute error control is appropriate. Note that we can only know if absolute error control is appropriate
once CQ

[
g; a2, b2, h

]
has been determined, and it may be that absolute error control is not appropriate - after all,

CQ
[
g; a2, b2, h

]
is not known a priori. Nevertheless, we must be careful to ensure that εg is not less than the

maximal roundoff error 2μ. This might occur if M is very large, which probably means that relative error control
would be relevant, anyway.

3. If we find that
∣∣∣MCQ

[
g; a2, b2, h

]∣∣∣ > 1, then relative error control is appropriate. If the estimated bound εg

|CQ[g;a2,b2,h]|
on the relative error is too large, we simply repeat the algorithm, with an appropriately reduced value of εg (again,
taking care that εg � 2μ).

4. Typically, we would choose εg � 2μ, but we should also ensure that εg is small enough so that CQ
[
g; a2, b2, h

]
may be considered a reliable approximation.

We will say more about repeating CIRQUE with a modified εg in the next section.

4. Numerical Examples

We demonstrate CIRQUE with two numerical examples. In both examples, we use μ = 2−53 ≈ 10−16. In this section, we
will use CQg as shorthand for CQ

[
g; a2, b2, h

]
.

1. We approximate
15∫

12

exdx = 3.106 . . . × 106.

Transforming to the interval [0, 1], we find

M = 9.807 . . . × 106.
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In Table 1, we show results for CIRQUE with Trapezium (A = 1
12 , θ = 2, r = 2), Simpson and four-point Gauss-

Legendre quadrature (GL4, A = 0.00022, θ = 8, r = 8), for various tolerances. In this table, |ΔR|UB is the estimated
upper bound εg

|CQg| on the relative error; |ΔR|T is the actual upper bound on the relative error; |ΔA|UB is the estimated
upper bound Mεg on the absolute error; |ΔA|T is the actual absolute error; N is the number of subintervals on [a2, b2]
used for the composite quadrature; Nf is the total number of evaluations of the integrand f (x) used in the composite
quadrature; and Nabs

f
is the number of evaluations of f (x) that would have been needed if absolute error control

was implemented on [a1, b1] , instead of relative error control.

For each εg, |ΔR|UB is the same (to the indicated precision) for each method; this is simply due to the fact that,
in each case, CQg is sufficiently accurate. In all cases, |ΔR|T < |ΔR|UB and |ΔA|T < |ΔA|UB , as expected. Also,
|ΔA|T > |ΔR|T because the integral has large magnitude. Values of N and Nf decrease with the order of the method,
but increase with decreasing εg. The values of Nabs

f
show just how computationally expensive absolute error control

can be, particularly for the low-order Trapezium rule.

The interpretation of |ΔR|UB is that∣∣∣I [ f ; a1, b1
]∣∣∣ ∈ [∣∣∣MCQg

∣∣∣ (1 − |ΔR|UB

)
,
∣∣∣MCQg

∣∣∣ (1 + |ΔR|UB

)]
, (38)

i.e. the exact value lies in a
(∣∣∣MCQg

∣∣∣ |ΔR|UB

)
-neighbourhood of

∣∣∣MCQg

∣∣∣ or, equivalently, a |ΔA|UB-neighbourhood
of
∣∣∣MCQg

∣∣∣ , whatever the value of
∣∣∣I [ f ; a1, b1

]∣∣∣ might be.

Now, let us say we are unimpressed with the estimate |ΔR|UB = 3.2 × 10−8 obtained for Simpson’s rule with
εg = 10−8, and we would prefer a bound of 10−9.We simply repeat CIRQUE once using

εg = 10−8
(

10−9

3.2 × 10−8

)
= 3.125 × 10−10

as the new tolerance. So, if the estimated upper bound on the relative error is not acceptable, it is a simple matter
to correct it. The same process holds for the absolute error bound, as well. This is because both |ΔR|UB and |ΔA|UB

are proportional to εg. Generally, if we wish to modify |ΔR|UB and/or |ΔA|UB by a factor η, we must repeat CIRQUE
with εg modified according to

εg → ηεg, (39)

subject, of course, to the condition that this modified value of εg cannot be less than 2μ. This will yield estimated
upper bounds of η |ΔR|UB and η |ΔA|UB . In the above example, η = 10−9

3.2×10−8 .

2. We approximate
2π∫

0

sin xdx = 0

as an example of an integral for which a relative error cannot be computed. Transforming to the interval [0, 1], we
find

M = 2π.

