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S1. DATA COLLECTION

A. Dataset D1: This anonymized data set represents 14 weeks of call patterns from

10 million mobile phone users (roughly April through June 2007). The data contains the

routing tower location each time a user initiates or receives a call or text message. From

this information, a user’s trajectory may be reconstructed. For each user i we define the

calling frequency fi as the average number of calls per hour, and the number of locations

Ni as the number of distinct towers visited during the three month period.

In order to improve the quality of trajectory reconstruction, we selected 50,000 users with

fi ≥ 0.5 calls/hour and Ni > 2.

B. Dataset D2: Mobile services such as pollen and traffic forecasts rely on the approx-

imate knowledge of customer’s location at all times. For customers voluntarily enrolled in

such services, the date, time and the closest tower coordinates are recorded on a regular

basis, independent of phone usage. We were provided with the anonymized records of 1,000

such users, from which we selected 100 users whose coordinates were recorded every hour

over eight 8 days.

S2. CHARACTERIZING INDIVIDUAL CALL/MOTION ACTIVITY

A. Number of visited locations

Fig. S1: The distribution of number of locations N for various time periods.
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Fig. S1 shows the distribution of the number locations N visited for various windows

of time. After three months P (N) converges and can be regarded as relatively saturated,

indicating that in this time frame we can discover most of the locations typically frequented

by our users. This saturation also indicates that with a good approximation Ni is an accurate

estimate of the total number of locations a user visits.

B. Radius of gyration

Fig. S2: The distribution of the typical distance covered by each of the 50, 000 users in D2.

The radius of gyration rg describes the typical range of a user’s trajectory:

rg =

√√√√ 1

L

L∑
i=1

(~ri − ~rcm)2, (S1)

where ~ri represents the position at time i, ~rcm = 1
L

∑L
i=1 ~ri is the center of mass of the

trajectory, and L is the total number of recorded points for the user’s location. Fig. S2

shows a fat tailed distribution of rg for the users considered in this work, reproducing

consistent with the results of Ref. [1].
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S3. DATA PREPROCESSING

To construct a time series for each user we segment the three month observation period

into hour-long intervals. Each interval is assigned a tower ID if one is known (i.e. the

phone was used in that time interval). If multiple calls were made in a given interval, we

choose one of them at random. Finally if no call is made in a given interval, we assign it

an ID “?”, implying an unknown location. Thus for each user i we obtain a string of length

L = 24 × 7 × 14 = 2352 with Ni + 1 distinct symbols, each denoting one of the Ni towers

visited by the user and one for the missing location “?”.

S4. DETERMINATION OF USER ENTROPY

In general lower entropy implies higher predictability. Here we discuss how to measure the

entropy S of individual mobile phone users over their past history, allowing us to quantify

their predictability.

A. Entropy rate and basic equations

Let Xi be a random variable representing a user’s location at time i. Entropy is

defined as S = −∑
x∈X p(x) log2 p(x) where p(x) = Pr{X = x} is the probability

that X = x. The conditional entropy of random variable Y given X is defined as

S(Y |X) ≡ ∑
x∈X p(x)S(Y |X = x). Let hn be a random variable for a sequence of n lo-

cations. For a stationary stochastic process X = {Xi}, the entropy rate may be written

as,

S ≡ lim
n→∞

1

n
S(X1, X2, . . . , Xn) (S2)

= lim
n→∞

1

n

n∑
i=1

S(Xi|hi−1), (S3)

= lim
n→∞

1

n

n∑
i=1

S(i), (S4)

where Eq. S2 is the definition of entropy [2], Eq. S3 is an application of the chain rule for

entropy, and we define S(n) ≡ S(Xn|hn−1) as the conditional entropy at the n-th step in

Eq. S4. If the time series lacks any long range temporal correlations (i.e. the probability of

the next location is independent of the current one) we have S = −∑
i pi log2 pi, where pi
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the probability of being at location i.

For an individual visiting N locations, we are interested in the following quantities:

• Si: the user i’s true entropy, considering both spatial and temporal patterns.

