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Abstract

In many real-world multiagent applications such as dis-
tributed sensor nets, a network of agents is formed based
on each agent’s limited interactions with a small number
of neighbors. While distributed POMDPs capture the
real-world uncertainty in multiagent domains, they fail
to exploit such locality of interaction. Distributed con-
straint optimization (DCOP) captures the locality of in-
teraction but fails to capture planning under uncertainty.
This paper present a new model synthesized from dis-
tributed POMDPs and DCOPs, called Networked Dis-
tributed POMDPs (ND-POMDPs). Exploiting network
structure enables us to present two novel algorithms
for ND-POMDPs: a distributed policy generation algo-
rithm that performs local search and a systematic policy
search that is guaranteed to reach the global optimal.

Introduction
Distributed Partially Observable Markov Decision Problems
(Distributed POMDPs) are emerging as an important ap-
proach for multiagent teamwork. These models enable mod-
eling more realistically the problems of a team’s coordi-
nated action under uncertainty (Nairet al. 2003; Monte-
merlo et al. 2004; Beckeret al. 2004). Unfortunately, as
shown by Bernsteinet al. (2000), the problem of finding
the optimal joint policy for a general distributed POMDP
is NEXP-Complete. Researchers have attempted two dif-
ferent approaches to address this complexity. First, they
have focused on algorithms that sacrifice global optimal-
ity and instead focus on local optimality (Nairet al. 2003;
Peshkinet al.2000). Second, they have focused on restricted
types of domains, e.g. with transition independence or col-
lective observability (Beckeret al. 2004). While these ap-
proaches have led to useful advances, the complexity of the
distributed POMDP problem has limited most experiments
to a central policy generator planning for just two agents.

This paper introduces a third complementary approach
called Networked Distributed POMDPs (ND-POMDPs),
that is motivated by domains such as distributed sensor
nets (Lesser, Ortiz, & Tambe 2003), distributed UAV teams
and distributed satellites, where an agent team must co-
ordinate under uncertainty, but agents have strong local-
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ity in their interactions. For example, within a large dis-
tributed sensor net, small subsets of sensor agents must
coordinate to track targets. To exploit such local interac-
tions, ND-POMDPs combine the planning under uncertainty
of POMDPs with the local agent interactions of distrib-
uted constraint optimization (DCOP) (Modiet al. 2003;
Yokoo & Hirayama 1996). DCOPs have successfully ex-
ploited limited agent interactions in multiagent systems,
with over a decade of algorithm development. Distributed
POMDPs benefit by building upon such algorithms that en-
able distributed planning, and provide algorithmic guaran-
tees. DCOPs benefit by enabling (distributed) planning un-
der uncertainty — a key DCOP deficiency in practical appli-
cations such as sensor nets (Lesser, Ortiz, & Tambe 2003).

Taking inspiration from DCOP algorithms, we provide
two algorithms for ND-POMDPs. First, the LID-JESP al-
gorithm combines the existing JESP algorithm of Nairet
al. (2003) and theDBA (Yokoo & Hirayama 1996) DCOP
algorithm. LID-JESP thus combines the dynamic program-
ming of JESP with the innovation that it uses off-line dis-
tributed policy generation instead of JESP’s centralized pol-
icy generation. Second, we present a more systematic policy
search that is guaranteed to reach the global optimal on tree-
structured agent-interaction graphs; and illustrate that by ex-
ploiting properties from constraint literature, it can guaran-
tee optimality in general. Finally, by empirically comparing
the performance of the two algorithms with benchmark al-
gorithms that do not exploit network structure, we illustrate
the gains in efficiency made possible by exploiting network
structure in ND-POMDPs.

Illustrative Domain
We describe an illustrative problem within the distributed
sensor net domain, motivated by the real-world challenge
in (Lesser, Ortiz, & Tambe 2003)1. Here, each sensor node
can scan in one of four directions — North, South, East or
West (see Figure 1). To track a target and obtain associated
reward, two sensors with overlapping scanning areas must
coordinate by scanning the same area simultaneously. We
assume that there are two independent targets and that each
target’s movement is uncertain and unaffected by the sen-

1For simplicity, this scenario focuses on binary interactions.
However, ND-POMDP and LID-JESP allow n-ary interactions.
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Figure 1: Sensor net scenario: If present, target1 is in Loc1-
1, Loc1-2 or Loc1-3, and target2 is in Loc2-1 or Loc2-2.

sor agents. Based on the area it is scanning, each sensor re-
ceives observations that can have false positives and false
negatives. Each agent incurs a cost for scanning whether the
target is present or not, but no cost if it turns off.

