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Algebraic and Topological Aspects of 
Feedback Stabilization 

Ahtruct -In this paper we give essentially complete results concerning 
various algebraic and topological aspects of feedback stabilization. In 
particular. we give necessary and sufficient conditions for  a given transfer 
function matrix to have a right-coprime or  a left-coprime factorization, and 
exhibit a large class of transfer function matrices that have both. We give 
the most general set of feedback stabiliw criteria available to date, and 
dentre  a characterization of all compensators that stabilize a given plant. 
We give a definition of “proper” and “strictly proper” in an abstract 
setting and show that 1) every strictly proper plant can be stabilized by a 
proper compensator, and 2) even. compensator that stabilizes a strictly- 
proper plant must be proper. We then define a  topolop-  for unstable plants 
and compensators. and show that it is the weakest topology in which 
feedback stabiliw is a robust property. 

I. INTRODUCTION 

I N THIS PAPER we study various  algebraic and  topo- 
logical aspects of feedback stabilization. We  develop 

general  results  in  answer to the following  types of ques- 
tions.  Given an unstable plant,  can  one find a feedback 
compensator to stabilize  it? Can  one characterize all feed- 
back compensators that stabilize a given plant. stable or 
unstable? If the plant is  known to be  strictly proper, can 
one achieve stabilization using a proper compensator? What 
sort of uncertainty can  be tolerated in the plant model and 
in  the implementation of the compensator? What is  meant 
by an unstable system  being  “close” to  another? 

Our starting point is  the observation that in a wide 
variety of applications the  set of all  single-input-single- 
output (SISO) stable linear systems  forms a ring ‘X; that is. 
parallel and cascade connections of stable linear systems 
are again stable linear systems.  Moreover,  in  many  cases 
(e.g.. convolution operators) the  ring ‘3i is commutative and 
is an integral  domain  (i.e., X has  no divisors of zero).’ One 
can study multiinput-multioutput (MIMO) stable linear 
systems  by  viewing  them as matrices  over  the  ring ‘IC. The 
class of SISO unstable systems  considered  in t h s  paper are 
the elements of the quotient field LF of %-- Note  that if 
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gE 5, then gdE CX for  some nonzero d €  ‘X. Hence, the 
SISO unstable systems considered here are those that  can 
be stabilized  by the cascade connection of some nontrivial 
stable system.  We treat the MIMO case  by considering 
matrices over ‘3. 

The advantage of using such a setup is that it embraces, 
within a single  framework, continuous-time as well as 
discrete-time systems.  lumped as well as distributed sys- 
tems, 1-D as well as  n-D systems,  etc. As a result,  when we 
study problems such as feedback stabilization, we are able 
to focus on the key  aspects of the problem under study, 
rather than be distracted by the special features of a 
particular class of linear systems. In spite of the fact that 
we use  terminology from ring theory in the statement and 
the proofs of the results given  here, we do not use any deep 
results from ring theory. The background needed to follow 
the paper is all contained in [l, ch. 11-Iv]. In particular, 
the reader  would  need to know what a ring  is, and what  is 
meant by ideal, principal ideal, and prime ideal in a ring. 

There are three types of problems considered in this 
paper. First, a central idea in studying feedback stability is 
that of expressing an unstable transfer function g as a ratio 
of two stable transfer functions n / d  in  such a way that n 
and d are coprime [2], [3]. In this connection an important 
question is the following.  Given a transfer function g = 
n / d l  where n I and d ,  are not necessarily  coprime,  when is 
it possible to find a coprime pair (n. d )  such that n / d  = 
n, /d ,?  In the  practically important case  where g is a 
rational function of x, this  is  always  possible  [4], [5 ] ;  
however.  in the study of linear distributed systems  where g 
may  be an irrational function of s, t h s  is not always 
possible  (see  Example  2.43). In Section I1 of this paper we 
present several  results that show just when it is  possible to 
find a coprime factorization of a given ratio n ‘,/dl (or 
A’, 0;‘ in the MIMO case). These results contain some 
earlier  work in 161, [7] as special  cases. 

We  then consider the problem of designing a feedback 
compensator that stabilizes a given plant. Ths problem can 
be split into two parts: 1 )  finding necessary and sufficient 
conditions for a feedback  system to be stable, and char- 
acterizing the collection of all compensators that stabilize a 
given plant,  and 2 )  determining whether or  not a given 
plant can be stabilized  (i.e.,  whether or not the “set of 
stabilizing compensators” is nonempty), and determining 
whether a “strictly proper” plant can be  stabilized  by a 
“proper” compensator. These problems are discussed in 
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Section 111. Specifically, we derive the most  general  set of 
necessary and sufficient conditions for feedback stability 
available to date, and we  give a complete characterization 
of all compensators  that stabilize a given plant. These 
results extend those in [8]  by  removing  several  technical 
assumptions, and can be thought of as an abstract version 
of  [9]. Next, we  give a definition of a “proper”  and 
“strictly proper” element in an abstract ring-theoretic set- 
ting and  prove two important results: 1)  every strictly 
proper  plant  can be stabilized by a proper  compensator, 
and 2)  every compensator that stabilizes a strictly proper 
plant must be proper. These results not  only generalize 
those of [lo], [ I  11, but are also proved in a considerably 
simpler manner  than the special  cases in [lo], [ 111. 

The final issue studied in this paper is that of defining a 
suitable topology in which  feedback stability is robust. 
This is of fundamental  importance since a controller de- 
signed for a nominal plant must accommodate uncertainty 
about the nominal plant model and in the controller imple- 
mentation. In other words, the feedback  system  must con- 
tinue to be stable for all plants in some neighborhood of 
the nominal plant and for all controllers in some  neighbor- 
hood of the nominal controller. Topologizing the plants 
and controllers means defining these  neighborhoods. In 
Section  IV we define a topology for unstable plants and 
show that it is the weakest topology in which  closed-loop 
stability is a robust property. The principle that emerges 
from this section  is that in order to design a controller for a 
plant that can also accommodate plant uncertainty, we 
must know approximately the stable coprime factors of the 

Throughout the paper we  use script letters to denote sets 
and Roman letters to denote elements of sets.  Also,  sym- 
bols with a “ - ” denote quantities pertaining to left- 
coprime factorizations, whereas quantities pertaining to 
right-coprime factorizations do not have the tilde. 

plant. 

11. COPRIME FACTORIZATIONS 

A .  Basic Concepts 

Throughout this  section we let2 
X = a commutative ring  with identity and no zero 

= set of multiplicative units of .X = { x  E X: x has a 
divisors, 

multiplicative inverse in X}, 
‘F= quotient field of X = {a /b :  a E X ,  b€  ‘X\O}. 

Since  many  engineering  systems are multiinput-multi- 
output, we introduce the set X n X m ,  which  is the set of 
n X m matrices whose  elements all belong to X. Similarly, 
J denotes the set of n X m matrices whose  elements all 
belong to 5. It is  easy to see that  both X n X n  and g n X n  are 
rings under the usual definitions of addition and multipli- 
cation, and are noncommutative if n 2 2.  We can also 
speak of the determinant of an element of X n x n  and F n X n ,  

G n X m  

’See [ 1, p. 491 for a definition of these  terms. 

defined in the usual  way. It is easy to see that every 
element F of Tnxm can  be written as ND-I, where N E  

, D E  X m X m  and det D # 0; we refer to such a pair 
( N ,  D )  as a right fractional representation of F. Similarly, 
every F E  T n X m  can also be written as BPI?? ,  where BE 
X n X ” ,  ??E X n X m  and  det B#O; such a pair ( B ,  N) is 
referred to as a left fractional representation of F.3 

Note  that the set of m-tuples X“  is a module [27, p. 1341 
over the ring X. Thus, in the present setup X n X m  is the set 
of “stable transfer matrices” that  map the input  module 
SC into the output  module X”. T n X m  plays the role of all 
possible transfer matrices, both stable as  well as unstable. 

We  say that two matrices N E  X n X m ,  D E X i X m  are 
right-coprime if there exist matrices P E  X m x n ,  Q E  X m x i  
such  that 

X n X m  

c m  

P N + Q D = I m  

where I ,  denotes the identity matrix of dimension m. Note 
that the present definition of coprimeness  implies not  only 
that every common right  divisor of N and D is a unit in 
X: , but also that every  common  right  divisor of N and 
D is contained in the ideal generated by N and D. If X is a 
Bezout  domain (i.e.,  if  every finitely generated ideal in X is 
principal), then the first condition can  be shown to imply 
the second  (see, e.g., [28]). 

Suppose F €  F n X m ;  then ( N ,  D )  is a right-coprime fac- 
torization ( r c f )  of I; if 1)  det D # 0 and F =  ND-’, and 2) 
N and D are right  coprime.  Left  coprimeness and left 
coprime factorizations (lcfs)  are defined  analogously. 

It is well known [8, p. 401, Property 21 that if ( N ,  0) is 
an rcf  of FE TnXm,  then so is ( N U ,   D U )  where U E  X m x m  
is a unimodular  matrix (i.e., det U E  &).4 Moreover, if 
( N , ,  D l )  is another rcf  of F, there exists a unimodular 
matrix V E X m x m  such that Nl = NV,   D l  = DV. Thus, an 
rcf of an element in SnXm is unique to within a right 
associate if an rcf exists. In the case of lumped linear 
systems, for example, the existence of coprime factoriza- 
tions is not a problem because X is a principal ideal 
domain  in such applications. However, in the study of 
distributed systems, multidimensional systems,  etc., the 
existence of coprime factorizations is not automatic. As a 
matter of fact, in both these applications not every element 
of Thas a coprime factorization, as demonstrated in Exam- 
ples 2.1 and 2.2. To pave the way for these  examples, we 
present a lemma and two  corollaries, the proofs of which 
can be found  in [28]. 

Lemma 2.1: Suppose F E  TnXm,  and let ( N ,   D )  be  any 
right fractional representation of F. Then F has  an rcf  if 
and only if the left ideal in X m x m  generated by N and D is 
a left principal ideal. 

r m X m  

31n [E] Desoer et al. introduce  the  concept of a  “fractional  represen- 
tation”  and derive  several  useful  results.  One of the  assumptions  made in 
[E] is that  every “right fraction:‘ N D - ’  also has a  “left  fractional 

commutative  “scalar  ring” X and  build up the matrix  rings XnX“ and 
representation” of the form D-l.11. In the  current  setup we start with a 

‘ T n x m ;  as  a  result, this assumption is automatically  satisfied  in  the current 
setting. 