• Sunc = −∑N
i=1 pi log2 pi : is the temporal-uncorrelated entropy, where pi is the proba-

bility that location i is visited by the user.

• Srand = log2 N is the random entropy, obtained when pi = 1
N

for all locations i. In

this case each of the N locations is equally probable.

Clearly, 0 ≤ S ≤ Sunc ≤ Srand < ∞.

B. Algorithm

To calculate the entropy from the user’s past location history, we use an estimator based

on Lempel-Ziv data compression [3], which is known to rapidly converge to the real entropy

of a time series. For a time series with n steps, the entropy is estimated by

Sest =

(
1

n

∑
i

Λi

)−1

ln n, (S5)

where Λi is the length of the shortest substring starting at position i which doesn’t previously

appear from position 1 to i−1. It has been proven that Sest converges to the actual entropy

when n approaches infinity [3].
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Fig. S3: The order parameter σ(q′) ≡ ln(S(q′)/Sunc(q′)) as a function of q′ with given
q = 0.7.

Applying Eq. (S5) to the empirical time series of a user’s location history, the obtained

entropy Si(q) will depend on the fraction of unknown locations q. The unknown locations

serve as a source of additional entropy Si(q)/S
unc
i (q) > Si/S

unc
i , where Si is the user’s true

entropy given a complete record of his hourly locations. To determine the true entropy

Si = Si(q = 0) we use the following algorithm: for a time series with a q fraction of

unknown locations we select an additional ∆q fraction of known locations and designate

them as unknown. That is, we replace a known fraction ∆q of locations with ID “?”,

increasing q to q′ = q + ∆q. We then vary ∆q = 0, 0.05, 0.10, 0.15, . . . , 0.90 − q, measuring

the order parameter σ(q′) ≡ ln(seff(q′)) = ln(S(q′)/Sunc(q′)), where S(q′) is determined using

the Lempel-Ziv algorithm and Sunc(q′) is the entropy provided by the Lempel-Ziv algorithm

over the randomly shuffled time series.

In Fig. S3 we plot σ(q′) for a typical user from D2 with q = 0.7, observing a reasonably

linear relationship between σ(q′) and q′. Since we cannot directly measure the unbiased case

(when q′ = 0), we extrapolate S(q′) from the range q ≤ q′ ≤ 0.9 to q′ = 0, to estimate σest

at q = 0. The entropy is then calculated as Sest = eσestSunc.

D. Validity of algorithm
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To test the validity of our algorithm, we applied this technique to the complete dataset D2,

i.e. to the users whose location history is recorded every hour, thus there is no ambiguity

about their hourly whereabouts (q = 0). For each user i, we measured the real entropy

Sreal
i using the Lempel-Ziv algorithm. Then we randomly designated q fraction of known

locations as “?”, artificially mimicking the situation when our dataset is incomplete. Finally

we applied the algorithm on the artificially incomplete data, estimating the real entropy

Sest
i (q). Fig S4 demonstrates how Sest/Sreal varies with the incompleteness fraction q for

two typical users in D2, indicating that the procedure works reasonably well up to qε = 0.7.

As we state below, qε scales with the length of the time series, thus qε for the three month

dataset D1 will eventually be larger than the qε = 0.7 value determined here for the 8-day

data.

Fig. S4: Sest/Sreal vs q for two different users in D2.
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Fig. S5: Sest/Sreal vs q for the random model with different values of entropy S.

We also tested our algorithm on a simple two-state random time series. In this case user

i visits only two locations (thus Srand = 1). At each time step he visits location 0 with

probability p0 or location 1 with probability 1 − p0, thus Si = Sunc
i = −p0 log2 p0 − (1 −

p0) log2(1 − p0). In Fig. S5 we plot Sest/Sreal vs q for the random model with entropy

S = 0.2, 0.4, 0.6, 0.8, 1.0 and length L = 8 days. As q increases or S decreases, the estimate

tends to deviate from the real value, yet the error is less than 25% even for q close to 0.9.