As seen in this domain, each sensor interacts with only a
limited number of neighboring sensors. For instance, sen-
sors 1 and 3’s scanning areas do not overlap, and cannot
effect each other except indirectly via sensor 2. The sen-
sors’ observations and transitions are independent of each
other’s actions. Existing distributed POMDP algorithms are
unlikely to work well for such a domain because they are
not geared to exploit locality of interaction. Thus, they will
have to consider all possible action choices of even non-
interacting agents in trying to solve the distributed POMDP.
Distributed constraint satisfaction and distributed constraint
optimization (DCOP) have been applied to sensor nets but
they cannot capture the uncertainty in the domain.

ND-POMDPs
We define an ND-POMDP for a groupAg of n agents as a
tuple〈S,A,P,Ω,O,R,b〉, whereS=×1≤i≤nSi×Su is the set
of world states.Si refers to the set of local states of agent
i andSu is the set of unaffectable states. Unaffectable state
refers to that part of the world state that cannot be affected
by the agents’ actions, e.g. environmental factors like target
locations that no agent can control.A = ×1≤i≤nAi is the set
of joint actions, whereAi is the set of action for agenti.

We assume atransition independentdistributed POMDP
model, where the transition function is defined as
P(s,a,s′) = Pu(su,s′u) · ∏1≤i≤nPi(si ,su,ai ,s′i), where a=
〈a1, . . . ,an〉 is the joint action performed in states=
〈s1, . . . ,sn,su〉 and s′=〈s′1, . . . ,s′n,s′u〉is the resulting state.
Agent i’s transition function is defined asPi(si ,su,ai ,s′i) =
Pr(s′i |si ,su,ai) and the unaffectable transition function is de-
fined asPu(su,s′u) = Pr(s′u|su). Becker et al. (2004) also
relied on transition independence, and Goldman and Zil-
berstein (2004) introduced the possibility of uncontrollable
state features. In both works, the authors assumed that the
state iscollectively observable, an assumption that does not
hold for our domains of interest.

Ω = ×1≤i≤nΩi is the set of joint observations whereΩi
is the set of observations for agentsi. We make an assump-
tion of observational independence, i.e., we define the joint
observation function asO(s,a,ω)= ∏1≤i≤nOi(si ,su,ai ,ωi),
wheres= 〈s1, . . . ,sn,su〉, a= 〈a1, . . . ,an〉, ω = 〈ω1, . . . ,ωn〉,
andOi(si ,su,ai ,ωi) = Pr(ωi |si ,su,ai).

The reward function, R, is defined as R(s,a) =

∑l Rl (sl1, . . . ,slk,su,〈al1, . . . ,alk〉), where eachl could re-
fer to any sub-group of agents andk = |l |. In the sen-
sor grid example, the reward function is expressed as the
sum of rewards between sensor agents that have overlap-
ping areas (k = 2) and the reward functions for an in-
dividual agent’s cost for sensing (k = 1). Based on the
reward function, we construct aninteraction hypergraph
where a hyper-link,l , exists between a subset of agents
for all Rl that compriseR. Interaction hypergraphis de-
fined asG = (Ag,E), where the agents,Ag, are the ver-
tices andE = {l |l ⊆ Ag∧Rl is a component ofR} are the
edges.Neighborhoodof i is defined asNi = { j ∈ Ag| j 6=
i∧ (∃l ∈ E, i ∈ l ∧ j ∈ l)}. SNi =× j∈NiSj refers to the states
of i’s neighborhood. Similarly we defineANi = × j∈Ni A j ,
ΩNi = × j∈Ni Ω j , PNi (sNi ,aNi ,s

′
Ni

) = ∏ j∈Ni
Pj(sj ,a j ,s′j), and

ONi (sNi ,aNi ,ωNi ) = ∏ j∈Ni
O j(sj ,a j ,ω j).