Results are shown in Table 2, where symbols have the same meaning as in Table 1. The entries have the same
character as those in Table 1, all exhibiting expected behaviour. We do not show |ΔR|UB or |ΔR|T because relative
error control is meaningless in this example. The interpretation of |ΔA|UB is that∣∣∣I [ f ; a1, b1

]∣∣∣ ∈ [∣∣∣MCQg

∣∣∣ − |ΔA|UB ,
∣∣∣MCQg

∣∣∣ + |ΔA|UB

]
, (40)

i.e. the exact value lies in a |ΔA|UB-neighbourhood of
∣∣∣MCQg

∣∣∣ , whatever
∣∣∣I [ f ; a1, b1

]∣∣∣ may be. The smallness of
|ΔA|T in all cases is simply due to the high degree of antisymmetry present in the example, and the symmetrical
node distribution in the three quadrature methods; if we did not know |ΔA|T , the only indication of the accuracy of
the approximation is the |ΔA|UB-neighbourhood.

5. Bound Refinement

We see in Table 1 that |ΔA|T < |ΔA|UB , in some instances by two orders of magnitude. This implies that |ΔA|UB is not as
tight an upper bound as we might like. The reason for this is that |ΔA|UB is, effectively, the upper bound consistent with the
stepsize h∗ in (20). However, the stepsize actually used in CQ

[
g; a2, b2, h

]
is h in (9), in which b2−a2

(n±1)h∗ has been rounded
up to the nearest integer. Consequently, we have h � h∗. This gives

M |Δ|min � |ΔA|T � M |Δ|max � |ΔA|UB , (41)
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where

|Δ|min ≡ |A| (b2 − a2) min
[a2,b2]

∣∣∣g(θ) (z)
∣∣∣ hr,

|Δ|max ≡ |A| (b2 − a2) max
[a2,b2]

∣∣∣g(θ) (z)
∣∣∣ hr, (42)

|ΔA|UB = M |A| (b2 − a2) max
[a2,b2]

∣∣∣g(θ) (z)
∣∣∣ (h∗)r

+ 2Mμ = Mεg.

We see that |Δ|min and |Δ|max are quadrature approximation errors (in CQ
[
g; a2, b2, h

]
) for the actual stepsize h, whereas

|ΔA|UB is the quadrature error (in CQ
[
g; a2, b2, h

]
) for h∗ plus a roundoff term. Now, it is easy to compute |Δ|min and |Δ|max ,

so we can present
[|Δ|min , |Δ|max

]
as an interval indicating the minimum and maximum absolute error achievable with the

value of the stepsize h used in CQ
[
g; a2, b2, h

]
. The actual absolute error lies within these bounds. Multiplying this

interval by M gives error bounds on the approximation to
∣∣∣MCQ

[
g; a2, b2, h

]∣∣∣ ≈ ∣∣∣I [ f ; a1, b1
]∣∣∣ , and dividing this interval

by
∣∣∣CQ

[
g; a2, b2, h

]∣∣∣ gives bounds on the relative error in the approximation. Since these bounds have been determined
using the actual stepsize h, rather than h∗, we expect them to be tighter bounds.

For example, for f (x) = ex and εg = 10−4, we find

M
[|Δ|min , |Δ|max

]
= [22, 441]

M
[|Δ|min , |Δ|max

]
= [2, 36] (43)

for Simpson and GL4 quadrature, respectively (we have rounded these numbers to nearest integer, for ease of presenta-
tion). In both cases, |ΔA|T ∈ M

[|Δ|min , |Δ|max

]
, and M |Δ|max < |ΔA|UB . For the relative error, we find

[|Δ|min,|Δ|max]
|CQ[g;a2,b2,h]| =

[
7 × 10−6, 14 × 10−5

]
[|Δ|min,|Δ|max]
|CQ[g;a2,b2,h]| =

[
6 × 10−7, 1 × 10−5

] (44)

with |ΔR|T ∈ [|Δ|min,|Δ|max]
|CQ[g;a2,b2,h]| , and |Δ|max|CQ[g;a2,b2,h]| < |ΔR|UB . We have confirmed that this holds for all cases considered in the

two examples (for f (x) = sin x, min
∣∣∣g(θ) (x)

∣∣∣ = 0, so the very small values of |ΔA|T are accommodated).

To incorporate roundoff error into these refined bounds, we write[|Δ|min , |Δ|max + 2μ
]

(45)

in place of
[|Δ|min , |Δ|max

]
. Since 2μ is an upper bound on |RO| for the quadrature on [a2, b2] , it could occur that |RO| = 0.

Hence, we retain |Δ|min as the lower bound in (45).

In summary, then, we can use |Δ|max to find tighter upper bounds on both relative and absolute errors in CIRQUE, and
these bounds can be presented instead of |ΔR|UB and |ΔA|UB . Also, |Δ|min provides a lower bound on the accuracy, although
this is not of primary interest.

6. Summary of the CIRQUE Algorithm

It is worthwhile to summarize the CIRQUE algorithm, in the form of a list of the sequence of operations of the algorithm.
CIRQUE requires f (x) , f (θ) (x) (or max

[a1,b1]

∣∣∣ f (θ) (x)
∣∣∣ , at least), [a1, b1] , [a2, b2] and εg as input. The order θ of the derivative

f (θ) (x) must correlate with the underlying quadrature used by CIRQUE (e.g. for the Trapezium rule, θ = 2). CIRQUE
then performs the following:

1. Transforms the integral
∫ b1

a1
f (x) dx to one on a unit interval [a2, b2] .