4Recall  that $ is the  set of multiplicative  units of X. 
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Corollary 2.1: Suppose f E 5, and f = n / d  where n E X 
and d E X\O. Then f has a coprime factorizatior? if and 
only if the ideal in X generated by n and d is principal. 

Corollary 2.2: Every f E 5 has a coprime factorization if 
and only if X is a Bezout domain. 

3. Examples 

In this section we discuss three rings that are commonly 
encountered in stability theory, and show that they are not 
Bezout domains, so that not every  element in the quotient 
field  associated  with  these  rings has a coprime factoriza- 
tion. 

Example 2.1: In the case of discrete-time systems it is 
well known [15] that a linear time-invariant system is BIB0 
stable if and only if its  impulse response is absolutely 
summable. Hence, a natural choice for .X is I,, the set of all 
absolutely summable sequences. For ease of multiplication 
it is better to take 

m 
f( e je)  = 2 I;,ejne. (2.5) 

n = O  

Since f( z*) = p( z )  where * denotes conjugation, it follows 
that I;, is real for all n. Also, since?(-) is C2, f, = O ( l / n 2 )  
and hence ( I ; , }€ l ,= 'X .  

Now we show that X is not a Bezout domain.  Let {a;} 
(8,) be two  sequences in the open unit disk such  that 1) 
a;, pi are real for i, 2) ai + 1, 8; + I, 3) Zzo((l - a:) < 03, 
2z0( 1 -#) < co, and 4) ai # 18, for all i, j.' As  shown 
above, we can find I ,  sequences { f,}, { g , }  such that {ai} is 
the zero  set of f( e), { p i }  is the zero  set of g( -). We  show 
that f and g do not generate a principal ideal in To 
show this, assume the contrary; namely, that there exist 
L,, + .,h; in X such that 

il( z ) f (  z )  + i2( s)g( z) = L3( z),  if I z I G 1 (2-6) 

f ( z ) = L , ( z ) i , ( z ) ,   g ( z ) = L , ( z ) i , ( z ) ,  if l z l  G I .  

i 
(2.7) 

m m 

X = f ( z >  = 2 flz', I hl <m}. (2.2) Then i ,g= i5f, so that i 4 (a i )  = 0, ~ , ( p ~ )  = 0, vi. Also, 

In other words, we take X to be the set of power  series k,( z)&,( z )  + i2( z ) i 5 (  z )  = 1 if I z I G 1 (2.8) 
with absolutely summable coefficients,  which  is isomorphic 
to 1,. Note that f ( z - ' )  is the usual z transform of the we have 

; = o  i = o  since 

sequence { x } .  
The ring X does not have the property that every  finitely 

generated ideal is principal, as the following argument 
shows.  Hence, not every  element of the quotient field of 3i 
has a coprime factorization. 

First, suppose {a;} is a sequence of real numbers con- 
verging to 1 such that I ail < 1 for all i, and such that the 
sum Zs0(  1 - a:) is  finite. Then, we claim that there exists 
a sequence { I;,} in I ,  such that f ( a j )  = 0 for all i and 
f( z )  # 0 elsewhere.6 In fact, let 

i,(/!li)L,( Si) = 1 vi. (2.9) 

If  we let i + 60 in (2.9), we get i , ( l ) i4( l )  = 1. However, 
i4( 1) = lim, - mi4( a;) = 0, which is a contradiction. Hence, 
f and g do not generate a principal ideal, and 3C = I, is not 
a Bezout domain. As a result, not every  element of the 
quotient field of 'X has a coprinie factorization. 

Example 2.2: In the study of continuous-time systems, a 
natural choice for 3i is the Banach algebra @ defined in 
[13]. The set Q. consists of all distributionsf( -) of the  form 

f ( z >  = g(z)exp [ - 1/(1- z)1'2] (2.3) 0, t c o  
30 

f , ( t )+ 2 j p ( t - t ; ) ,  t > O  (2.10) where g( e )  is the Blaschke product [29, p. 661 
i = O  

m 2 - ai 
g W =  n (2.4) where O G t , < t , < - . . ,  f , ( . )EL,  and ( f ; } E I , .  If we de- 

i = O  fine the norm of an element f E  8 as 

Then 1 g( z )  I G 1 whenever 1 z I G 1 ,  and g( - ) is analytic over 
the open unit disk. Moreover, g( -) is continuous every- I l f ( . ) l l i z = ~ m l f , ( r ) l d r f  0 : 1L1 (2.11) 
where on the unit circle  except at z = 1.  Now,  because of 
the exponential tern in (2.3), f( .) is continuous at = 1, and define the product of two elements as their convolu- 
and f(1) = 0. Moreover, the exponential term in (2.3) ap- tion, then 6? is a Banach algebra and satisfies dl of the 
proaches zero as I + 1 faster than  any term of the form hypotheses we have  imposed on X. Also, by the Paley- 
I/(  z - 1)" for any n > 0. With the aid of this and the Wiener  theorem [ 14, p. 1501, the set of units of @ is 
convergence of 2Fo( l  - a:), one can  verify that f(*) is 
twice continuously differentiable on the unit circle, includ- $ = ( f a :  inf J j ( S ) l > O )  (2.12) 
ing at z = I :  Consider now the harmonic series 

i = O  

S E  c, 

5Since Tis commutative we need not  distinguish  between rcfs and  lcfs. 1. (3) is equivalent to 1 - a,) < x .  
6We  are  grateful to K. Davidson for this  argument. 'We are  grateful to W. Rudin for this argument. 

7 S i n c e ( 1 - a 4 ) = ( 1 - a ) ( l + a + a 2 + a 3 ) ~ 4 ( - a ) w h e n e v e r O ~ a ~  
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where f(-) denotes the Laplace transform of f( .) and 
C+ = {s: Re s a O}. In other words, f€ @ has an inverse in 
@ if and only if its Laplace  transform is bounded away 
from zero  over C+ . 

Now the set of distributions of the form 
00 

f ( t ) =  2 @(t-iT), {h}EZl, T>O (2.13) 

is a subalgebra of @ which  is isomorphic to 1'. As  we have 
already shown in Example 2.1, I, is not a Bezout domain.  It 
is easy to adapt these arguments to show that 8 is not a 
Bezout domain. Hence, not every  element in the quotient 
field of 62 has a coprime factorization. 

Example 2.3: In the study of two-dimensional digital 
filters, a natural choice for X is the set of real-valued 
sequences { A j }  such that 

i = O  

2 2 IJjI<a 
0 0 3 0  

(2.14) 
j = o  j = o  

and such that the two-dimensional z transform 

h Z 2 )  = 2 2 h j Z N  (2.15) 
j = o  j = o  

is a rational function of z l ,  z2. Note that every  two-variable 
polynomial  with  real  coefficients  belongs to X. In other 
words,  the ring R [ z , ,  z2] is a subset of X .  

Now  consider the elements 

f(z , ,z2)=z1,   g(z ' ,z2)=z2.  (2.16) 

One can  use  essentially the same arguments as in Example 
2.1 to show that the ideal in X generated by f and g is not 
principal. Assume  by  way of contradiction that there exist 
f,, E l ,  d,d,  t$ in X such that 

f= f 'K ,  g = g,K (2.17) 

$+ Kg = K. (2.18) 

Thenflg=g,f,  so thatf,(O,z,)=O for a l l ~ ~ f O , ~ ~ ( z ~ , O )  
= 0 for all zI # 0. Also, cancelling t$ in (2.18)  gives 

i i ( ~ , , ~ , > f l ( ~ , , ~ , > + ~ ( ~ , , ~ , ~ ~ l ~ ~ , ~ ~ , ~ = ~ .  (2.19) 

Letting z, + 0, z2 - 0 in (2.19)  gives the desired contradic- 
tion. Hence, zI /z2 has no coprime factorization. 

C. Coprime Factorizations 

As  shown  by the examples in Section 11-B, several  com- 
monly encountered rings in stability theory are not Bezout 
domains. In such  cases it is of interest to identify some 
subring 9 of 9 such that every g E 5 has a coprime factori- 
zation, and more important every G E  9"'" has  both  an rcf 
as well  as an lcf.  Such a result is provided  by Theorem 2.1 
below. We first state a preliminary lemma. 

Lemma 2.2: Suppose N E  X n X m ,  D E  X m X m ,  with 
det D # 0. If there exists a unimodular matrix R E  

X ( n + m ) X ( n + m )  such that 

(2.20) 

where O n x ,  denotes the zero matrix of order n X rn, then 
G = ND- ' has  an rcf. 

Proof: Partition R as 
m n  

(2.21) 

Now (2.20)  implies that 

R = R , , D  + R , , N .  (2.22) 

Since  det R E $ ,  S A R - '  belongs to . 3C(" ' " )X ("+m)  . Parti- 
tion S as in (2.21). Then, since 

it follows that 
D = S , , T ,   N = S , , T .  (2.24) 

Since  det D # 0, it is  clear that  det T # 0 and det SI, # 0. 
Hence, G = ND-' = S,,S,'. Moreover, since R S =  I("+"), 

'12'21 + R I I S I L  = In (2.25) 

which  shows that S2, ,  SI , are right-coprime. Hence, 
(SZl, SIl) is an rcf  of ND-' .  

We  now  come to the main  result. 
Theorem 2.1: Given X, suppose that there exists a sub- 

ring X. of X and a subset 9 of X,\O such  that 
1) Y is  closed under multiplication (i.e., x E  Y, y E  4 im- 

plies that xyE S). 
2)  Every factor in X. of an element of 4 belongs to Y 

(ie., x E  X,, y E  X,,  x y E  S implies that x E  4,  YE g). 
3) Whenever x E 'X, and yE 4, the ideal in .Xo generated 

by x and y is principal. 
Under these conditions the set of fractions 9 { n / d ,  
n E Xo, d €  S} is a subring of 5. Moreover, for every n,  m, 
every  element of g n x m  has  both an rcf and an lcf. 

Remarks: 
1) In the above  theorem it is important  to note that the 

hypotheses pertain to the "scalar"  ring X. and its subset $, 
but the conclusions pertain to the matrix ring G n X m .  