b, the distribution over the initial state, is defined as
b(s) = bu(su) ·∏1≤i≤nbi(si) wherebu andbi refer to the dis-
tributions over initial unaffectable state andi’s initial state,
respectively. We definebNi = ∏ j∈Ni

b j(sj). We assume that
b is available to all agents (although it is possible to re-
fine our model to make available to agenti only bu, bi and
bNi ). The goal in ND-POMDP is to compute joint policy
π = 〈π1, . . . ,πn〉 that maximizes the team’s expected reward
over a finite horizonT starting fromb. πi refers to the in-
dividual policy of agenti and is a mapping from the set of
observation histories ofi to Ai . πNi andπl refer to the joint
policies of the agents inNi and hyper-linkl respectively.

ND-POMDP can be thought of as ann-ary DCOP where
the variable at each node is an individual agent’s policy. The
reward componentRl where|l | = 1 can be thought of as a
local constraint while the reward componentRl wherel > 1
corresponds to a non-local constraint in the constraint graph.
In the next section, we push this analogy further by taking
inspiration from the DBA algorithm (Yokoo & Hirayama
1996), an algorithm for distributed constraint satisfaction,
to develop an algorithm for solving ND-POMDPs.

The following proposition shows that given a factored re-
ward function and the assumptions of transitional and ob-
servational independence, the resulting value function can
be factored as well into value functions for each of the edges
in the interaction hypergraph.

Proposition 1 Given transitional and ob-
servational independence and R(s,a) =
∑l∈E Rl (sl1, . . . ,slk,su,〈al1, . . . ,alk〉),

Vt
π(st ,~ωt) = ∑

l∈E

Vt
πl

(st
l1, . . . ,s

t
lk,s

t
u,~ω

t
l1, . . .~ω

t
lk) (1)

where Vt
π(st ,~ω) is the expected reward from the state st

and joint observation history~ωt for executing policyπ, and
Vt

πl
(st

l1, . . . ,s
t
lk,s

t
u,~ωt

l1, . . .~ω
t
lk) is the expected reward for ex-

ecutingπl accruing from the component Rl .

Proof: Proof is by mathematical induction. Proposition
holds fort = T−1 (no future reward). Assume it holds for
t = τ where 1≤ τ < T−1. Thus,

Vτ
π (sτ,~ωτ) =∑

l∈E

Vτ
πl

(sτ
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τ
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τ
u,~ω

τ
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τ
lk)
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We show that proposition holds fort = τ−1,

Vτ−1
π (sτ−1,~ωτ−1) =∑

l∈E
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sτ,ωτ
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We definelocal neighborhood utilityof agenti as the ex-
pected reward for executing joint policyπ accruing due to
the hyper-links that contain agenti:

Vπ[Ni ] = ∑
si ,sNi ,su

bu(su) ·bNi (sNi ) ·bi(si)·

∑
l∈E s.t. i∈l

V0
πl

(sl1, . . . ,slk,su,〈〉 , . . . ,〈〉) (2)

Proposition 2 Locality of interaction: The local neighbor-
hood utilities of agent i for joint policiesπ andπ′ are equal
(Vπ[Ni ] = Vπ′ [Ni ]) if πi = π′i andπNi = π′Ni

.

Proof sketch: Equation 2 sums overl ∈ E such thati ∈ l ,
and hence any change of the policy of an agentj /∈ i ∪Ni
cannot affectVπ[Ni ]. Thus, any such policy assignment,π′
that has different policies for only non-neighborhood agents,
has equal value asVπ[Ni ]. 2

Thus, increasing the local neighborhood utility of agent
i cannot reduce the local neighborhood utility of agentj if
j /∈ Ni . Hence, while trying to find best policy for agenti
given its neighbors’ policies, we do not need to consider
non-neighbors’ policies. This is the property oflocality of
interactionthat is used in later sections.