In the q = 0.7 range, where most of our users are, (see Fig. 2 in the main paper), the error

is typically under 10%.
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Fig. S6: a, b) Sest/Sreal vs q for times series of lengths 2, 4 and 8 days for two typical users

in D2 c) Sest/Sreal vs q for times series: 4, 8, 16 and 32 days for a typical user in D1 with
q = 0.3. d) The critical qε defined from the error |Sest/Sreal − 1| vs the length of time series
for both D1 (filtered with q < 0.35) and D2, indicating a quick convergence of qε for long
enough time series. The strait line is a logarithmic fitting. The grey line is the threshold of
q∞ε = 0.825.

It is important to test the validity of our algorithm for different lengths L of the time

series. Figures S6a and S6b indicate that the threshold for q increases with L for two users

chosen from dataset D2. Furthermore, we applied the algorithm for users in D1 with only

a small fraction of missing data (q < 0.35), thus the entropy measured by the Lempel-Ziv

algorithm is roughly equivalent to Sreal. By increasing the fraction q of missing information,

we tested our algorithm up to q = 0.825, as shown in Fig. S6c.

To quantify the finite size scaling of the critical value of q, we explicitly define qL
ε as the

largest q satisfying |Sest(q)/Sreal(q) − 1| < ε, where ε is the error of the estimation. One

may think of qL
ε as a limit to how bad input data of length L can be while still achieving
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a good estimate for Sreal. The upper bound of qL
ε as L → ∞ is limited by the algorithm.

Since q′ < 0.9 and the interval ∆q = 0.05, the maximum possible q′ within the fitting region

is between 0.85 and 0.9, and thus is 0.875 on average. The linear fitting requires at least

two points, which leads to q∞ε = 0.875 − ∆q = 0.825 which represents an upper limit for

the algorithm’s utility. We then demonstrate the relationship between qL
ε and L for ε = 0.1

and 0.2 in Fig. S6d. For L > 8 days, we used D1 with q < 0.35 to estimate the qL
ε . We find

qL
ε scales with size L logarithmically for small value of L and then converges to q∞ε = 0.825

after 20 days. Therefore, for users with q < q∞ε we can determine the entropy with sufficient

accuracy. In the following study, we focus on the 45,000 users with q < 0.8 < q∞ε , which

ensures real entropy Si for each user i can be accurately determined. Results are presented

in Figs. 2 , 3 in the main manuscript.

S5. FUNDAMENTAL LIMITS OF PREDICTABILITY

If a user has entropy S = 0, then his/her mobility is completely regular and thus the

user’s whereabouts is fully predictable. If, however, a user’s entropy S = Srand = log2 N ,

then his/her trajectory is expected to follow a random pattern and thus we cannot forecast

it with accuracy that exceeds 1/N . Most users have a finite entropy laying between 0 and

Srand however, indicating not only that a certain amount of randomness governs their future

whereabouts, but also that there is some regularity in their movement that can be exploited

for predictive purposes. In this section we aim to quantify the limits of predictability of a

user’s next location based on his trajectory history. That is, we want to answer the question:

How predictable is a user’s next location given the entropy of his trajectory? We will use

a version of Fano’s inequality to relate the upper bound of predictability to the entropy of

a user’s past history of mobility. We will also show that the regularity R measured in the

main manuscript offers a lower bound to the user’s predictability.

A. Notation

Let hn−1 = {Xn−1, Xn−2, . . . , X1} denote a user’s past history from time interval 1 to

n − 1, where Xi corresponds to the user’s location at time step i. Let Pr[Xn = X̂n|hn−1]

be the probability that our guess X̂n for a user’s next location agrees with his actual next

location Xn given his location history hn−1. Let π(hn−1) be the probability the user will be
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in his most likely next location xML given his history hn−1. Thus

π(hn−1) = supx

{
Pr[Xn = x|hn−1]

}
, (S6)

where Pr[Xn = x|hn−1] is the probability that the next location Xn is x given the history

hn−1. That is, π(hn−1) contains the full predictive power including the potential long-range

correlations present in the data.