2) Assumptions 1) and 2) imply that 4 is a saturated 
multiplicative system in X, and  that 9 is the  corresponding 
local ring 9-'Xo [28,  p. 381. Note  that these assumptions 
are automatically satisfied if Y is the complement of a 
prime ideal in X0. 

3) Combining  Assumptions 2) and 3), one  can  prove the 
following.  Whenever x , ;  . - , x , €  X, and y €  g, the ideal in 
X, generated  by x,; . -,xk, y is principal. 

Proof: In view  of Assumption 1) it is immediate  that 9 
is a subring of %. 

To prove that every  element of d""" has an rcf, let 
G E G n x m .  Then G can  be written as Xy-' ,  where X€ 
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YE 4. We wil l  now  show that there exists a matrix UE 
KO ( n + m ) x ( n + m )  with  det U = 1, such that 

(2.26) 

By Lemma 2.2 this is  enough to show that G has  an  rcf. 
We will show that U can  be constructed as a product of 

nm unimodular matrices U, . . , V,,, and explicitly dem- 
onstrate U, The rest of the matrices U12,. . -, U,, can be 
constructed in  an entirely analogous  manner. 

By Assumption 3), y and x I 1  generate a principal ideal. 
Let r E  X, be a generator of this  ideal.  Then there exist 
p ,  q, a, b in X, such that 

P Y + q x , l = r  (2.27) 
y = a r ,   x l l  = br. (2.28) 

By Assumption 2), r E  $. Now note that 

ax l l  =by (2.29) 

p a + q b = l  (2.30) 

and define 

VI, = 

The proof that G also has an lcf is entirely analogous 
and is  left to the reader. 0 

As a corollary to Theorem 2.1 we have the following 
result, whch is stated in [ 121 in a somewhat different form. 

Corollary 2.3: Suppose X is a Bezout domain.  Then all 
finitely generated left ideals and right ideals in X n X n  are 
principal. 

D. Further Examples 

In this  section we apply  Theorem 2.1 to the rings of 
Examples 2.1 and 2.2. It appears that Theorem 2.1 is 
primarily useful in studying distributed (one-dimensional) 
systems; it does not appear to be very  useful in studying 
multidimensional systems. 

Example 2.3: Let X = I , ,  as in Example 2.1. To id en^ 
a subset 9 of the quotient field of X such that every 
fraction in 9 has a coprime factorization, we defiie 

X, = { f E  H :  zwf( rz )  E 3c for some r > l }  (2.33) 

4 = (0). (2.34) 

In effect, ‘X, consists of functions of the form 

col. 1 col. ( m  + 1) - 
P 

1 
1 

- b  

- 

4 

0 

1 
a 

1 

Now det U, = 1 roecause of (2.30)], and 

(2.32) 

where we  use h as a generic  symbol to indicate some 
element of LXo. Thus, as a result of premultiplication by 
U, a zero  has  been created in the ( m  + 1,l) position. 
Since r E  5, the procedure can be continued to create zeros 
in the first column in rows m + 1 to m + m. The  same 
procedure  can then be applied to all subsequent columns. 
In this way one  can construct a matrix U such that (2.26) is 
true (and, in addition, T is upper triangular). It now 
follows from Lemma 2.2 that G has an rcf. 

row 1 

(2.31) 
row ( m + l )  --y 

a3 

f ( z )  = x i .2‘  (2.35) 
i = O  

where the sequence {r%}  is absolutely summable for some 
r > 1. Every function in X is analytic over the open unit 
disk; further, every function in X, is analytic over the disk 
I z I < r for some r > 1, and is  hence analytic over the closed 
unit disk. As a result, if f E  X, and g€ X,\O, both func- 
tions have  only a finite number of isolated  zeros of finite 
degree inside the closed unit disk.  Hence, the gcd of f and g 
inside the closed unit disk is  some  polynomial +(z) ,  which 
belongs to ‘X, (since all polynomials  belong to X,). So if 
we define 

then TI, gl E ‘X, have no common  zeros in the closed unit 
disk and  are coprime.  Hence, + is the gcd of and 2 in X, 
and the ideal generated by f and g coincides  with the ideal 
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generated by 4. In conclusion,  every  element f / g ,  where 
!E X, and g €  Xo\O, has a coprime factorization in X .  

In this example, we chose 4 = Xo\O to achieve the great- 
est  possible  generality.  However,  from the point of  view  of 
well-posedness,  it  may be more natural to take 

4={fEX0:f(O)#0). (2.37) 

Example 2.4: Let X = @, as in Example 2.2. In order to 
identify a subset of the quotient field of @ where  every 
element has a coprime factorization, we must  look for a 
subring X .  of @ and a subset $ of X, satisfying  Assump- 
tions 1)-3)  of Theorem 2.1. This is done in [6], although 
the point of  view is. not the same as it is  here. 

To relate the present approach to that of [6] ,  we first 
define the set e-, as follows: 

@ - ={f(.): thedistributionr~e"'f(t)E@forsomeo>O} 
(2.38) 

The set 8- is a subring of @, although (@-, II 1 1 6 2 )  is not a 
Banach space. We take X, = @-. Next we define 

4 = ( f( . ) E @- : there exists an r > 0 such  that 

In effect, 4 consists of those distributions in @- 

(2.39) 

whose 
Laplace transforms are "bounded away  from  zero at infin- 
ity."  Clearly, 4 satisfies Assumptions 1) and 2) of Theorem 
2.1. To veiify the principal ideal property we begin by 
observing that whenever f E @-, its Laplace transform f is 
analytic over  some open half-plane Res > - u, and hence 
over the closed right half-plane C, . Hence,  all  zeros off in 
C ,  are isolated and of finite order. Now, suppose  that f 
actually belongs to 4. Then all  zeros off in C, are in some 
compact subset of C ,  , in view  of  (2.39). This means that, 
in fact, f has only a finite number of zeros,  each of finite 
order, in C,. Now let f E  @ , gE 4; in view  of the pre- 
ceding  discussion f and 2 have  only a finite number of 
common  zeros,  each of finite order, in C + .  Let  these  be 
s,;. -,sn with  multiplicities m,;  .,m,, and let +(s) be the 
polynomial 

n 

@(s) = n (s  -sJrnI.  (2.40) 
i = l  

We  now have the following. 
Proposition 2.1 : Define 

(2.41) 

Then f,, g,  E @- and are coprime.  Moreover, the ideal 
generated  by f and g is the same as the principal ideal 
generated by h,  where &s) = +(s)/(s + 1)". 

Proof: To make the idea clear, consider the simple 
case where +(s) = (s - so)", where s,E C, . Thus,  both f 
and 2 have  zeros of multiplicity at least n at so. First, we 
claim that 

(2 -42) 

where &- denotes the set of Laplace transforms of the 
elements of @- . To prove  (2.42)  observe that 

Note that (1 + so) is a number. Now  by [6,  Theorem 2.21, 

m-s, (' +so) - - + & s )  = $ ( s )  (2.44) 

wheref,E @-. Observe also that 6 has a zero of order n - 1 
at so. Repeating the argument shows that f , ( s )=  (s + 
I)nf(s)/(s - so)"€ @- . The proof in the more  general  case 
where @(s) is a product of several factors of the form 
(s - si)"! is  now routine. Thus, we have established that 

Next, we show that f,, g, are coprime.  Clearly, g l€  Y 
because g€ 4. Hence,  by [6, Corollary 2.11, f l  and g, are 
coprime provided f", SI have no common  zeros in C, . 
From the definition of +(s) and from  (2.41), it follows that 
fl, g, have no common  zeros in C ,  , and  that f,, g, are 
therefore coprime. 

fl, g l e .  

Finally, we see  from  (2.41) that 

~ ( s ) = f , ( s ) ~ ( s ) ,  g (s )=g, (s )h^(s ) .  (2.45) 

Since f, and g ,  are coprime, h is a gcd in &! of f and g;  
therefore, the ideal generated  by f and g is the same as the 
ideal generated by h. 0 

The preceding  discussion  shows that every  element of 
4 = F'@- has a coprime factorization in @. This is  exactly 
the algebra introduced in [6]. Moreover, in view of Theo- 
rem 2.1  every element of G f l X m  has both  an rcf and  an lcf. 
This was proved in [7] using  slightly different methods. 

111. STABILIZATION 

In this  section we study the existence and characteriza- 
tion of the set of all compensators that stabilize a given 
plant. We also  extend the concept of a "proper" plant and 
a "strictly proper" plant to an abstract setting and  prove 
two  very important  and general results: 1) every strictly 
proper plant can  be  stabilized  by a proper  compensator; 2) 
all compensators  that stabilize a strictly proper plant must 
be proper. Finally, we  show that  under slightly stronger 
assumptions almost  all plants with an equal number of 
inputs and  outputs  can be stabilized by an appropriate 
compensator. We begin by reviewing  feedback stability. 

Note that, throughout the rest of the paper, we  use erflX'" 
(resp. to denote the  set of all G E  g n X m  that have an 
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I u2 

Fig. 1. Closed-loop system. 

rcf (resp. an lcf).  Also, we  use enxm to denote C?~x"nC?,"x"; 
i.e., enxm consists of all G€$TnXm that have both an rcf 
and  an lcf. 

A. Closed-Loop Stability Revisited 

In this  subsection we  review the problem of the  closed- 
loop stability of the system  shown in Fig. 1. Suppose 
CE T m X n ,  G E  T X m ,  and that det(Z,,, + CG) = det(I, + 
GC)#O. Then  the relation between u l ,  u 2 ,  e,,e, can be 
expressed as 

(3.1) 

In (3.1) both ( I ,  + GC)-' and ( I ,  + CG)-' occur,  which  is 
not very  convenient. To avoid  this we can either rewrite 
everything in terms of ( I ,  + GC)-' or in terms of ( I ,  + 
CG)-' using standard matrix identities. This gives 

(3 4 
if  we express  everything in terms of ( I ,  + GC)-'? and 

I ,  - G (  I ,  + CG)-*C - G(I, + CG)-l]  [ 2441 [ ::] = [ (I,,, + CG)-'C (I,,, + CG)-' 

(3.3) 

if  we express  everything in terms of ( I ,  + CG)-'. Let  us 
label the (n + m ) X ( n  + m )  matrix in (3.2) and (3.3) as H ,  
and label its four submatrices as HI,, HI2, Hzl, H22,  
respectively. We say that the pair (G, C )  is stable if det(1, 
+ GC) = det( I ,  + CG) # 0, and HE rX - (n tm)x (n+m)  . e  W 
also  say that C stabilizes G if ( G ,  C )  is stable. 

