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Abstract

Extending the belongs to (∈) relation and quasi-coincidence with(q) relation between fuzzy points and a fuzzy subsets,

the concept of (α, β)-fuzzy filters and (α, β)-fuzzy filters of lattice implication algebras are introduced, where α, β ∈ {∈h

, qδ, ∈h ∨qδ, ∈h ∧qδ}, α, β ∈ {∈h, qδ, ∈h ∨ qδ, ∈h ∧ qδ} but α �∈h ∧qδ, α � ∈h ∧ qδ, respectively, and some related properties

are investigated. Some equivalent characterizations of these generalized fuzzy filters are derived. Finally, the relations

among these generalized fuzzy filters are discussed. Special attention to (∈h, ∈h ∨qδ)-fuzzy filter and (∈h, ∈h ∨ qδ)-fuzzy

filter are generalizations of (∈, ∈ ∨q)-fuzzy filter and (∈, ∈ ∨ q)-fuzzy filter, respectively.
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1. Introduction

Intelligent information processing is one important research direction in artificial intelligence. Information processing

dealing with certain information is based on the classical logic. However, non-classical logics including logics behind

fuzzy reasoning handle information with various facets of uncertainty such as fuzziness, randomness, etc. Therefore, non-

classical logic have become as a formal and useful tool for computer science to deal with uncertain information. Many-

valued logic, a great extension and development of classical logic, has always been a crucial direction in non-classical

logic. In the field of many-valued logic, lattice-valued logic plays an important role for the following two aspects: One

is that it extends the chain-type truth-valued field of some well known present logic to some relatively general lattice.

The other is that the incompletely comparable property of truth value characterized by general lattice can more efficiently

reflect the uncertainty of human being’s thinking, judging and decision. Hence, lattice-valued logic is becoming an active

research field which strongly influences the development of algebraic logic, computer science and artificial intelligent

technology. In order to provide a reliable logical foundation for uncertain information processing theory, especially for

the fuzziness, the incomparability in uncertain information in the reasoning, and, establish a logical system with truth

value in a relatively general lattice. Combining algebraic lattice and implication algebra, Xu (Xu, 1993)proposed the

concept of lattice implication algebras(LIA for short) and discussed some of it’s properties. Since then this logical algebra

has been extensively investigated by several researchers(Y.Xu,1993, etc). Recently, Jun et al(Y.B.Jun,2007) introduced

the concept of (∈, ∈ ∨q)-fuzzy implicative filter of a lattice implication algebra. Zhan et al(J.M.Zhan,2009) further to

investigated this kind of fuzzy implicative filters.

The concept of fuzzy set was introduced by Zadeh(Zadeh, 1965). Rosenfeld inspired the fuzzification of algebraic struc-

ture and introduced the notion of fuzzy subgroup (Rosenfeld, 1971). The idea of fuzzy point and ‘ belongingness ′ and

‘quasi-coincidence ′ with a fuzzy set were given by Pu and Liu(P.M,Pu, 1980). A new type of fuzzy subgroup (viz

(∈, ∈ ∨q)-fuzzy subgroup) was introduced(S.K.Bhakat,1996). In fact, (∈, ∈ ∨q)-fuzzy subgroup is an important and useful

generalization of Rosenfeld’s fuzzy subgroup. The idea of fuzzy point and ‘ belongingness ′ and ‘ quasi-coincidence ′
with a fuzzy set have been applied some important algebraic system(S.K.Bhakat,1999, etc).

This paper, as a continuation of (Y.B.Jun,2007, J.M.Zhan,2009), we extend the concept of quasi-coincidence and further

to investigate the (∈, ∈ ∨q)-fuzzy filters, proposing the concept of (∈h, ∈h ∨qδ)-fuzzy filter and (∈h, ∈h∨qδ)-fuzzy filter. We

investigate relations between (∈h ∨qδ, ∈h ∨qδ) ((∈h, ∈h ∨ qδ))-fuzzy filters (∈h, ∈h ∨qδ) ((∈h, ∈h ∨ qδ))-fuzzy filters, filters

of L . We establish characterizations of (∈h, ∈h ∨qδ) ((∈h, ∈h ∨ qδ))-fuzzy filters and give some equivalent conditions of

(∈h, ∈h ∨qδ) ((∈h, ∈h∨qδ))-fuzzy filters. Of course, we can discuss (α, β)-fuzzy (implicative, ultra-, associative) filter in the

same way. It will be of great use to provide theoretical foundation to design intelligent information processing systems.