2. Determines M and normalizes the transformed integrand, so defining a new integrand g (z) .

3. Applies composite positive-coefficient interpolatory quadrature
(
CQ

[
g; a2, b2, h

])
to approximate the integral of

g (z) on [a2, b2] , with appropriate absolute error control, subject to tolerance εg.

4. OUTPUT: MCQ
[
g; a2, b2, h

]
is the numerical approximation to

∫ b1

a1
f (x) dx.

5. If
∣∣∣MCQ

[
g; a2, b2, h

]∣∣∣ > 1, the maximal relative error is estimated as εg

|CQ[g;a2,b2,h]| , and the maximal absolute error
as Mεg.

6. If
∣∣∣MCQ

[
g; a2, b2, h

]∣∣∣ � 1, the maximal absolute error is estimated as Mεg. The relative error is not estimated in
this case because such estimate could be unreliable, particularly if

∣∣∣MCQ
[
g; a2, b2, h

]∣∣∣ is close to zero.
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7. The bounds in #5 and #6 could be replaced with the refined bounds |Δ|max|CQ[g;a2,b2,h]| and M |Δ|max .

8. If the bounds in #5 or #6 (or #7, for that matter) are unacceptably large, CIRQUE is repeated with an appropriately
modified tolerance.

7. Concluding Comments

We have developed an algorithm, designated CIRQUE, that computes a numerical approximation to a definite integral,
using composite positive-coefficient interpolatory quadrature. CIRQUE is able to distinguish between the need for ab-
solute and relative error control, and to implement such error control, without a priori knowledge of the magnitude of
the integral. The criterion for choosing between absolute and relative error control is based on computational efficiency.
Moreover, CIRQUE can provide an a posteriori estimate of the maximum error incurred in the quadrature process and, if
such bound is unacceptably large, it is easy to rerun CIRQUE so as to achieve an acceptable bound. Roundoff error present
in the quadrature process has been taken into account in the error control algorithm. The requirements of the integrand
are that it is real-valued, univariate, and continuous on the interval of integration, and that the maximum magnitude of its
relevant higher-order derivative is known or can be found.

Future research efforts should concern the development of CIRQUE to handle multivariate integrands, and the possible
use of the algorithm in the context of adaptive quadrature.
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Table 1. Output generated by CIRQUE, applied to the integral
∫ 15

12 exdx, for the various tolerances indicated, and using
three different quadrature methods

εg |ΔR|UB |ΔR|T |ΔA|UB |ΔA|T N Nf Nabs
f

Trap 10−4 3.2 × 10−4 0.99 × 10−4 9.8 × 102 3.1 × 102 87 88 156583
Simp 10−4 3.2 × 10−4 0.45 × 10−4 9.8 × 102 1.4 × 102 5 11 351
GL4 10−4 3.2 × 10−4 2.74 × 10−6 9.8 × 102 8.5 1 5 180

Trap 10−8 3.2 × 10−8 0.99 × 10−8 0.098 0.031 8661 8662 15658108
Simp 10−8 3.2 × 10−8 0.99 × 10−8 0.098 0.031 41 83 3485
GL4 10−8 3.2 × 10−8 5.4 × 10−10 0.098 0.002 3 15 565

Trap 10−12 3.2 × 10−12 0.99 × 10−12 9.8 × 10−6 3.1 × 10−6 866218 866219 1.5 × 109

Simp 10−12 3.2 × 10−12 0.99 × 10−12 9.8 × 10−6 3.1 × 10−6 410 821 34833
GL4 10−12 3.2 × 10−12 6.36 × 10−13 9.8 × 10−6 1.98 × 10−6 7 35 1775
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Table 2. Output generated by CIRQUE, applied to the integral
∫ 2π

0 sin xdx, for various tolerances and methods, as indicated

εg |ΔA|UB |ΔA|T N Nf

Trap 10−5 6.3 × 10−5 2 × 10−16 574 575
Simp 10−5 6.3 × 10−5 1 × 10−16 16 33
GL4 10−5 6.3 × 10−5 6 × 10−16 2 10

Trap 10−9 6.3 × 10−9 8 × 10−16 57358 57359
Simp 10−9 6.3 × 10−9 4 × 10−18 153 307
GL4 10−9 6.3 × 10−9 5 × 10−16 6 30

Trap 10−13 6.3 × 10−13 4.9 × 10−16 5748516 5748517
Simp 10−13 6.3 × 10−13 2.3 × 10−16 1527 3055
GL4 10−13 6.3 × 10−13 1 × 10−16 19 95
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