Lemma 3.1: Suppose G E  emXm, CE e;lXn, and let 
( N p ,  Dp) be any rcf  of G, (Bc,  NC) any lcf  of C. Under 
these conditions the pair (G, C) is stable if and only if 

A i  = DcDp + NCNp (3.4) 

is unimodular in Kmxm.9 

'Note that we do not have  here @e tec_hnical assumptions  that 
(,VP, D,DP) are right-coprime and  that ( DcDp, Yc) are left-coprime, as in 
P I  

Proof: ''If': Suppose A, is unimodular, so that A; 'E 
XmXm.  First, since  det(Z, + GC) = det[fic-'A,Dp-l], we 
see that det(Z, + GC) # 0. Next  it is easy to verify by 
direct substitution in (3.3) that 

H = [  
I ,  - NpAl'Nc - NpAF'fic 

D,A;%~ Dp A ; I D c  

Since A,'€ .3Cmxm,  it  is immediate  that HE X(nim)x(n+m) .  
''Only if': Suppose (G, C) is stable." Then  by definition 

det(1, + CG) P 0 and HE CJC(" im)X(n+m)  . Moreover, if AI 
is  defined by  (3.4), then det A I  = det [ Dc( I ,  + CG)Dp] # 0, 
and A; is well defined in Fmxm, where 5 is the quotient 
field of X. Also, H is given  by  (3.5).  Now  since H E  
Lx(n+rn)X(n+m) and I,€ XnX" ,  it follows  from (3.5) that 

Since Np, Dp are right-coprime and Nc, D c  are left-coprime, 
there exist  matrices P E  3 i m x " ,  PC€ X n X m ,  Q, QcE X m X m  
such that 

PNp+QDp=Im, f i c ~ c + D c Q c = Z m .  (3.7) 

Thus 

whch shows that A i  is unimodular. 
The  analog of Lemma  3.1 for the case GEL?yxm, CE 

Once we have the general characterization of feedback 
stabdity as given in Lemma  3.1 and its analog alluded to 
above, we can readily characterize all compensators C that 
stabilize a given plant G. The proof of Lemma  3.2  below  is 
omitted, as it closely  follows that of [8, Theorem 31.'' 

Lemma 3.2: Suppose GEE!"Xm. Let (Np ,  D,), (BP, Np)  
be any rcf and Icf of G, and select matrices P, j ,  Q, Q such 
that 

is  obvious and need not  be stated explicitly. 

PNp+QDp=Im, N b P + f i p Q = I , .  (3.8) 

Then CE stabilizes G if and only if C has an lcf 
(d,, Nc)  with 

DC=Q--Mp,   Nc=P+RDp forsomeREXmX".  

(3.9) 

CE errnXn stabilizes G if and  only if C has an rcf (Nc ,  0,) 
with 

D, = Q - N ~ S ,  N ,  = F + D ~ S  for  some SE X m x n .  
(3.10) 

l o  We are grateful to C. Desoer for supplying this simple proof. 
"In [8], the  authors  only give the formula (3.9). but (3.10) is easily 

derivable using the same methods. 
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B. Existence and Properness of Stabilizing Compensators 

Suppose we are given a plant G E enXm. Select an rcf 
(N,, 0,) and  an lcf (BP, #,I of G ,  and matrices P, j, Q, Q 
such that (3.8)  holds. Then the set of all CE E?;“” that 
stabilize G is  given by 

REXmX”anddet(Q-R#p)#O).  (3.11) 

In other words, we let R vary  over  all  elements of X m X n  
such that det( Q - RNp) # 0. The set of all corresponding 
ratios ( Q  - RN,)-‘( P + RB,)  is precisely the set of all C 
in e;”“ that stabilize G. The  analogous result for CE (?,Yxn 
is as follows: the set of all CE ern”“ that stabilize G is 
given  by 

SE X m X n  and det (Q - N,S) # 0) .  (3.12) 

From the point of  view  of compensator design,  two  types 
of questions arise. 1)  given a plant G, what  is  the  set of 
R E  X“”” such that det(Q - R#,) # O? Is it a nonempty 
set; i.e., can G be  stabilized by some compensator? 2) for 
what  class of plants G can we find stabilizing compensators 
that are “proper”?  (And what is meant by a “proper” 
compensator in a general  ring  theory  setting?) We shall 
answer each type of question in turn. First, we show that in 
the scalar case  every gE E? can  be stabilized  by a c E e. We 
also  show that if ‘X is a normed  algebra, then the set of 
gE E?“””’ for which S,(g) is nonempty (i.e., the set of 
gE enxm that can be stabilized) is an open, dense subset of 
e‘”“. These results provide  answers to the first set of 
questions. Next, we define the concepts of “proper”  and 
“strictly proper” plants in the abstract ring-theoretic set- 
ting, and prove  two  results: 1) every strictly proper plant 
can  be stabilized by a proper  compensator,  and 2) all 
compensators  that stabilize a strictly proper plant are 
proper. 

Proposition 3.1: Corresponding to every gE C- there ex- 
ists a c E  e that stabilizes g .  

Proof: In  the scalar  case there is no distinction be- 
tween lcfs and rcfs. Thus,  given g€ e,  let ( n p ,  d , )  be  any 
coprime factorization of g, and select p ,  q in X such that 

pn, + qd, = 1. (3.13) 

It is clear from (3.13) that n p  and q cannot  both be zero. 
Now if q = 0, let r = 1,  while if q + 0, let r = 0. In this way 
it is  always  possible to select r E  X such that q - rn, # 0. 
For this  choice of r,  the compensator c = ( p + r d p ) / (  q - 
m,) is well defined and stabilizes g. 0 

Proposition 3.2: Consider the case m = n,  and  suppose 
X is a normed  algebra. Suppose G E en““ and that det G 
# 0. Then there exists C E  ( ? y x m  (resp. a FE E?,“””) that 
stabilizes G. 

Proof: Let (BP, gP), (N, ,  0,) be any rcf and lcf  of G, 
and select P ,  Q, j, Q to satisfy  (3.8).  Since det G Z  0, it 

follows that det N, # 0, det fi, # 0. Now consider the 
quantity Q - Mp with R = XI,, where h is a real number. 
Since 

det ( Q  - AN,) = Ydet (X-’& - #,) (3.14) 

and since det #, # 0, we have that  det(Q - A N p )  # 0 for 
sufficiently  large X. Hence, for sufficiently large X, C = (Q 
- XN,)-’(P + X&) is well defined, belongs to E?;“”, and 
stabilizes G.  The existence of a stabilizing CE E?,“”“ is 
proved in the  same way. 0 

Although we have not yet talked about topology, the 
next  result  logically  belongs  here, so we state it now. The 
proof  is immediate  from Lemma 4.2. 

Proposition 3.3: Suppose X is a normed algebra, and 
consider the set C””“ with the topology of Definition 4.1. 
Then the  set of G E  en”“ such that det G # 0 (in which 
case G can be stabilized) is open  and  dense in enX”. 

Now we come to a study of “proper” compensators for 
“strictly proper” plants. In  the case of rational transfer 
functions, we say that g(s) is proper (strictly  proper) if the 
degree of the denominator  polynomial of g(s) is greater 
than or equal to (greater than) the degree of the numerator 
polynomial of g(s). Equivalently, g(s) is proper (strictly 
proper) if g(w) is finite (zero). This “s plane” definition 
tends to obscure the fact that one  can define the concepts 
of a proper  and strictly proper plant in an abstract ring- 
theoretic setting. 

Definition 3.1: Given the ring X, let X be  an ideal12 in 
X, X # X. We define 

~ = { g E T : g = n / d f o r s o m e n E X , d E X \ X } .  
(3.15) 

S ~ = { g E T : g = n / d f o r s o m e n E X , d E X \ X } .  
(3.16) 

We shall  say that g € Tis proper if g E 9, strictly proper if 

We  digress  briefly to show that the above definitions are 
consistent with conventional usage. Suppose we  wish to 
study the  case  where Tis  the set of all rational functions. 
Then 5 is the quotient field  associated  with the ring X of 
proper stable rational f~nctions.’~ (That is, h(s) = 
p ( s ) / q ( s )  belongs to X if and only if deg p C deg q,  and all 
zeros of q have  negative  real parts.) Now let X denote the 
set of all strictly proper elements in X (i.e., ‘X is the set of 
strictly proper stable functions). Then 3i is an ideal in X, 
and X is not all of X. Also, f(s)EX\X if and only if 
f ( w )  # 0; i.e., the relative  degree of the rational function f 
is zero.  Now,  given an arbitrary rational function i ( s )  = 

write 

gE 59. 

p ( s ) / q ( s ) ,  let a=degp,   P=degq,  r=max(a,P}, and 

‘’Recall that ‘Ji is an ideal  in x if X is a  subri? of x, ed if xyE % 
whenever x E and y E  ‘X. is a proper ideal in , smce 1s not all of 
X. However. to avoid  confusion we  sh-all simply call an ideal in x, it 
bein  understood  that 5 is not all of X. ?e ideal ’3L 1s prime if x €  x. 
y E  $, and x y E  % implies  that  either x €  3i or YE x. 

131n this paragraph  quantities  with ‘-’ denote  rational  functions,  and 
those  without  denote polynomials. 
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P(S)/b + 1)' Proof: We have G = ND-' = N -  Adj D.(det  Dl-' 
q ( s ) / ( s  + I ) y  . 

i( s) = (3.17) Since  det D E  X\X by  Lemma 3.5 and  N-Adj D E  X n x m ,  
the conclusion  follows. 0 

Then ?(s) E 9 (resp. 5 9 )  if a G ,B (resp. (Y < p ) .  Conversely, 
suppose i ( s )  = ri(s)/&s)E 9 (resp. 59). Then ?(x) = 
A(co)/d(c;o) is  finite so that ?(x)  is proper in the usual 
sense  (resp. ?(x) = 0, so that i ( s )  is  strictly proper in the 
usual  sense). 

Lemma 3.3: Suppose 5 is a prime ideal  in ':&. Then 
both 5' and SY are subrings of 5. 

Proof: If X is a prime  ideal,  then 3- \X is  closed under 
multiplication. il 

In what  follows  it  is  assumed that is an ideal  in X and 
that '3; is not all of X:. A few results  require 5- to be a 
prime ideal,  in  which  case  this  is stated explicitly. 