In this paper, denote L as a lattice implication algebra(L,∨,∧,′ ,→,O, I).
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2. Preliminaries

Let (L,∨,∧,O, I) be a bounded lattice with an order-reversing involution ′, the greatest element I and the smallest element

O, and →: L × L −→ L be a mapping. L = (L,∨,∧,′ ,→,O, I) is called a lattice implication algebra if the following

conditions hold for any x, y, z ∈ L:

(I1) x → (y → z) = y → (x → z).

(I2) x → x = I.

(I3) x → y = y
′ → x

′
.

(I4) x → y = y → x = I implies x = y.

(I5) (x → y) → y = (y → x) → x.

(l1) (x ∨ y) → z = (x → z) ∧ (y → z).

(l2) (x ∧ y) → z = (x → z) ∨ (y → z).

In this paper, denote L as lattice implication algebra (L,∨,∧,′ ,→,O, I).

We list some basic properties of lattice implication algebras. It is useful to develop these topics in other sections.

Let L be a lattice implication algebra. Then for any x, y, z ∈ L, the following conclusions hold:

(1) if I → x = I, then x = I.

(2) I → x = x and x → O = x′.

(3) O → x = I and x → I = I.

(4) (x → y) → ((y → z) → (x → z)) = I.

(5) (x → y) ∨ (y → x) = I.

(6) if x ≤ y, then x → z ≥ y → z and z → x ≤ z → y.

(7) x ≤ y if and only if x → y = I.

(8) (z → x) → (z → y) = (x ∧ z) → y = (x → z) → (x → y).

(9) x → (y → z) = (x ∨ y) → z if and only if x → (y → z) = x → z = y → z.

(10) z ≤ y → x if and only if y ≤ z → x.

A non-empty subset F of a lattice implication algebra L is called a filter of L if it satisfies

(F1) I ∈ F.

(F2) (∀x ∈ F)(∀y ∈ L)(x → y ∈ F ⇒ y ∈ F).

A fuzzy subset of a nonempty set X is defined as a mapping from X to [0, 1], where [0, 1] is the usual interval of real

numbers.

A fuzzy subset A of L is said to be a fuzzy filter if

(F3)(∀x ∈ L)(A(I) ≥ A(x)).

(F4)(∀x, y ∈ L)(A(y) ≥ min{A(x), A(x → y)}).
A level set of a fuzzy set A in L is the set

U(A;α) := {x ∈ L|A(x) ≥ α}, α ∈ [0, 1].

A fuzzy set A of a lattice implication algebra L of the form

A(y) =

⎧⎪⎪⎨⎪⎪⎩t ∈ (0, 1] if y = x,
0 otherwise .

is said to be a fuzzy point with support x and value t and is denoted by xt. A fuzzy point xt is said to belong to (resp. be

quasi-coincident with) a fuzzy set A, written as xt ∈ A (resp. xtqA) if A(x) ≥ t (resp. A(x) + t > 1). If xt ∈ A or (resp.

and) xtqA, then we write xt ∈ ∨qA. The symbol ∈ ∨q means ∈ ∨q doesn’t hold. Using the notion of ‘ belongingness (∈)′
and ‘quasi-coincidence (q)′ of fuzzy point with fuzzy subsets, the concept of (α, β)-fuzzy sub semigroup, where α and β
are any one of {∈, ∈ ∨q, ∈ ∧q} with α �∈ ∧q, was introduced in (S.K.Bhakat,1996). It is worthy to note that the most

viable generalization of Rosenfeld’s fuzzy subgroup is the notion of (∈, ∈ ∨q)-fuzzy subgroup. The detailed research with

(∈, ∈ ∨q)-fuzzy subgroup has been considered in(S.K.Bhakat, 1996).

