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Abstract-Graphs are everywhere, ranging from social networks 

and mobile call networks to biological net-works and the World 

Wide Web. Mining big graphs leads too many interesting 

applications including cyber security, fraud detection, Web 

search, recommendation, and many more. In this paper we 

describe a technique for the conversion of real-time environment 

to a Graph Mining pattern. We analyze very large, real world 

graphs with billions of nodes and edges. Our findings include 

digraph structures in the connected component size distribution. 

In the future we will extend our research to propose a 

GraphTemplateConverter for any real-time complex entities.  
 

Keywords- Graph mining, Graph pattern, Graph template, 

Graph network. 

I. INTRODUCTION 

A graph is set of nodes, pairs of which might be connected 

by edges. In a wide array of disciplines, data can be 

intuitively cast into this format[1]. For example, computer 

network consist of routers/computers (nodes) and the links 
(edges) between them. Social networks consist of 

individuals and their interconnections (which could be 

business relationships or kinship or trust, etc)[2]. Protein 

interaction networks link proteins which must work together 

to perform some particular biological function. Graphs are 

seemingly ubiquitous. The problems of detecting 

abnormalities (outliers) in a given graph and of generating 

synthetic but realistic graphs have received considerable 

attention recently.[3]  

 

Table I: Graph notations 
Table of 
Symbols 

Symbol Description 

N  Number of nodes in the graph 

E  Number of edges in the graph 

K  Degree for some node 

< k >  Average degree of nodes in the graph 

CC  Clustering coefficient of the graph 

CC(k)  Clustering coefficient of degree-k nodes 

Identifying tightly coupled pattern to the problem of finding 

the distinguishing characteristics of real-world graphs, that 

is, the patterns that show up frequently in such graphs and 

can thus be considered as marks of realism. A good 

generator will create graphs which match these patterns. 

Patterns and generators are important for many 
applications.[4] 
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– Detection of abnormal sub graphs/edges/nodes. 

Abnormalities should deviate from the normal patterns 
so understanding the patterns of naturally occurring 

graphs is a prerequisite for detection of such outliers.[6] 

– Simulation studies. Algorithms meant for large real-

world graphs can be tested on synthetic graphs which 

look like the original graphs.[5] 

– Realism of samples. We might want to build a small 

sample graph that is similar to a given large graph. This 

smaller graph needs to match the patterns of the large 

graph to be realistic. 

– Graph compression. Graph patterns represent 

regularities in the data. Which can be used to better 

compress the data. 

II. PROPOSED METHODOLOGY 

 
Fig-1: Proposed methodology for Graph conversion 

 

As a mathematical construct, a graph consists of two types 

of elements: nodes and edges. In translating a problem to a 
graph-based representation, the first step is to decide how 

problem elements will translate to these distinct graph 

elements. As a general guideline, nodes are used to represent 

entities in a problem – genes, people, cities, businesses – 

and edges are used to represent relationships between the 

entities – 'regulates', 'knows', 'exports to', 'sells to'. If these 

relationships are directional (e.g., the fact that A sells to B 

doesn't imply that B sells to A), then the result will be a 

DIRECTED GRAPH; if not, then an UNDIRECTED GRAPH will 

result. This distinction is important, as some graph-theoretic 

measurements will treat directed and undirected graphs 
differently. Unless specifically stated, undirected edges are 

the assumed norm. 

In determining the mapping from problem elements to graph 

elements, it is sometimes necessary to have multiple types 

of nodes or edges. While many problems can be adequately 

represented Without multiple node or edge types, some 

disciplines, such as social network analysis, make 

significant use of 2-mode graphs (i.e., graphs having two 

different node types).  
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III. III. IMPLEMENTATION RESULT 

One example of a 2-mode graph is Teachers and their Class 

students, in which both teachers and Students are 
represented as nodes, and a connection between a Teacher 

and a student means that the teacher is a responsible person 

of the class. Having multiple node or edge types may 

complicate analysis, as the techniques and metrics are better 

developed for single-mode graphs. One solution to this 

problem is to adapt single-mode for a system by using 

domain-specific knowledge to, for example, generate and 

analyse appropriate single-mode sub graphs of the system. 