We  now state a lemma that is used  repeatedly  in the 
sequel. 

Lemma 3.4: Suppose QE LK"Xn, det QE 'X\% and M E  
X""". Then det(Q+ M)E'JC^\?l. 

Proof:  By definition, we have 
I1 

de t (Q+M)=Es ign(@)  fl ( Q + M ) i , a ( r )  (3.18) 
Q i = l  

where 9 denotes a permutation of { 1: . . , n }  and the  sum- 
mation is  over  all permutations. Now, note that 

fi ( Q  + W l . ~ ~ l )  = [ f i l  Ql.,,.,] + ra 
r = I  

where r, is  some  element of %.I4 Hence 

de t (Q+M)=Es ign(+)  
a 

= det Q + r ,  where r E  y j .  (3.19) 

The lcf analogs of Definition 4.2 and Lemmas 3.5 and 
3.6 are obvious and need not be stated explicitly. 

Lemma  3.6 and its lcf analog show that if G has a strictly 
proper rcf or lcf. then every  element of G must be strictly 
proper. The converse  may not always be true; i.e.,  even  if 
G E  59t 'xm,  it  may  not  have a strictly proper rcf or lcf. 
However, in the important special  case  where X is the set 
of proper stable rational functions and 5 is the set of 
rational functions,  every G E  S q f l X m  has both a strictly 
proper lcf and a strictly proper rcf. T h s  is a consequence 
of the next  result. 

Lemma 3.7: Suppose ;3i is a Bezout domain, and let X. 
be a proper prime  ideal  in X .  Then every G E SYfl has 
both a strictly proper lcf and a strictly proper rcf. 

The proof  is  long but straightforward, based on Lemma 
2.2 It is omitted here  in the interests of brevity and can be 
found in  [28]. 

We  now  come to the important result  in this regard. 
Theorem 4.1: Suppose G E  emXn has both a strictly 

proper rcf and a strictly proper lcf. Then there  exists a 
proper compensator C that stabilizes G. Moreover,  every 
compensator CEernxmUe;xm that stabilizes G must be 
proper. 

Proof:  Let (N,, D,), (6,, I s p )  be a strictly proper rcf 
and Icf  of G, and select P,  Q, P .  Q such that (3.8) is 
satisfied. Then,  as shown in the proof of Lemma 4.2 we 
have  det Q €  X\%. Next,  by  Lemma  3.4 it follows that 
det (Q - RN,) E X \X for  all R E '3c In particular, since 
OEX. we  see that det(Q-RNp)#O for all R E X m X n .  
Hence, we can simplify  (3.1 1) to 

S , ( G ) = ( ( Q - R N , ) - ' ( P + R D p ) : R E ' 3 c m X " }  

(3.21) 

Proof: Since ( N ,  D) is right-coprime,  there exist P ,  Q = ( ( p  + DpS)-'(o - N , S ) :  SE L x l z x , )  
such that 

PN+QD=I,.  (3.20) 
(3.22) 

Hence,  QD = I,,, - PN and  det( I,,, - P N )  = det Q det D. As before, &(G) is nonempty and is a subset of ymxn.  

Now,  det I, = 1E X.\X, and PNE X m X n  Note that S,(G)US,.(G)  is the complete  set of compensa- 
since NE ' n X m '  tors having  either an rcf or an lcf that stabilizes G. Since 

Therefore, by Lemma  3.4 it follows that det( I,, - PN) E X this is a subset of 9,x,, the theorem is 0 \x. Hence,  det Q E %-\X. and det D E  \x, since both are Note that, in the process of proving Theorem 4.1 we 
factors of det (I, - PN). have also derived the useful characterizations (3.21) and 

( N ,  D ) .  Then, G E  S.3"x". 
Lemma 3.6: Suppose G E ZrnXm has a strictly proper rcf  (3.22), whch do not the "nonsingularity?? con- 

straint found in (3.11) and (3.12). 
Suppose  now that G is  strictly proper and stable; i.e., 

I4The  reasoning is as follows. Consider  a  product n:I=,(a, + b,)  where suppose G E  x""". Then (G, I,)  is an rcf of G because 
h,E 'Ji for all i. Then n:=,(a,  + b,) = ny=la3AI products  invol\ing at 
least  one of the h,'s = n:= la, ran element of yh. (3.8)  is  satisfied  with P = 0, Q = I,. Similarly, (In, G) is an 
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lcf  of G since  (3.8) is satisfied  with = 0, Q = I,. Thus 

s,(G) = { (rn1 - RG)- 'R:  R E  x m X n }  (3.23) 

is the set of all compensators in erxn that stabilize G ,  and 

Sr(G)= { S ( I , - G S ) - ' :  SEXmX" }  (3.24) 

is the set of all compensators in ermxn that stabilize G. The 
expressions  (3.23) and (3.24) are generalizations of some 
classical results in [ 191 and recent results in [20]. Note that 
if X is a Bezout domain (which it is in the case of rational 
transfer functions), then emXn = emXn , - - 3  r m x n  . 

As an application of the general notions of properness 
and strict properness introduced here, we consider the 
stabilization of a 2-D digital filter. Let the plant g be 
described  by its transfer function 

c o r n  

& I  3 z2) = 2 2 g& (3.25) 
i = ,  j x o  

and  suppose 

g('1, z 2 ) = n ( z 1 7  Z2)/d(Z1,  '2) (3.26) 
where n and d are polynomials  without  common  zeros in 
the unit bidisk D 2 = { ( z I , z 2 ) :  \ z l \ G l ,  I t 2 \  Gl}. Under 
these conditions [30] there exist  polynomials p(z, ,   z2)  and 
q ( z I ,  z2) such that 

p n + q d = l ,  Vzlrz2 .  (3.27) 

To apply Theorem 4.1, let X = 11( Z i  ), the set of two 
variable power  series  with  absolutely  summable  coefficient 
sequences, and observe that 'X contains all  two variable 
polynomials. Thus (n, d )  is a coprime factorization of g in 
X, and it  follows  from  Lemma  3.2 that c stabilizes g if and 
only if 

for some rE X .  Now, suppose g(.,.) has a zero at (z,,,  zz0). 
The set 

X = { f~ 'X: f( zlo, ~ 2 0 )  0} (3.29) 

is a prime ideal in X. Moreover, a compensator c is proper 
if and only if c does not have a pole at (z,,, z2,). (Note 
that  our  assumptions on g preclude c having any essential 
singularities of the second kind in D2. )  Thus, by Theorem 
4.1, if c stabilizes g, then c does not have a pole at 
(zl,,  z2,). Since this argument can  be repeated for every 
zero of g, we conclude that if c stabilizes g, then the pole 
set of c and the zero set of g are disjoint. 

IV. TOPOLOGY 

Recall that ~ r n x m ( ~ ; l x " * )  denotes the subset of $FTnX"* 

consisting of those F that have an rcf  (lcf), and C n X m  = 
C,?xmne;xm denotes the subset of TfZXm consisting of 
those F that have both  an rcf and  an lcf. Our objective in 

this section is to define a suitable topology on each of the 
sets emXrn, and ('?"'m. We introduce such a topology 
and show that it  is the weakest  topology in which  feedback 
stability is a robust property. In order to do this  it  is first 
necessary to characterize closed-loop stability in a slightly 
different manner  from Section 111. 

A. Closed-Loop Stability 

Consider again the system  shown in Fig. 1 where G E  
J and C E  '3 fnx ' z .  Suppose det(I, + GC) # 0. Then the 
relation between u I ,   u 2 ,  e I ,  e2 can be  expressed as 
G n X m  

(4.1) 
Let us denote the ( n  + m )  X ( n  + m )  matrix in (4.1) by H. 
Recall from Section I11 that the pair (G, C )  is stable if 
det ( I ,  + GC) = det ( I ,  + CG) # 0, and H E  ; J C ( n + m ) x ( n + m ) .  

Let us now define R E 5(n+m)x(n-Lm) and K E 
L x ( n + r n ) X ( n + m )  b Y 

One can  verify that det ( In+, + K R )  = det ( I ,  + GC) = 
det(I,+CG).  Hence,ifdet(I,+GC)#O,  thenH=(I,+, 
+ KR)-'.  Thus, the pair (G, C )  is stable if and only if 
( I , , ,  + KR)- '  is well defined  and  belongs  to 
sc t ( n + m ) X ( n + m )  

To s'hplify notation let p denote n + m. 
Theorem 4.1: Suppose (G, C )  is stable. Then R E  e P x p .  

Remarks: The point of the theorem is that if the pair 
(G,C) is stable, then the matrix R defined by (4.2) must 
have both an rcf and  an lcf. It would  be  nice if one  could 
conclude that G and C individually had both  an rcf and  an 
lcf, but this  seems to require further investigation. 

Proof: Since (G, C )  is stable, H = ( I ,  + K R ) - ' E  
X,",. Note that det K = 1 so that K- 'E  X P x P .  Since 

M = R ( I , + K R ) - ' = K - I ( I - H )  (4.3) 

we see that M E  3 c p x p .  Next, 

I, - K M =  I ,  - KR(  I, + KR)-' = ( I, + KR)-' (4.4) 

so that det ( I, - K M )  # 0. Also, it  follows  from  (4.3) that 
R = M ( I , - K M - ' .  Now  let N = M ,   D = I , - K M .  We 
claim that ( N ,  D) is an rcf  of R .  Clearly, R = N D - ] .  
Further, ( N ,  D )  is right-coprime  because 

KN+ I p D =  K M +  I, - K M =  I,. (4.5) 

Hence, R E  e,!'"". In the same way  it  can be shown that R 
can also be written as ( I ,  - IMK)-'M, and that ( I, - 
M K ,  M )  is an lcf  of R .  Hence, R E  0 

Note  that Theorem 4.1 is an abstract version of [3, 
Theorem 11. 
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B. Topology 

Throughout the rest of this  section we assume that X is 
in fact a topological ring; i.e., that there is a given 
Hausdorff topology on X ,  and that addition and multipli- 
cation are continuous in this  topology. We also  assume 
that 5 (the set of units of 'X) is an open subset of 'X, and 
that the map u + u-' of $ onto $. is continuous." Once we 
are given the topology of 'si, there is a natural product 
topology on X X m .  The  collection of sets 

(4.6) 
is a base for this product topology. 

both  an rcf as well as an lcf.  Now  define 
Recall that e P X P  is the set of matrices  in g p X p  that have 

S=(METpXp:M(IpfKM)-IEXpXp) (4.7) 

where K is  defined in (4.2). We  now study the problem of 
defining a topology on epxp.  While  it  may  be of some 
interest to define a topology on all of T p x P  (and not just 
ePXP) ,  we believe that e p X p  is a sufficiently  large  set for 
our purposes. As a matter of fact, it  is  actually  enough to 
define a topology on the set of S (which  is a subset of 
C P X p )  because Theorem 4.1  shows that a pair (G,C) is 
stable if and only if the corresponding matrix R belongs  to 
S. However,  it turns out that the topology  on 5 involves 
coprime factorizations, so that we  get also a topology on 
ePxp in the process. 