Locally Optimal Policy Generation
The locally optimal policy generation algorithm called
LID-JESP (Locally interacting distributed joint equilibrium
search for policies) is based on the DBA algorithm (Yokoo
& Hirayama 1996) and JESP (Nairet al. 2003). In this al-
gorithm (see Algorithm 1), each agent tries to improve its
policy with respect to its neighbors’ policies in a distributed
manner similar to DBA. Initially each agenti starts with a
random policy and exchanges its policies with its neighbors
(lines 3-4). It then computes its local neighborhood util-
ity (see Equation 2) with respect to its current policy and
its neighbors’ policies. Agenti then tries to improve upon
its current policy by calling function GETVALUE (see Al-
gorithm 3), which returns the local neighborhood utility of
agenti’s best response to its neighbors’ policies. This algo-
rithm is described in detail below. Agenti then computes
the gain (always≥ 0 because at worst GETVALUE will re-
turn the same value asprevVal) that it can make to its local

neighborhood utility, and exchanges its gain with its neigh-
bors (lines 8-11). Ifi’s gain is greater than any of its neigh-
bors’ gain2, i changes its policy (FINDPOLICY) and sends
its new policy to all its neighbors. This process of trying
to improve the local neighborhood utility is continued un-
til termination. Termination detection is based on using a
termination counter to count the number of cycles where
gaini remains= 0. If its gain is greater than zero the ter-
mination counter is reset. Agenti then exchanges its termi-
nation counter with its neighbors and set its counter to the
minimum of its counter and its neighbors’ counters. Agent
i will terminate if its termination counter becomes equal to
the diameter of the interaction hypergraph.

Algorithm 1 LID-JESP(i,ND-POMDP)
1: Compute interaction hypergraph andNi
2: d← diameter of hypergraph,terminationCtri ← 0
3: πi ← randomly selected policy,prevVal← 0
4: Exchangeπi with Ni
5: while terminationCtri < d do
6: for all si ,sNi ,su do
7: B0

i (〈su,si ,sNi ,〈〉〉)← bu(su) ·bi(si) ·bNi (sNi )

8: prevVal
+← B0

i (〈su,si ,sNi ,〈〉〉) ·
EVALUATE (i,si ,su,sNi ,πi ,πNi ,〈〉 ,〈〉 ,0,T)

9: gaini ← GETVALUE(i,B0
i ,πNi ,0,T)− prevVal

10: if gaini > 0 then terminationCtri ← 0

11: elseterminationCtri
+← 1

12: Exchangegaini ,terminationCtri with Ni
13: terminationCtri ←min j∈Ni∪{i}terminationCtrj
14: maxGain←maxj∈Ni∪{i}gainj
15: winner← argmaxj∈Ni∪{i}gainj

16: if maxGain> 0 and i = winner then
17: FINDPOLICY(i,b,〈〉 ,πNi ,0,T)
18: Communicateπi with Ni
19: else ifmaxGain> 0 then
20: Receiveπwinner from winnerand updateπNi

21: return πi

Algorithm 2 EVALUATE (i,st
i ,s

t
u,s

t
Ni

,πi ,πNi ,~ωt
i ,~ω

t
Ni

, t,T)

1: ai ← πi(~ωt
i ), aNi ← πNi (~ωt

Ni
)

2: val← ∑l∈E Rl
(
st
l1, . . . ,s

t
lk,s

t
u,al1, . . . ,alk

)
3: if t < T−1 then
4: for all st+1

i ,st+1
Ni

,st+1
u do

5: for all ωt+1
i ,ωt+1

Ni
do

6: val
+← Pu(st

u,s
t+1
u ) · Pi(st

i ,s
t
u,ai ,s

t+1
i ) ·

PNi (s
t
Ni

,st
u,aNi ,s

t+1
Ni

) · Oi(st+1
i ,st+1

u ,ai ,ωt+1
i ) ·

ONi(s
t+1
Ni

,st+1
u ,aNi ,ω

t+1
Ni

) · EVALUATE (i,st+1
i ,st+1

u ,

st+1
Ni

,πi ,πNi ,
〈
~ωt

i ,ω
t+1
i

〉
,
〈
~ωt

Ni
,ωt+1

Ni

〉
, t +1,T)

7: return val

Finding Best Response
The algorithm, GETVALUE, for computing the best response
is a dynamic-programming approach similar to that used in

2The functionargmax j disambiguates between multiplej cor-
responding to the same max value by returning the lowestj.