58 ISSN 1916-9795 E-ISSN 1916-9809



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 3, No. 1; February 2011

3. (α, β)-fuzzy filters

In this section, we first to extend the concept of quasi-coincidence. In what follows, we let h, δ ∈ [0, 1] be such that h < δ
and r ∈ (h, 1]. For a fuzzy point xr and a fuzzy subset A on L , we say that

(1) xr ∈h A if A(x) ≥ r > h.

(2) xrqδA if A(x) + r > 2δ.

(3) xr ∈h ∨qδA if xr ∈h A or xrqδA.

(4) xr ∈h ∧qδA if xr ∈h A and xrqδA.

(5) xrαA if xrαA doesn’t hold for α ∈ {∈h, qδ, ∈h ∨qδ, ∈h ∧qδ}.
Definition 1 A fuzzy subset A on L is called an (α, β)-fuzzy filter, if it satisfies, for any x, y ∈ L ,t, r ∈ (h, 1] and h < δ:

(F5) xtαA implies ItβA,

(F6) if xtαA and (x → y)rαA, then ymin{t,r}βA, where α, β ∈ {∈h, qδ, ∈h ∨qδ, ∈h ∧qδ} but α �∈h ∧qδ.

In Definition 1, the case α =∈h ∧qδ can be omitted. Since for a fuzzy subset A such that A(x) < δ for any x ∈ L, and

xt ∈h ∧qδA, we have A(x) ≥ t > h and A(x) + t > 2δ. Thus 2A(x) = A(x) + A(x) ≥ A(x) + t > 2δ and so A(x) > δ. Hence

{xt |xt ∈h ∧qδ} = ∅. This explains why α =∈h ∧qδ should be omitted in Definition 1.

It isn’t difficult to see, any (α, β)-fuzzy filter on L must be an (α, ∈h ∨qδ)-fuzzy filter on L . Hence the (α, ∈h ∨qδ)-fuzzy

filter plays a central role in the theory of (α, β)-fuzzy filter. So we only need to study the (α, ∈h ∨qδ)-fuzzy filter.

In Definition 1, we taking h = 0 and δ = 0.5, an (∈h, ∈h ∨qδ)-fuzzy filters will be an (∈, ∈ ∨q)-fuzzy filter. So (∈h, ∈h ∨qδ)-
fuzzy filter is a generalization of (∈, ∈ ∨q)-fuzzy filter in (J.M.Zhan,2009).

Example 1 Let L = {O, a, b, c, d, I}, the Hasse diagram of L be defined as Figure.1 and its implication operator → and

negation operator ′ be defined as Table 1. Then L = (L,∨,∧,′ ,→,O, I) is a lattice implication algebra.

(1) we define a fuzzy subset A of L

A(x) =

⎧⎪⎪⎨⎪⎪⎩0.7 x ∈ {I, b, c},
0.2 x ∈ {O, d, a}.

It is routine to verify that A is an (∈0.3, ∈0.3)-fuzzy filter£

(2) we define a fuzzy subset B of L

B(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.6 x = I,
0.7 x ∈ {b, c},
0.2 x ∈ {O, d, a}.

It is routine to verify that B is an (∈0.3, ∈0.3 ∨q0.6)-fuzzy filter.

Theorem 1 Let h, δ ∈ [0, 1], h < δ and A be a fuzzy subset of L . Then A is an (∈h, ∈h ∨qδ)-fuzzy filter if and only A
satisfies following two conditions:

(1) (∀x ∈ L)(max{A(I), h} ≥ min{A(x), δ}),
(2) (∀x, y ∈ L)(max{A(y), h} ≥ min{A(x), A(x → y), δ}.
Proof (F5) ⇒ (1) Assume there exist x ∈ L such that max{A(I), h} < min{A(x), δ} = r, then A(x) ≥ r > h and r ≤ δ, hence

xr ∈h A. It follows that Ir ∈h ∨qδA by F(5), we have A(I) ≥ r > h or A(I) + r > 2δ. Since max{A(I), h} < r, it follows that

A(I) < r and A(I) + r < 2r ≤ 2δ, contradiction. Therefore, (1) is valid.