Rather  than define a topology  on C ? p x p  arbitrarily, we 
postulate some requirements on the topology, and then 
derive  the weakest possible topology that meets  these  re- 
quirements.I6 We require that, with the given  topology 

R1) 5 is an  open subset of ,"pxp. 

R2) The function M -t M ( I P  + KM)- '  from 5 into 
K P x P  is continuous. 

R3)  The topology on e P X p  is an extension of that on 
c J c p x p .  

Before we present the topology, a few comments are in 
order concerning these requirements. 

1) Condition R2) means that if (c? c) is a stable pair. 
then ( G ,  C )  is  also a stable pair whenever (G. C )  belongs to 
a suitable neighborhood of (G, e); moreover, the resulting 
closed-loop  response H is "near" fl. 

2) Since X p x p  is a subset of epXp.  the desirability of 
condition R3)  is  obvious. 

Lemma 4.1: Define f: S + X P x p  by 

f( M )  = M (  I, + K M ) - ' ,  V M E  5 (4.8) 

of polynomials; however. we can  choose 'X as the set of power  series wi th  
"The  assumption  that $ is open  precludes  being  chosen as the  ring 

absolutely  summable  coefficient  sequences. 
I6Given two topologies TI and ?i2 on ' X p x p ,  w e  say that 4 ,  is tienker 

than Ei2 if 5, is a  subcollection of T2. 

and define a topology 5, on S as follows: a subset SI  of S 
is open if and only if SI is the preimage under f of an  open 
subset of K p x P .  Then TI is the weakest  topology on S in 
which f is continuous. 

The  proof  is omitted as it is standard [21]. 
Now we  give an explicit description of the topology. 
Definition 4.1: Define a topology 5 on 2 p x p  as  follows. 

Given ME epXP,  let ( N ,  0 )  be  any rcf on M ,  and define a 
neighborhood of M as the set of all ratios N ,  Dl where 
X , .  Dl  belong  to neighborhoods of N and D: respectively. 
Define a set dT~ in epxp  to  be open if and  only if it  is an 
arbitrary union of finite intersections of neighborhoods. 

Lemma 4.2: The topology 'T of Definition 4.1 is an 
extension of the topology 5, on 5. Also, 5 satisfies condi- 
tions R1) to R3) and is the weakest  topology  on S in which 
R2 is  satisfied. 

Proof: The first sentence states that the topologes 9 
and 5l coincide on S. We prove this  by establishing two 
things: 1) whenever 9. is an  open subset of X P X p  and 
ME f-'(%),  f-'(%) contains a T-neighborhood of M .  
(This shows that 9, is weaker than 5, on S), and 2) 
whenever '43 is a 9-open subset of 5 and M E  %, 53 contains 
the preimage underfof  an open subset of . X p x p  containing 
f(  M ) .  (This shows that 5 is  weaker than 5, on S.) 

To prove l), suppose % is an open subset of . X P x P ,  that 
ME f-'(lsrc). and let S =  f ( M )  = M ( I ,  + KM)- ' .  We 
must  show that there is a T-neighborhood 3 of M ,  such 
that f(z) E 3 whenever @E '3. We do this as follows. 
Since M E  S and 5 is a subset of 2, M has an rcf ( N ,  0). 
Moreover,  it  is  easy  to  show as in [3, Theorem 11 that 
M ( I ,  + K M ) - ' E  X P X P ,  if and only if (D + KN)-'E 
X p x P ;  i.e., if and only if D + KN is unimodular. Finally, in 
such a case, S = M( I, + K M ) - '  = N( D + K N ) - ' .  Now  by 
assumption the set of units 5 in 'X is open, which  implies 
that the set of unimodular matrices Q in X P x p  is open. 
Moreover, since the map x + x- '  of 5 onto itself  is as- 
sumed to be continuous, it  follows that the map U + U-' 
of a. onto itself  is also continuous. In view  of this it is 
immehate  that there exist neighborhoods 3 ( N ) ,  ' J 2 (  0 )  
such that 1) o+ m- is unimodular whenever N E  3 E) ,  o€ %.,(o_>, and 2 )  y(D+ K F ) - ' €  I.3i whenever N E  
.272 , (N) ,  D E  ' X 2 (  0). Thus, whenever M =  F5-I with flE 
5 X , ( N ) ,  DE 9L2(D), we have f(M)E 9t. Thus, the re- 
quired 5-neighborhood of M is given  by 

I -  

(4-9) 

To prove 2), suppose  that '43 is a 5-open subset of T and 
that ME $3. By definition there exists  an rcf ( N ,  0 )  of M 
and  neighborhoods $ ( N )  and % ( D )  in X P X P  such that 

C ? I ( M ) = { N , D , ~ :  N , E % ( N ) , D , E % ( D ) )  C'3. 

(4.10) 

Let S = f ( M ) = M ( I , f K M ) - ' .  Then ( S , I - K S )  is an 
rcf  of M .  Moreover, by [8, p.  401, Property 21 there exists a 
P E  < X P x P  such that P - ' E  X p x p ,  and N = SP,  D = (I, - 
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KS)P.  Now find a neighborhood % ( S )  in X p x P  such that 
% ( S ) P  C % ( N ) ,  ( I ,  - K % ( S ) ) P  C a ( D ) .  Then 

= [ S P [ (  I, - K.)P] - I ,  v5.E % ( S ) )  

C % ( M )  ca. (4.1 1) 

Next  it  follows  from  Lemma 4.1 that 5 satisfies condi- 
tions R1) and R2), and that Tis the weakest  topology on S 
satisfying R2). To prove that the 5-topology on epxp 

(viewed as a subset of X p x p )  is the same as the original 
topology on ' X p x p ,  we observe that if H E X p x p ,  then 
( H ,  I,) is an rcf  of H .  The rest of the argument is left to 
the reader. 0 

Up to now we have  defined a topology on the set epXp  

where p = n + m ,  and have  shown that it is the weakest 
topology on epxp such that the map M .-+ M( Ip  + KM)- '  
is continuous wherever it is  defined.  However,  what we are 
really interested in is a topology on the subsystems G and 
C and not just a topology on the set of matrices R = 
diag { C, G }  . 

We  begin  by  observing that we can  define the topology 
of Definition 4.1 on a set eflxm even  if n # m. Let  us label 
this topology  as 5; then it is  clear  what we mean  by the 
topological  spaces ( P X m ,  5 ) and ( emXn, 5 ). 

Next  let us define 

= ( R  = [ c o  1, CE emXn, G E  en.-). (4.12) 
O G  

Lemma 4.3: 9. is a subset of e p X p .  

Proof: Let ( NG2 D,), (N,, D,) be rcf's  of G and C, 
and let (D,, N,), (D,, N;.) be lcfs of G and C. Then 

(4.13) 

are  an rcf and  an lcf  of R. Hence, '3 C epxp. 0 
The set '3 can  be identified with the Cartesian product 

X enxm in an obvious way and  can be  given the 
product topology. In this product topology a neighborhood 
of R E  $8, is given  by 

2 m X n  

(4.14) 

where %(C) and %(G) are neighborhoods of C and G in 
( e rnXn ,T)  and (enXm,5),  respectively. In view of the 
proof of Lemma  4.3, the next  result  is  obvious. 

Lemma 4.4: The  product topology on 3 is the same as 
its relative  topology obtained by  viewing 3 as a subset of 

We are now in a position to combine Lemmas  4.2 and 
e P x P *  

4.4, and state the main  result of this  section. 

Theorem 4.1: Consider the system of Fig. 1, where CE 

Under these conditions 
1) if  we equip emXn and enXm with the topology of 

Definition 4.1, then the map (C, G) --, H [cf (4.1)]  is con- 
tinuous wherever it is defined, and 

2) the topology of Definition 4.1 on the product space is 
the weakest  topology  such that the map (C, G )  + H is 
continuous wherever it is defined. 

Theorem 4.1  implies that if  we  wish to design a stabiliz- 
ing compensator for a plant G, we must  know approxi- 
mately an rcf  of G. Suppose we are given a nominal plant 
description G, based on which  we  design a nominal wm- 
pensator c. Then the actual system will continue to be 
stable as long as the actual G and C are sufficiently  closed 
to G and c in the sense of the topology of Definition 4.1, 
and moreover,  the actual closed-loop transfer matrix H will 
be close to its nominal value. 

e m X n ,  G~ e n X m .  

C. Properties of the  Topology 

In this subsection we explore  some of the properties of 
the topology  defined in Section IV-B. In particular, we 
show that one can  use  either rcfs  or  lcfs in defining the 
topology, and  that multiplication and division are not 
necessarily continuous in this  topology. 

In Definition 4.117 a neighborhood of ME enxm is de- 
fined to be the set of all ratios N ,   D l  ', where N , ,  D,  are  in 
some neighborhoods of N and D,  and ( N ,  D )  is an  rcf  of 
M. The choice of an rcf in Definition 4.1 (rather than  an 
lcf)  may appear to be arbitrary. We can define an alternate 
topology on eflxm as follows:  given M € e n x m ,  a left 
neighborhood of M is the set of all ratios B;'Nl, where 
Nl, 0, belong to neighborhoods of N, D, and (D, N )  is an 
lcf  of M .  The left topology on enXm consists of the collec- 
tion of arbitrary unions of finite intersections of left 
neighborhoods. The objective  now  is to show that the left 
topology on enXm coincides  with that of Definition 4.1. In 
order to do this, we require the concept of a doubly 
coprime factorization, introduced in  [7],  [22]. 