JESP. Here, we define anepisodeof agent i at time t as

et
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. Treating episode as the state, results

in a single agent POMDP, where the transition function and
observation function can be defined as:
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A multiagent belief state for an agenti given the distribution
over the initial state,b(s) is defined as:

Bt
i (e

t
i ) = Pr(st

u,s
t
i ,s

t
Ni

,~ωt
Ni
|~ωt

i ,~a
t−1
i ,b)

The initial multiagent belief state for agenti, B0
i , can be com-

puted fromb as follows:

B0
i (〈su,si ,sNi ,〈〉〉)← bu(su) ·bi(si) ·bNi (sNi )

We can now compute the value of the best response pol-
icy via GETVALUE using the following equation (see Algo-
rithm 3):

Vt
i (B

t
i ) = max

ai∈Ai
Vai ,t

i (Bt
i ) (3)

Algorithm 3 GETVALUE(i,Bt
i ,πNi , t,T)

1: if t ≥ T then return 0
2: if Vt

i (Bt
i ) is already recordedthen return Vt

i (Bt
i )

3: best←−∞
4: for all ai ∈ Ai do
5: value← GETVALUEACTION(i,Bt

i ,ai ,πNi , t,T)
6: recordvalueasVai ,t

i (Bt
i )

7: if value> bestthen best← value
8: recordbestasVt

i (Bt
i )

9: return best

The function,Vai ,t
i , can be computed using GETVALUE-

ACTION(see Algorithm 4) as follows:
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Bt+1
i is the belief state updated after performing action

ai and observingωt+1
i and is computed using the function

UPDATE (see Algorithm 5). Agenti’s policy is determined
from its value functionVai ,t

i using the function FINDPOLICY
(see Algorithm 6).

Correctness Results
Proposition 3 When applying LID-JESP, the global utility
is strictly increasing until local optimum is reached.

Proof sketchBy construction, only non-neighboring agents
can modify their policies in the same cycle. Agenti chooses
to change its policy if it can improve upon its local neigh-
borhood utilityVπ[Ni ]. From Equation 2, increasingVπ[Ni ]

Algorithm 4 GETVALUEACTION(i,Bt
i ,ai ,πNi , t,T)

1: value← 0
2: for all et
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6: if t < T−1 then
7: for all ωt+1
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14: value
+←prob·GETVALUE(i,Bt+1

i ,πNi , t +1,T)
15: return value

Algorithm 5 UPDATE(i,Bt
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i ,πNi )

1: for all et+1
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do
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5: normalizeBt+1

i
6: return Bt+1

i

results in an increase in global utility. By locality of interac-
tion, if an agentj /∈ i ∪Ni changes its policy to improve its
local neighborhood utility, it will not affectVπ[Ni ] but will
increase global utility. Thus with each cycle global utility is
strictly increasing until local optimum is reached. 2

Proposition 4 LID-JESP will terminate within d (=
diameter) cycles iff agent are in a local optimum.

Proof: Assume that in cyclec, agent i terminates
(terminationCtri = d) but agents are not in a local optimum.
In cycle c− d, there must be at least one agentj who can
improve, i.e.,gainj > 0 (otherwise, agents are in a local op-
timum in cyclec− d and no agent can improve later). Let
di j refer to the shortest path distance between agentsi and
j. Then, in cyclec− d + di j (≤ c), terminationCtri must
have been set to 0. However,terminationCtri increases by at
most one in each cycle. Thus, in cyclec, terminationCtri ≤
d−di j . If di j ≥ 1, in cyclec, terminationCtri < d. Also, if
di j = 0, i.e., in cyclec−d, gaini > 0, then in cyclec−d+1,
terminationCtri = 0, thus, in cyclec, terminationCtri < d.
In either case,terminationCtri 6= d. By contradiction, if



Algorithm 6 FINDPOLICY(i,Bt
i , ~ωi

t ,πNi , t,T)

1: a∗i ← argmaxai
Vai ,t

i (Bt
i ), πi(~ωi

t)← a∗i
2: if t < T−1 then
3: for all ωt+1

i ∈Ωi do
4: Bt+1

i ← UPDATE(i,Bt
i ,a
∗
i ,ω

t+1
i ,πNi )

5: FINDPOLICY(i,Bt+1
i ,

〈
~ωi

t ,ωt+1
i

〉
,πNi , t +1,T)

6: return

LID-JESP terminates then agents must be in a local opti-
mum.