Let Pa(X̂n|hn−1) be the distribution generated by an arbitrary predictive algorithm a over

the next possible location X̂n. Let P (Xn|hn−1) be the true distribution over which the user

will select his next location. Thus the probability of correctly forecasting the user’s next

location is Pra{Xn = X̂n|hn−1} =
∑

x P (x|hn−1)Pa(x|hn−1). Since π(hn−1) ≥ P (x|hn−1) for

any x, we have

Pra{Xn = X̂n|hn−1} =
∑

x

P (x|hn−1)Pa(x|hn−1)

≤
∑

x

π(hn−1)Pa(x|hn−1)

= π(hn−1). (S7)

In other words, any forecasting based on history hn−1 cannot do better than the one that

places the user in his/her most likely location.

We still must demonstrate that Eq. S7 can in principle be reached, i.e. it represents a

tight upper bound. We will show that this maximal predictability is theoretically achievable

using a hypothetical algorithm a? that has the property

Pa?(x|hn−1) =





1 x = xML

0 x 6= xML,
(S8)

namely a? always chooses the user’s next most likely location as its prediction. Then

Pra?{Xn = X̂n|hn−1} =
∑

x

P (x|hn−1)Pa?(x|hn−1)

= π(hn−1).



12

Therefore π(hn−1) is not only an upper limit, but is in principle attainable by an appropriate

algorithm.

Next we define the predictability Π(n) for a trajectory that corresponds to a given history

of length n−1. Let P (hn−1) be the probability of observing a particular history hn−1. Then

predictability is given by

Π(n) ≡
∑

hn−1

P (hn−1)π(hn−1), (S9)

where the sum is taken over all possible histories of length n−1. Taking the limit, we define

the overall predictability Π as

Π ≡ lim
n→∞

1

n

n∑
i

Π(i). (S10)

Since Π(n) is the best success rate to predict user’s location at the time n, Π may be viewed

as the time averaged predictability. Next we explore its range.

B. Fano’s inequality

Given the P (Xn|hn−1) distribution over a user’s next location we will create a new dis-

tribution that is as random as possible while preserving π(hn−1) = p in Eq. (S6). Let N be

the total number of possible locations. Keeping p for location xML, we assume a uniform

distribution over the remaining N − 1 locations. Thus we have X ′ with an associated dis-

tribution P ′(X|h) ≡ (
p, 1−p

N−1
, 1−p

N−1
, . . . , 1−p

N−1

)
. This distribution is at least as random as the

original, thus S(Xn|hn−1) ≤ S(X ′|hn−1). This entropy may be calculated directly as

S(X ′|hn−1) = −p log2(p)−
∑ 1− p

N − 1
log2

(
1− p

N − 1

)
(S11)

= −p log2(p)− (1− p) log2

(
1− p

N − 1

)
(S12)

= − [p log2 p + (1− p) log2(1− p)] + (1− p) log2(N − 1) (S13)

≡ SF (p) = SF (π(hn−1)). (S14)

Note that

S(Xn|hn−1) ≤ SF (π(hn−1)), (S15)

which represents an appropriate rewriting of Fano’s inequality [2].

It is important to realize that for p ∈ [1/N, 1) the Fano function SF (p) is concave and

monotonically decreases with p. That is, SF ((a+ b)/2) ≥ (SF (a)+SF (b))/2 (concavity) and
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(SF (a)− SF (b))(a− b) ≤ 0 (monotonically decreasing), as shown in Fig. S7.

Fig. S7: The plot of Fano function SF normalized by the maximum entropy Srand ≡ log2 N ,
showing that SF is a concave and monotone decreasing function.

C. Upper bound of predictability Πmax

We wish to relate the entropy rate S defined in Eq. S4 which we estimated using the

algorithm developed in Section S4 to predictability Π defined in Eq. S10.