Lemma 4.5 [7], [22]: Suppose M E  enXm: and let 
( N ,  D), (d, 15) be any rcf and lcf  of M. Then there exist 
P € X m x n ,  Q E X m x m ,  PPE'3CmXn, and QE X n X "  such 
that 

PN+QD=Im (4.15a) 

NP + DQ = I,, (4.15b) 

PQ = QP. (4.1%) 

Proof: Given the pair ( N ,   D )  and (6, N), find 
P,  Q ,  PI, Q ,  such that 

PN+QD=Im (4.16a) 

NP' + DQ, =I,. (4.16b) 

Now  define 

extension to the case n # m is obvious. 
'7Actually, Definition 4.1 is stated for the case n = m = p .  but the 
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and observe that 

E = [  -N D '1 given any rcf ( N ,  D) of N ,  there exist rcf s (q., 0,) of Mi 

However, a further simplification  is  possible if  we make 
use of the  uniqueness of rcf's to within a unimodular 

(4-17) such that N, .+ N in 0, + D in x""". 

factor. 

ME if and only if either of the following  equivalent 
statements is true. 

Since  det U = 1 from  (4.18), and since E is a left  divisor of 1) There exists  an  rcf ( N ,  D) of M and right fractional 
the unimodular matrix U, it  follows that E is  itself  unimod- representations (q. D l )  of M, such that N, -+ N in 3c""" 
ular. Let and 0, -+ 5 in X m x m .  

2) There exists an lcf (8, N) of M and left fractional [ -;] = E - ' [  e ] .  (4.19) representations ( 4 ,  R )  of Mi such that 8 + in X n X m  

2U. (4.18) Lemma 4.7: A sequence {Mi} in e"""' converges to 

- -  
- -  

and D i  + fi in 'Jc""". 

Then it  follows  from  (4.18) and (4.19) that 

(4.20) 

which  implies  (4.15). 
The next  result  shows that the topology of Definition 4.1 

(whch may be called the right ropology) and the left 
topology on 2p.p coincide.  Strictly speahng it  only  proves 
that the  right  topology on C p x p  is  stronger than the  left 
topology on C p x p .  However, the converse  is  proved in  an 
entirely  analogous  fashion. 

Lemma 4.6: Suppose ME c p x p ,  and let ( N ,  D). (D, N )  
be any rcf and lcf of M .  Under these conditions there  exist 
neighborhoods '%(N) ,  3(D) in X p X p  such that, whenever 
NL€ % ( N )  and D I E  %(D), MI = N,D;'  has an lcf 
(D,(N1. Dl). # , ( N , ,  Dl)) such that dl and Is-, are continu- 
ous functions of ( N , .  D,), and such that d,(N. D) = D, 
SI( N ,  D )  = 15. 

Proof: Given ( N ,  D), (d, s)? select P, Q, P, Q to 
satisfy  (4.15).  Now  consider the matrix 

Note that det C , ( N ,  D ) E  8 .  Since '$ is an open set and 
since the determinant of a matrix is a continuous function 
of its elements,  there  exist  neighborhoods '%(Ar)$ :%( D) 
such that det C,(N,.  D l ) €  whenever N,E :3(N),  D l  E 
% ( D ) .  Let E ( N l ,  Dl)  = [ C , ( N , .  Dl)]-'. and partition this 
inverse  as 

where  all  elements are continuous functions of ( N , .  D l ) .  
Then dl, N, are the required  functions. 0 

Now that the topology on 2'zxm has  been  defined, we 
examine what convergence  in  this  topology  means.  Recall 
that a sequence {M,}  in C n X m  converges to M E Z f l x m  if 
and only if euev neighborhood of M contains all but a 
finite number of terms  in  the  sequence { M , ) .  Thus, apply- 
ing Definition 4.1  we see that a sequence {M,}  in c 
converges to ME C2"""' if and only if the following  is true: 

I f l X r n  

Proof: We only  prove that convergence in e"""' is 
equivalent to 1); the equivalence of  1) and 2)  follows from 
Lemma  4.6. 

We  begin  by  establishing that if g +  N ,  Di - 5 and 
( N ,  0 )  is  right-coprime,  then ( N . ,  D ) is  also  right-coprime 
for sufficiently  large i so that N,., 0,) is actually an rcf  of M, 
for  sufficiently  large i. Select P E  xmXn, QE ' ~ " " "  such 
that 

_ -  
_ -  - -  

- 1- 1 

PN+ QE= I ~ ~ .  (4.23) 

Then 

PN,+QQ=I,+P(N,-N)+Q(Q-E)=F,,  say. 

Since addition and multiplication on X are continuous and 
since 5 is an open subset of 3": we see that det F; E $, for 
sufficiently  large i; i.e., that X""" for  sufficiently 
large i. Hence 

F;- 'Pg + F,-'Qg = I ,  for sufficiently  large i 
(4.25) 

so that (q., 0,) is right-coprime for sufficiently  large i. 
Since a finite number of terms  from a sequence can  be 
discarded  without  effecting its limit, we can assume without 
loss of generality that ( q , D , )  is an rcf of M,. 

It is  clear that if {M,}  converges  to M in enXm, then 1) is 
true. To prove the reverse  implication,  let ( N 1  D) be any rcf 
of M .  Then  there  exists a PE $m such that N = FP, D = DP; 
also (RP, 0, P) is an rcf  of M,. Since  multiplication on 
L3i"x" IS . continuous, F P  + FF' = N ,  D,P --f DP = D as 
i - 30. Thus { M, } converges to M .  0 

We  conclude  this  section by studying some properties of 
the map ( N ,  D) + ND- '. To keep  the  exposition  simple  we 
restrict  ourselves to the scalar  case, but the extensions to 
the matrix  case are readily apparent. Thus, let $denote  the 
quotient field of 'X, and let e denote the subset of 5 
consisting of those  elements that have  coprime  factoriza- 
tions. 

Definition 4.2: We define T: -Xx(3i\O) + % by r ( n ,  d )  
= n / d .  

Lemma 4.8: Suppose u?l is an open  subset of 'Xx(X\O), 
and that ~ ( 3 )  C C. Then n(Q) is open  in e. 

- -  

- -  
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Proof: Since the subbase for the topology on C? con- 
sists of images under ?r of open sets in X x (  XscO), result 
follows  immediately. 0 

Proof: We show  this  by  example.  Let X = @ ?  the 
Banach algebra of Example 2.2, and let $ denote the 
quotient field of X. Let C? denote the subset of $consisting 
of elements that have a coprime factorization in ‘X. For the 
sake of convenience we represent elements of ‘X by their 
Laplace transforms. Now suppose 

Lemma 4.9: In general, ?r is not a continuous map. 

S-l+E 
A,(s) = ~ s + l  9 J , ( s ) = s + l .  

s-1 (4.26) 

Then 

4 ? r (A , ,  a,) =&(s) = ___ 
S-l+E 

s - 1  
(4.27) 

?r( A,, 2,) +gO(s) = 1. (4.28) 

As  can  be  easily  verified, &E e for all E. Now,  as E -+ 0, 
A, + A, and h, + h, in the topology of X. However,  we 
claim that g, does not converge to 2, in the topology  on e. 
To see this, observe that (1,l) is an rcf  of go, and define the 
ball B(1,l) as the ball of elements  whose distance from the 
unit element of &X is less than one; note  that every  element 
of B(1,l) is invertible, i.e., B(1,l) 5 .  Now we claim that 
whenever E # 0, 2, does not have a coprime factorization 
(A,,  hs) with A,€ B(1, l), a,€ B(l,  l), h,€ B(1,l); if it did, 
then d,E $implies that S,  = A , - a ; ’ €  X, and clearly 2, X 
whenever E # 0. 0 

Since the mapping ?r is not, in general, continuous, it 
follows that addition and multiplication on the set e are 
not, in general, continuous; i.e., (2 cannot, in general, be 
imbedded in a topological  ring.  However,  this observation 
should not be too surprising. Every  engineer  knows that a 
plant with an imperfect  pole-zero  cancellation  (such as 8,) 
may not be  stabilized by a controller that stabilizes a plant 
with a perfect  pole-zero  cancellation  (such as go). Thus, 
there is  no  reason to expect 2, to converge to go. On the 
other hand, note that whenever 6 # 0, the family 

converges to 

(4.29) 

(4.30) 

as E + 0, in the chosen  topology  on e. This, too,  is reason- 
able because both & and & have  imperfect  pole-zero 
cancellations, which  would  be  stabilized in the same 
manner. 

V. CONCLUSIONS 

In t h s  paper we have  given fairly complete results 
concerning various  algebraic and topological aspects of 
feedback stabilization. These results extend in a significant 
way the previously  known results on this  subject and 

appear to present some  promising  avenues for future re- 
search. In particular, it  is of interest to determine various 
classes of plants for whch stabilizing compensators  can  be 
shown to exist. One can  also  investigate  feedback stabiliza- 
tion in the case  where the outputs to be  regulated are not 
necessarily the outputs available to be  fed  back. This is 
done for the rational case in [23], [24]. Another  open 
problem is to show that both G and F must  have both rcfs 
and lcf‘s in order for the feedback  system (4.1) to  be stable. 

An important special  case of the results  given here arises 
when X is the set of proper stable rational functions. This 
case  is studied in detail [25]. 

One of the useful applications of a topology for unstable 
plants is to the robust servo problem. Ths is studied in 

Much of the contents of Sections I11 and IV  can  be 
extended to encompass nonlinear systems, in which  case X 
is not a ring, but is left-distributive algebra. This is done in 

In this paper we represent linear systems  by their 
input-output map  without  worrying about the internal 
( eg ,  state variable) representation. Such representations 
might not exist for the general  class of systems studied 
here. 

VI. 

[261. 