In the reverse direction, if agents reach a local optimum,
gaini = 0 henceforth. Thus,terminationCtri is never reset
to 0 and is incremented by 1 in every cycle. Hence, afterd
cycles,terminationCtri = d and agents terminate. 2

Proposition 3 shows that the agents will eventually reach
a local optimum and Proposition 4 shows that the LID-JESP
will terminate if and only if agents are in a local optimum.
Thus, LID-JESP will correctly find a locally optimum and
will terminate.

Global Optimal Algorithm (GOA)
The global optimal algorithm (GOA) exploits network struc-
ture in finding the optimal policy for a distributed POMDP.
Unlike LID-JESP, at present it requires binary interactions,
i.e. edges linking two nodes. We start with a description of
GOA applied to tree-structured interaction graphs, and then
discuss its application to graphs with cycles. In trees, value
for a policy at an agent is the sum of best response values
from its children and the joint policy reward associated with
the parent policy. Thus, given a fixed policy for a parent
node, GOA requires an agent to iterate through all its poli-
cies, finding the best policy and returning the value to the
parent — where to find the best policy, an agent requires its
children to return their best responses to each of its policies.
An agent also stores the sum of best response values from its
children, to avoid recalculation at the children. This process
is repeated at each level in the tree, until the root exhausts all
its policies. This method helps GOA take advantage of the
interaction graph and prune unnecessary joint policy evalu-
ations (associated with nodes not connected directly in the
tree). Since the interaction graph captures all the reward in-
teractions among agents and as this algorithm goes through
all the joint policy evaluations possible with the interaction
graph, this algorithm yields an optimal solution.

Algorithm 7 provides the pseudo code for the global opti-
mal algorithm at each agent. This algorithm is invoked with
the procedure callGO-JOINTPOLICY(root,〈〉 ,no). Line 8 iter-
ates through all the possible policies, where as lines 20-21
work towards calculating the best policy over this entire set
of policies using the value of the policies calculated in Lines
9-19. Line 21 stores the values of best response policies ob-
tained from the children. Lines 22-24 starts the termination
of the algorithm after all the policies are exhausted at the
root. Lines 1-4 propagate the termination message to lower
levels in the tree, while recording the best policy,π∗i .

Algorithm 7 GO-JOINTPOLICY(i,π j , terminate)
1: if terminate= yesthen
2: π∗i ← bestResponse{π j}
3: for all k∈ childreni do
4: GO-JOINTPOLICY(k,π∗i ,yes)
5: return
6: Πi ← enumerate all possible policies
7: bestPolicyVal← -∞, j ← parent(i)
8: for all πi ∈Πi do
9: jointPolicyVal← 0, childVal← 0

10: if i 6= root then
11: for all si ,sj ,su do

12: jointPolicyVal
+← bi(si) · bNi (sNi ) · bu(su) ·

EVALUATE (i,si ,su,sj ,πi ,π j ,〈〉 ,〈〉 ,0,T)
13: if bestChildValMap{πi} 6= null then

14: jointPolicyVal
+← bestChildValMap{πi}

15: else
16: for all k∈ childreni do
17: childVal

+← GO-JOINTPOLICY(k,πi ,no)
18: bestChildValMap{πi}← childVal

19: jointPolicyVal
+← childVal

20: if jointPolicyVal> bestPolicyValthen
21: bestPolicyVal← jointPolicyVal, π∗i ← πi
22: if i = root then
23: for all k∈ childreni do
24: GO-JOINTPOLICY(k,π∗i ,yes)
25: if i 6= root then bestResponse{π j}= π∗i
26: return bestPolicyVal

By using cycle-cutset algorithms (Dechter 2003), GOA
can be applied to interaction graphs containing cycles. These
algorithms are used to identify a cycle-cutset, i.e., a subset
of agents, whose deletion makes the remaining interaction
graph acyclic. After identifying the cutset, joint policies for
the cutset agents are enumerated, and then for each of them,
we find the best policies of remaining agents using GOA.