(1) ⇒ F(5) Assume (1) holds and F(5) doesn’t hold, then there exist y ∈ L such that yr ∈h A, but Ir∈h ∨qδA, that is

A(I) < r and A(I) + r ≤ 2δ, it follows that A(I) < δ, hence A(I) < min{δ, r}. Since A(y) ≥ r > h, we have

max{A(I), h} ≥ min{A(y), δ} > min{δ, r}.
It follows that min{δ, r} > h for δ, r > h, therefore A(I) > min{δ, r},contradiction. Hence F(5) holds.

F(6) ⇒ (2) Assume that there exist x, y ∈ L such that max{A(y), h} < min{A(x), A(x → y)} = r, then A(x) ≥ r > h,

A(x → y) ≥ r > h, δ ≥ r, A(y) < r. Therefore xr ∈h A and (x → y)r ∈h A. It follows that yr ∈h ∨qδA by F(6), that

is A(y) ≥ r > h or A(y) + r > 2δ. Since A(y) < r, we must have A(y) + r < r + r = 2r ≤ 2δ, which contradicts with

A(y) + r > 2δ. Hence (2) holds.

(2) ⇒ F(6) Assume that there exist x, y ∈ L such that xt ∈h A, (x → y)r ∈h A, but ymin{t,r}∈h ∨qδA, then A(x) ≥ t >
h, A(x → y) ≥ r > h but A(y) < min{t, r} and A(y) + min{t, r} ≤ 2δ. Hence A(y) < δ. It follows that A(y) < min{δ, t, r}. We
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have max{A(y), h} ≥ min{A(x), A(x → y), δ} ≥ min{t, r, δ}, it follows that min{t, r, δ} > max{A(y), h} ≥ min{A(x), A(x →
y), δ} ≥ min{t, r, δ}, contradiction. Therefore (2) is valid.

Remark From Theorem 1, the Definition of (∈h, ∈h ∨qδ)-fuzzy filter coincident with the concept of fuzzy filter with a

threshold (h, δ] in a lattice implication algebra(J.M.Zhan 2009).

Theorem 2 Let A be an (∈h, ∈h ∨qδ)- fuzzy filter of L and 1 + h = 2δ, then U(A; h>) is a filter of L , where h < δ and

U(A; h>) = {x ∈ L|A(x) > h}.
Proof Let A be an (∈h, ∈h ∨qδ)-fuzzy filter. Since xA(x) ∈h A, we have IA(x) ∈h ∨qδA, that is A(I) ≥ A(x) > h or

A(I) + A(x) > 2δ. Hence A(I) > h or A(I) > 2δ − A(x) > 2δ − 1 = h, we must have I ∈ U(A; h>).

Let x, x → y ∈ U(A; h>), then A(x) > h and A(x → y) > h. Since A is an (∈h, ∈h ∨qδ)-fuzzy filter, we have maxA(y), h ≥
min{A(x), A(x → y)}, δ) > min{h, δ} = δ for any x, y ∈ L by Theorem 1. Hence A(y) > h, that is y ∈ U(A; h>). It follows

that U(A; h>) is a filter of L .

Let S be a non-empty subset of L , we define a fuzzy subset Aδ
h as follows: Aδ

h(x) ≥ δ if and only if x ∈ S , Aδ
h(x) = h if

and only if x � S .

Theorem 3 Let S be a non-empty subset of L and h, δ ∈ [0, 1], h < δ, 1 + h = 2δ. Then S is a filter of L if and only if

Aδ
h is an (∈h, ∈h ∨qδ)-fuzzy filter of L .