REFERENCES 

N. Jacobson, Lectures in Abstract  Algebra. vol. 1. New  York:  Van 
Nostrand, 1953. 
M. Vidyasagar,  “Input-output  stability of a  broad  class of linear 

vol. 10. pp. 203-209, Feb. 1972. 
time-invariant  multivariable  feedback systems.” SIAM J .  Contr., 

variable  distributed  feedback  systems,” SIAM J .  Contr., vol.  13, pp. 
M. Vidyasagar,  “Coprime  factorizations and the stability of multi- 

M. Vidyasagar, “On the use of right-coprime  factorizations  in 
distributed  feedback  systems  containing  unstable  subsystems,” IEEE 

N.  T.  Hung  and- B. D. 0. Anderson,  “Triangularization  technique 
Trans.  Circuits Swt., vol.  CAS-25, pp. 916-921, Nov. 1978. 

for the design of multivariable  control  systems,” IEEE Trans. 
Automat.  Contr.. vol.  AC-24. pp. 455-460. June 1979. 
F. M. Callier  and C. A. Desoer, “An algebra of transfer  functions of 
distributed  linear  time-invariant  systems.” IEEE Trans.  Circuits 
Syst., vol. CAS-25,  pp. 651-662. Sept. 1978. 
F. M. Callier  and  C. A. Desoer.  “Stabilization  tracking and dis- 
turbance  rejection  in  multivariable  convolution  systems.” Univ. 
California,  Electron.  Res.  Lab.  Rep.  UCB/ERL  M78/83, Der. 
1978. 

system design: The  fractional approach to  analysis  and synthesis,” 
C. A. Desoer, R.-W. Liu, J. Murray. and R. Saeks, “Feedback 

IEEE Trans.  Automat. Contr.. vol. AC-25,  pp. 399-412, June 1980. 
D. C. Youla. H. A. Jabr,  and J. J. Bongiorno, Jr., “Modern 
Wiener-Hopf  design of optimal  controllers,  Part 11: The multivari- 
able case.” IEEE Trans.  Automat.  Contr.. vol. AC-21,  pp. 319-338. 
June 1976. 
G.  Bengtsson, “Output regulation  and  internal  models: A frequency 
domain  approach,” Autonzatica, vol. 13, pp. 333-345,  1977. 

linear  multivariable  systems,” IEEE Trans. Automat.  Contr., vol. 
L. Pernebo, “An algebraic  theory  for  the  design of controllers  for 

AC-26. pp. 171-194, Feb. 1981. 
C.  C.  MacDuffee, ??zeoy of Matrices. New York: Chelsea. 1956. 

1144-1  155, NOV. 1975. 

D. 35. 
[ 131 ‘c. A.  Desoer  and M. Vidyasagar, Feedback System: Input-Output 

Properties. New  York:  Academic, 1975. 
[14] E. Hille and  R. S. Phillips, Functional Analysis  and  Semigroups. 

Providence, RI: h e r .  Math. Sot;: 1957. 
[I51 M. Vidyasagar and N. K. Bose, Input-output  stability of linear 

systems  defined  over  measure  spaces,” in Proc.  Midwest Spmp. Circ. 

[16] W. Rudin. Real and  Complex  Ana!ysis! 2nd  ed. New York: ,Mc- 
Svst., Montreal, P.Q.. Canada,  Aug. 1975, pp. 394-397. 

Graw-Hill. 1974. 
[17] F. M. Callier and C. A. Desoer. “Open-loo!, unstable  convolution 

feedback  systems  with  dynamical  feedback, Automaticu, vol. 13, 
pp. 507-518, Dec. 1976. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 9, 2009 at 12:57 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL., VOL. AC-27, NO. 4, AUGUST 1982 

B. A. Francis, “The multivariable servomechanism problem from 

AC-22. pp. 322-328, June 1977. 
the input-output viewpoint,” IEEE Trans.  Automat.  Contr., vol. 

G. C. Newton,  L. A Gould,  and J. F. Kaiser, Anabtic Design of 
Lnear Feedback Controls. New York: Wiley, 1957. 
G. Zames, “Feedback  and  optimal sensitivity: Model reference 
transformations, weighted seminorms, and approximate universes,” 
IEEE Trans.  Automat.  Contr., vol. AC-26, pp. 301-320, Apr. 1981. 
J. L. Kelley, General Topology. New York: Van Nostrand, 1955. p. 
94. 
R. Saeks and J. W. Murray,  “Feedbtck system design: The tracking 
and  disturbance rejection problems, IEEE Trans.  Automat.  Contr.. 
vol.  AC-26. pp. 203-218. Feb. 1981. 
L. Cheng and J. B. Pearson. “Frequency  domain synthesis of 
multivariable linear reeulators.” IEEE Trans. Auronlat. Contr.. vol. 
AC-23. pp. 3-15.  Feb.”1978. ’ 

L.  Cheng,,and J. B. Pearson, ”Synthesis of linear-multivariable 
regulators. IEEE Trans.  Automat.  Contr., vol. AC-26, pp. 194-202. 
FGb. 1981. 
B. A. Francis  and M. Vidyasagar, “Algebraic and ,?pological 
aspects of the servo problem for lumped linear systems. Dep. Eng. 
Appl. Sci.. Yale Univ., New Haven. C T ,  S & IS Rep. 8003.  1980. 
M. Vidyasagar. “A topology for unstable nonlinear systems and 
robustness of feedback stability.” in  preparation. 
0. Zariski and P. Samuel, Commutatice Algebra. vol. I. New 
York: Van Nostrand, 1953. 
M. Vidyasagar, H. Schneider, and B. A. Francis. “Algebraic and 
topological aspects of feedback stabilization.” Dep. Elec. Eng.. 
Univ. Waterloo. Waterloo, Ont.. Canada. Rep. 8009.  1980. 
K. Hoffman, Banach  Spaces of Ana!wc Functions. Englewood 
Cliffs, NJ: Prentice-Hall, 1962. 
M. F. Atiyah and I. G.  MacDonald, Introduction to Commutatice 
Algebra. Reading. MA: Addison-Wesley. 1969. 

.. 

Mathukumalli Vidyasagar (S’69-M69-M77- 
Si“78) was born  in  Guntur,  Andhra Pradesh. 
India, on September 29.  1947. He received the 
B.S.. MS., and Ph.D. degrees. all in electrical 
engineering, from the University of Wisconsin. 
Madison. in 1965,  1967, and 1969, respectively. 

After completing the Ph.D. degree, he taught 
for one year at  Marquette Universit?;. hlilwau- 
kee. WI. During the period 1970-  1980 he was 
with Concordia University. Montreal. P.Q.. 
Canada. Since 1980 he has been with the Depart- 

ment of Electrical Engineering at the University of Waterloo. Waterloo. 
Ont.,  Canada.  During the academic year 1972-1973 he was a Visiting 
Assistant Professor with the Department of System Science, University of 
California. Los Angeles. and  during the Summer of 1973  he was a Visiting 
Assistant Research Engineer with the Electronics Research Laboratoq-. 
University of California. Berkeley. He  has  authored several technical 
papers. and is coauthor of Feedback SJstewts: Input-Ourpur Properties 
(Academic. 1975). the author of :\‘onlinear Swentr .4?10!lsiS (Prentice-Hall. 
1978) and Input- Ourput Analvsis o/ Lorge-Scale Interconnected  S\.stents 
(Springer-Verlag, 1981). and a  coauthor of Xonlrnear Svstem: Stahrlr{v 
Analvsls (Dowden.  Hutchnson and Ross. 1977). His current research 
interests  are algebraic system theory. stability theory. and multidimen- 
sional systems. 

Dr. Vidyasagar was awarded the E.W.R. Steacie Memorial Fellowship 
by the Natural Sciences and Engineering Research Council of Canada for 
the period 1981-1983. He was an Associate Editor of IEEE  TRANSAC- 

TIONS ON AUTOMATIC CONTROL, and is a member of the Technical 
Committee on Nonlinear Circuits and Systems of the IEEE Circuits  and 
Systems Society. 

Hans Schneider was born in Vienna. Austria,  on 
January 24.  1927. He received the M.A. and 
Ph.D. degrees from  the University of Edinburgh, 
Edinburgh,  Scotland, in 1948 and 1952. respec- 
tively. 

From 1952 to 1959 he was a Lecturer at the 
Queen’s University of Belfast. Belfast, Ireland 
and since 1959 he has held a position at the 
University of Wisconsin, Madison. WI. where he 
was Department of Mathematics Chairman  from 
1966 to 1968. He has also been a Visiting Profes- 

sor at Washington State University, Pullman, the University of California, 
Santa Barbara. the University of Toronto, Toronto. Ont.,  Canada,  the 
Technical University of Munich, Munich, Germany-. Centre  de Re- 
cherches Mathematiques, Montreal, P.Q., Canada, and the University of 
W’iirzburg. Wurrburg. Germany.  He is the author of over 60 research 
papers and tWo undergraduate textbooks. Many of his publications  are 
joint. His main field of specialization is matrix theory in  its various forms. 
He  has made contributions to the theory of nonnegative matrices 
(Perron-Frobenius theory) and to generalization to operators leaving a 
cone  invariant.  He  has worked on  M-matrices,norms.and numerical ranges 
of matrices, and  on  inertia  (Lyapunov) theory. Recently. he  has  studied 
scaling problems of matrices and associated graph theoretic problems. He 
has also made some contributions to semigroups and universal algebras. 
Eleven students have obtained Ph.Ds under his direction. 

Dr. Schneider is Editor-in-Chief of Linear  Algebra and its Applications, 
Advisory Editor of Letters in  Linear Algebra, and  an  Editor of Lmear  and 
Multilinear Algebra and the SIAM Journal of Algebraic and Discrete 
Methods. 

Bruce A. Francis (S’73-M75) was born in 
Toronto.  Ont..  Canada.  on  October 8. 1947. He 
received the B.A.Sc. and  M.Eng. degrees in 
mechanical engineering and the Ph.D. degree in 
electrical engineering from the University of 
Toronto  in 1969.  1970. and 1975. respectively. 

He was awarded a  National Research Council 
of Canada  Postdoctoral Fellowship during 1975- 

- 1977.  which he held at the University of Cali- 
? fornia, Berkeley. and  at the University of Cam- 

bridgee. Cambridge. England.  During 1977-1979 
he was with the Department of Electrical Engineering, McGill University, 
Montreal. P.Q.. Canada  and  during 1979-1981 he was Rith the Depart- 
ment of Enpeering and Applied Science. Yale University, New Haven, 
CT. Currently. he is an Associate Professor in the Department of Electri- 
cal Engineering at the University of Waterloo. Waterloo, Ont.. Canada. 
He has also held a \<siting research position at  Concordia University. 
Montreal. 

Dr.  Francis was an Associate Editor  for the IEEE TRANSACTIONS ON 
AUTOMATIC CONTROL during 1979-1980. He is a member of A M s  and 
SIAM. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on November 9, 2009 at 12:57 from IEEE Xplore.  Restrictions apply. 