Experimental Results
For our experiments, we use the sensor domain in Fig-
ure 1. We consider three different configurations of increas-
ing complexity (see Appendix). The first configuration is a
chain with 3 agents (sensors 1-3). Here target1 is either ab-
sent or in Loc1-1 and target2 is either absent or in Loc2-1 (4
unaffectable states). Each agent can perform either turnOff,
scanEast or scanWest. Agents receive an observation, target-
Present or targetAbsent, based on the unaffectable state and
its last action. The second configuration is a 4 agent chain
(sensors 1-4). Here, target2 has an additional possible loca-
tion, Loc2-2, giving rise to 6 unaffectable states. The num-
ber of individual actions and observations are unchanged.
The 3rd configuration is the 5 agent P-configuration (named
for the P shape of the sensor net) and is identical to Fig-
ure 1. Here, target1 can have two additional locations, Loc1-
2 and Loc1-3, giving rise to 12 unaffectable states. We add
a new action called scanVert for each agent to scan North
and South. For each of these scenarios, we ran the LID-
JESP algorithm. Our first benchmark, JESP, uses a central-
ized policy generator to find a locally optimal joint policy
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Figure 2: Run times (a, b, c), and value (d).

and does not consider the network structure of the inter-
action, while our second benchmark (LID-JESP-no-nw) is
LID-JESP with a fully connectedinteraction graph. For 3
and 4 agent chains, we also ran the GOA algorithm.

Figure 2 compares the performance of the various algo-
rithms for 3 and 4 agent chains and 5 agent P-configuration.
Graphs (a), (b), (c) show the run time in seconds on a
logscale on Y-axis for increasing finite horizonT on X-axis.
Run times for LID-JESP, JESP and LID-JESP-no-nw are
averaged over 5 runs, each run with a different randomly
chosen starting policy . For a particular run, all algorithms
use the same starting policies. All three locally optimal al-
gorithms show significant improvement over GOA in terms
of run time with LID-JESP outperforming LID-JESP-no-nw
and JESP by an order of magnitude (for high T) by exploit-
ing locality of interaction. In graph (d), the values obtained
using GOA for 3 and 4-Agent case (T = 3) are compared to
the ones obtained using LID-JESP over 5 runs (each with a
different starting policy) forT = 3. In this bar graph, the first
bar represents value obtained using GOA, while other bars
correspond to LID-JESP. This graph emphasizes the fact that
with random restarts, LID-JESP converges to a higher local
optima — such restarts are afforded given that GOA is or-
ders of magnitude slower compared to LID-JESP.

Table 1 helps to better explain the reasons for the speed
up of LID-JESP over JESP and LID-JESP-no-nw. LID-JESP
allows more than one (non-neighboring) agent to change its
policy within a cycle (W), LID-JESP-no-nw allows exactly
one agent to change its policy in a cycle and in JESP, there
are several cycles where no agent changes its policy. This
allows LID-JESP to converge in fewer cycles (C) than LID-
JESP-no-nw. Although LID-JESP takes fewer cycles than
JESP to converge, it required more calls to GETVALUE (G).
However, each such call is cheaper owing to the locality of
interaction. LID-JESP will out-perform JESP even more on
multi-processor machines owing to its distributedness.

Config. Algorithm C G W
LID-JESP 3.4 13.6 1.412

4-chain LID-JESP-no-nw 4.8 19.2 1
JESP 7.8 7.8 0.436

LID-JESP 4.2 21 1.19
5-P LID-JESP-no-nw 5.8 29 1

JESP 10.6 10.6 0.472

Table 1: Reasons for speed up. C: no. of cycles, G: no. of
GETVALUE calls, W: no. of winners per cycle, for T=2.

Summary and Related Work

In a large class of applications, such as distributed sen-
sor nets, distributed UAVs and satellites, a large network
of agents is formed from each agent’s limited interactions
with a small number of neighboring agents. We exploit
such network structure to present a new distributed POMDP
model called ND-POMDP. Our distributed algorithms for
ND-POMDPs exploit such network structure: the LID-JESP
local search algorithm and GOA that is guaranteed to reach
global optimal. Experimental results illustrate the significant
run time gains of the two algorithms when compared with
previous algorithms that are unable to exploit such structure.