We begin with the simpler case of relating the conditional entropy S(n) = S(Xn|hn−1) to

Π(n) as defined in Eq. S9. Recall that hn−1 represents a history of length n−1 and P (hn−1)

is the probability of observing the particular history hn−1. Then

S(n) =
∑

hn−1

P (hn−1)S(Xn|hn−1) (S16)

≤
∑

hn−1

P (hn−1)SF (π(hn−1)) (S17)

≤ SF


∑

hn−1

P (hn−1)π(hn−1)


 (S18)

= SF (Π(n)) (S19)

Here Eq. S16 is the definition of conditional entropy. Eq. S17 follows from Eq. S15. Eq. S18

follows from Jensen’s inequality and the fact that SF is concave in p. Eq. S19 follows from

our definition of Π(n).
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We now have S(n) ≤ SF (Π(n)) to which we will again apply Jensen’s inequality to obtain

a relationship between S and Π.

S = lim
n→∞

1

n

n∑
i=1

S(i) (S20)

≤ lim
n→∞

1

n

n∑
i=1

SF (Π(i)) (S21)

≤ SF

(
lim

n→∞
1

n

n∑
i=1

Π(i)

)
(S22)

= SF (Π) . (S23)

Here Eq. S20 is from the definition of entropy in Eq. S4. Eq. S21 follows from Eq. S19.

Eq. S22 follows from Jensen’s inequality and that SF is concave. Eq. S23 follows from the

definition of Π in Eq. S10.

Now let’s define Πmax(S, N) as the solution to the equation

S = SF (Πmax)

= − [Πmax log2 Πmax + (1− Πmax) log2(1− Πmax)] + (1− Πmax) log2(N − 1)

≤ SF (Π) (S24)

where Eq. S24 follows from Eq. S23.

Based on the fact that SF (Πmax) ≤ SF (Π) and SF (Π) monotonically deceases with Π, we

have

[SF (Πmax)− SF (Π)] (Πmax − Π) ≤ 0

Πmax − Π ≥ 0

Πmax ≥ Π.

In other words Πmax represents an upper bound of predictability Π.

D. Regularity as a lower bound of predictability

As we try to establish a lower bound for the user’s predictability, we consider the most

likely location x′ML at a specific time of day. Thus rather than considering the entire history

and the potential correlation in the mobility pattern, we only look at where the user was for
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example on Monday between 9AM and 10AM. There exists a set of possible true histories

that will be consistent with our observed behavior for Monday morning.

Imagine we know a user’s location every Monday at 10AM. We will call this string of

locations C = x1, x2, . . . . There exists many possible histories that can satisfy constraint C.

For example if x1 is the office, there are many possible trajectories one can take to get to

the office, as long as he is there by 10AM Monday. Let h′n−1 be an element in the set of all

such histories satisfying constraint C.

We define R(n), or regularity at the n-th step as the expected π(h′n−1) ≡ P (x′ML|h′n−1)

over all constrained histories h′n−1. Next we will show that R(n) represents a lower bound

for Π(n). Each of the following steps is explained below.

Π(n) ≡
∑

hn−1

P (hn−1)π(hn−1) (S25)

=
∑

hn−1


 ∑

h′n−1∈HC

P (h′n−1)P (hn−1|h′n−1)


 π(hn−1) (S26)

=
∑

h′n−1∈HC

P (h′n−1)


∑

hn−1

P (hn−1|h′n−1)π(hn−1)


 (S27)

≥
∑

h′n−1∈HC

P (hn−1)π(h′n−1) (S28)

= R(n). (S29)

Eq. S25 is the definition of Π(n). Eq. S26 is based on the identity
∑

h′n−1∈HC P (h′n−1)P (hn−1|h′n−1) = P (hn−1). Eq. S27 is exchanging the summing over

hn−1 and h′n−1. Eq. S28 is because for any location x we have

P (x|h′n−1) =
∑

hn−1

P (hn−1|h′n−1)P (x|hn−1) ≤
∑

hn−1

P (hn−1|h′n−1)π(hn−1), (S30)

thus for most likely location x = x′ML and π(h′n−1) = P (x = x′ML|h′n−1). Eq. S29 is our

definition of R(n).
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Now we define the time averaged regularity as

R ≡ lim
n→∞

1

n

n∑
i=1

R(i) ≤ lim
n→∞

1

n

n∑
i=1

Π(i) = Π (S31)

Combining this result with the upper bound, the predictability Π of a user satisfies

R ≤ Π ≤ Πmax. Note, however, that R represents a rather generous lower bound as it

ignores potential long range correlations in the user’s travel patterns, which could have

considerable predictive power.