An alternative approach is to reduce the system to a single-

mode graph by transforming one of the node types into a 

relationship (e.g., transforming the Teachers and class 
network by removing classes and transforming all of the 

edges between teachers and class to edges between 

teachers). Generally, even in situations where multiple types 

of nodes or edges would provide a more accurate 

representation, a simple single-mode graph representation 

will still provide useful insights. 

 
Fig 2: Two mode graph structure 

 

In situations where the graph must represent richer 
information than simple nodes and edges will allow, it is 

possible to have nodes and edges with attached properties.  

 
Fig-3:  Single Mode Graph structure 

Some common examples of properties that may be attached 

to nodes are the location information of a node in a 
transportation network or the activation value of a gene in a 

genetic regulatory network; a link's properties may include a 

weight, representing the degree of influence a gene exhibits 

upon the activation of another, or the strength of a 

relationship in a social network. Some network types, such 

as transportation networks, have sophisticated techniques for 

dealing with certain attached properties, such as distance 

between nodes and flow through edges. In general, however, 

attached properties will require domain-specific tuning of 

generic metrics and techniques if such properties are to be 

taken into account. 

IV. DISCUSSION AND RESULTS: 

The implementation of a graph-based representation 

depends on the properties or features of the problem that are 
being investigated. When viewing at the natural occurrence 

of real time problem in a genetic regulatory network, 

investigating node-edge relations and comparing these 

distributions with those of a grounded structure may be 

useful; if the targets of inquiry are organisational groups in a 

social network, usage of clique would be efficient. Identify 

the different structural properties that may be of interest in a 

particular problem, it is subsequently necessary to find a 

suitable metric with which to investigate these features. 

There is a list of structural characteristics of a graph, along 

with some suggestions for which metrics to use, in Table 2 

 

Table II: Graph complexity with appropriate metrics 
 

Given that there are a set of expected local and/or global 
structural characteristics to be investigated, selecting 

appropriate metrics involves identifying those that are likely 

to provide information about the interesting structures. As 

most structural characteristics can be measured in many 

different ways, deciding on appropriate metrics may require 

a combination of domain-specific knowledge and trial and 

error. A more complete list of metrics is given in Table 3. 

  

Table III: Graph structures and metrics 

 

 

Complexity Metrics 

Node –Edge Bond 
relationship 

clique, n-clique, k-plex, k-core 

Internal and External Impact 

with other components. 

degree, in-degree, out-degree 

Time duration for 
relationship 

shortest-path length 

Kernel node or Edge bridges, pivots 

Minimal covering of group 
nodes 

K-Colouring 

Graph terminologies Relation 

degree, in-degree, out-degree importance of a node based on 

how connected it is 

degree distribution set of related properties, such 
as average shortest path length, 
probability of creating 
disconnected components 
through node/edge removal 

shortest path length distance between two nodes, 

degree of influence of nodes on 
each other 

clique, n-clique, n-clan, k-
plex, k-core 

identification of highly 
interconnected sub graphs 

Hub identification of highly 
connected nodes 

pivots, cut-points identification of nodes crucial 
to keeping the graph connected 

Bridges identification of edges crucial 
to keeping the graph connected 

node-connectivity, line-
connectivity 

how much damage the graph 
can take before becoming 

disconnected 

Centralization how much the graph centres on 
a single node or group of nodes 

between’s centrality, 
closeness centrality 

importance of a node based on 
its relationship to other nodes 
in the network 
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Some real-time structure conversion to graph domain are 

illustrated in Figure-5.Applying the proposed technique will 

yield graph patterns for a well defined problem includes 

several conversion strategies. 

 
 

Fig-4: Chemical compound and social network Graph 

structure sample. 

V. CONCLUSION 

In this paper we describe the methodology for converting a  

well defined problem to a Graph pattern, These are only 

some of the models with modular nature to convert it 

directly; there are many other models which add new ideas 

or combine existing models in novel ways. We have looked 

at many of these and discussed their strengths and 

weaknesses. In future, we will develop the Graph Template 

Converter model which can match most of the graph 

patterns for several real-world graphs. More patterns need 
to be found, though there is probably a point of diminishing 

returns where extra patterns do not add much information. 

We do not think that point has yet been reached. Also, 

typical generators try to match only one or two patterns; 

more emphasis needs to be placed on matching the entire 

patterns. This cycle between finding more patterns and 

better generators which match these new patterns should 

eventually help us gain a deep insight into the formation and 

properties of real-world graphs. 
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