Among related work, we have earlier discussed the rela-
tionship of our work to key DCOP and distributed POMDP
algorithms, i.e., we synthesize new algorithms by exploit-
ing their synergies. We now discuss some other recent al-
gorithms for locally and globally optimal policy generation
for distributed POMDPs. For instance, Hansenet al. (2004)
present an exact algorithm for partially observable stochastic
games (POSGs) based on dynamic programming and iter-
ated elimination of dominant policies. Emery-Montemerlo
et al. (2004) approximate POSGs as a series of one-step
Bayesian games using heuristics to find the future dis-
counted value for actions. We have earlier discussed Nair
et al. (2003)’s JESP algorithm that uses dynamic program-
ming to reach a local optimal. In addition, Beckeret al.’s
work (2004) on transition-independent distributed MDPs is
related to our assumptions about transition and observabil-
ity independence in ND-POMDPs. These are all centralized
policy generation algorithms that could benefit from the key
ideas in this paper — that of exploiting local interaction
structure among agents to (i) enable distributed policy gen-
eration; (ii) limit policy generation complexity by consider-
ing only interactions with “neighboring” agents. Guestrinet
al. (2002), present “coordination graphs” which have simi-
larities to constraint graphs. The key difference in their ap-
proach is that the “coordination graph” is obtained from the
value function which is computed in a centralized manner.
The agents then use a distributed procedure for online action
selection based on the coordination graph. In our approach,
the value function is computed in a distributed manner. Dol-
gov and Durfee’s algorithm (2004) exploits network struc-
ture in multiagent MDPs (not POMDPs) but assume that
each agent tried to optimize its individual utility instead of
the team’s utility.
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Appendix
In this section, we provide the details about the 3 config-
urations of the sensor domain. In all three scenarios, local
state of each agent is empty (Si = /0). Let Starget1 andStarget2
denote the locations of the two independent targets. The set
of unaffectable states is given bySu = Starget1×Starget2. The
transition functions for unaffectable states are shown below.
For each sensor, the probability of a false negative is 0.2
and the probability of a false positive is 0.1. We assume that
if two sensors scan the same target location with the target
present, then they are always successful. The reward for two
agents successfully scanning target1 is+90 and for success-
fully scanning target2 is+70. The reward for scanning a
location with no target is−5 for each agent that scans un-
sucessfully. Reward is 0 is sensor turns off.

3-chain: This scenario consists of 3 agents in a chain.
Starget1 = {absent,Loc1-1} andStarget2 = {absent,Loc2-1}.
Actions for agenti, Ai = {turnOff,scanWest,ScanEast}. The
transition functions for target1 and target2 are given in Ta-
bles 2 and 3.

absent Loc1-1
absent 0.5 0.5
Loc1-1 0.2 0.8

Table 2: target1’s transition function (3-chain and 4-chain).

absent Loc2-1
absent 0.6 0.4
Loc2-1 0.25 0.75

Table 3: target2’s transition function (3-chain).

4-chain: This scenario consists of 4 agents in
a chain. Starget1 = {absent,Loc1-1} and Starget2 =
{absent,Loc2-1,Loc2-2}. Actions for agent i,
Ai = {turnOff,scanWest,ScanEast}. The transition
functions for target1 and target2 are given in Tables 2
and 4.

absent Loc2-1 Loc2-2
absent 0.4 0.35 0.25
Loc2-1 0.2 0.5 0.3
Loc2-2 0.3 0.25 0.45

Table 4: target2’s transition function (4-chain and 5-P).

5-P: This scenario consists of 5 agents arranged as in
Figure 1. Starget1 = {absent,Loc1-1,Loc1-2,Loc1-3} and
Starget2 = {absent,Loc2-1,Loc2-2}. Actions for agenti, Ai =
{turnOff,scanWest,ScanEast,ScanVert}. Tables 5 and 4
give the transition functions for target1 and target2.

absent Loc1-1 Loc1-2 Loc 1-3
absent 0.15 0.5 0.2 0.15
Loc1-1 0.1 0.5 0.3 0.1
Loc1-2 0.2 0.1 0.45 0.25
Loc1-3 0.35 0.05 0.1 0.5

Table 5: target1’s transition function (5-P).
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