S6. REGULARITY ON WEEKDAYS AND WEEKENDS

Fig. S8: Regularity on weekdays vs. weekends across the user base. The gray dots
correspond to each of the 45,000 users. The red symbols are the averaged trend.

Due to the lack of work related constrains people are expected to show a higher degree

of spontaneity and thus are less predicability over the weekends. To test this hypothesis,

in Fig. S8 we measure the regularity for each individual during weekdays and weekends,

respectively. Surprisingly, we do not find significant changes in the user’s mobility pattern

over the weekend. To the contrast, 65% of users exhibit greater regularity during the weekend

than during the weekdays (the data points above the blue dashed line). The average trend

shows (red symbols) that only the users with very high regularity (R > 0.8) have a decreased

average regularity during the weekend. Note that only 19% of the users have R > 0.8.
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This suggests that it is not the regularity imposed on us by the work schedule that keeps

us predictable, rather we are potentially capturing something intrinsic to human activity,

that spans both weekdays and weekends. People who have a desire for regularity tend to

exhibit that throughout the weekday and weekend, perhaps making both professional and

recreational choices accordingly.

S7. THE DEMOGRAPHIC DEPENDENCE

A. Dependence on number of locations distinct N visited by the user

Fig. S9: The regularity R vs the number of locations N , showing that R decays slowly

with N and R(N) ∼ N−1/4.

Fig. S9 shows R deceases with N as R(N) ∼ N−1/4. This is a much slower decay than

the random case obtained if we assume that each of the N locations has equal probability

and thus Rrand(N) ∼ N−1.

B. Age and gender dependency
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Fig. S10: The dependence of the maximal predictability Πmax and regularity R on the age
of the users, shown separately for men (blue) and women (red).

Figure S10 indicates that no any gender or age based differences on the potential pre-

dictability Πmax whereas women have slightly higher regularity than men.

Fig. S11: The dependence of the normalized regularity R/N−1/4 on the age of the users,
shown separately for men (blue) and women (red).

This gender dependency is rooted in the N -dependency of regularity. Indeed, if we

normalize the regularity R by N−1/4 obtained in the previous section (Fig. S9), the gender

dependency vanishes, as shown in Fig. S11.
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C. Dependence on the income and language

a b

Fig. S12: Predictability is stable across all regional income levels and language. Users were
assigned a province based on their most-used tower. (a) Provinces were assigned a mean
annual income based on census data. (b) Provinces were assigned a regional language if one
exists, otherwise they were assigned the national language.

Using census data, we are able to assign average income and language to the users based

on their most visited location. As Fig. S12 shows, while the regularity R (the lower bound

of predictability) appears to depend somewhat on the various demographic parameters, the

maximum predictability Πmax does not, showing only small fluctuations. Note that ideally

we should assign these parameters to individual users, thus more definite answer could be

possible once such microscopic (user-specific) data becomes available.

D. Dependence on the population density

Fig. S13: (a) The dependence of the maximal predictability Πmax and regularity R on the
population density ρ (the number of people per km2) of the users’ neighborhood (11,177
neighborhoods based on the zip code). (b) The predictability Πmax and regularity R inside
or outside metropolises, which were the four most populated cities in the country. (c) The
predictability Πmax and regularity R vs. the distances from the top four cities.
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It is important to explore if predictability depends on population density. For this we

have identified for each user his/her most frequented location, and using census data we

assigned to the user a population density specific to the region that the user most frequently

visits. Fig. S13 shows that despite the changes in the population density that spans four

orders of magnitude, user predictability is largely constant. We observe small changes only

in the regularity R.
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