Proof Let S be a filter of L and xt ∈h Aδ
h for any x ∈ L, then Aδ

h(x) ≥ t > h. It follows that Aδ
h(x) ≥ δ, then x ∈ S . Since

I ∈ S , we have Aδ
h(I) ≥ δ > h. If t ≤ δ, then Aδ

h(I) ≥ δ ≥ t > h, that is It ∈h Aδ
h. If t > δ, then Aδ

h(I) + t > δ + δ = 2δ, that is

ItqδAδ
h. Therefore, in any case, we have It ∈h ∨qδAδ

h.

Let xt, (x → y)r ∈h Aδ
h, then Aδ

h(x) ≥ t > h, Aδ
h(x → y) ≥ r > h. Hence Aδ

h(x) ≥ δ, Aδ
h(x → y) ≥ δ, that is x ∈ S , x → y ∈ S .

It follows that y ∈ S for S is filter of L . That is Aδ
h(y) ≥ δ. If min{t, r} ≤ δ, then Aδ

h(y) ≥ δ ≥ min{t, r} > h, it follows that

ymin{t,r} ∈h Aδ
h. If min{t, r} > δ, then Aδ

h(y) + min{t, r} > δ + δ = 2δ, we have ymin{t,r}qδAδ
h. So ymin{t,r} ∈h ∨qδAδ

h. Therefore

Aδ
h is an (∈h, ∈h ∨qδ)-fuzzy filter of L .

Conversely, Assume that Aδ
h is an (∈h, ∈h ∨qδ)-fuzzy filter of L . For any x ∈ S , we have Aδ

h(x) ≥ δ > h, that is

x ∈ U(Aδ
h; h>), so S ⊆ U(Aδ

h; h>). If x ∈ U(Aδ
h; h>), then Aδ

h(x) > h, that is Aδ
h ≥ δ. It follows that x ∈ S . Hence

U(Aδ
h; h>) ⊆ S . So S = U(Aδ

h; h>). Therefore, S is a filter by Theorem 2.

From the Proof of Theorem 3, it is easy to obtain the corollary 4.

Corollary 4 Let h, δ ∈ [0, 1], h < δ and S be a filter of L , then Aδ
h is an (qδ, ∈h ∨qδ)-fuzzy filter of L .

The following propositions are obvious, so the proofs are omitted.

Proposition 5 Let h, δ ∈ [0, 1], h < δ and A be a fuzzy subset of L . If A is an (∈h ∨qδ, ∈h ∨qδ)-fuzzy filter of L , then A
is an (∈h, ∈h ∨qδ)-fuzzy filter of L .

The following Example show that the converse of Proposition 5 doesn’t hold in general.

Example 2 In Example 1, we define a fuzzy subset A of L

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.6 x = I,
0.7 x ∈ {b, c},
0.3 x = d,
0.2 x ∈ {O, a}.

It is routine to verify that A is an (∈0.3, ∈0.3 ∨q0.6)-fuzzy filter. But A is’t an (∈0.3 ∨q0.6, ∈0.3 ∨q0.6)-fuzzy filter, since

d0.92 ∈0.3 ∨q0.6A and (d → a)0.7 ∈0.3 ∨q0.6A, but amin{0.92,0.7} = a0.7∈0.3 ∨q0.6A.

Combining Theorem 1 and Proposition 5, we have the following corollary:

Corollary 6 Any (∈h ∨qδ, ∈h ∨qδ)-fuzzy filter of L satisfies the following conditions:

(1) (∀x ∈ L)(max{A(I), h} ≥ min{A(x), δ}),
(2) (∀x, y ∈ L)(max{A(y), h} ≥ min{A(x), A(x → y), δ}.
Proposition 7 Let h < δ and A be a fuzzy subset of L . If A is an (∈h, ∈h)-fuzzy filter of L , then A is an (∈h, ∈h ∨qδ)-fuzzy

filter of L .

The converse of Proposition 7 doesn’t hold in general. For example, B is an (∈0.3, ∈0.3 ∨q0.6)-fuzzy filter. But B isn’t an

(∈0.3, ∈0.3)-fuzzy filter, since b0.65 ∈0.3 B, but I0.65∈0.3B.

Theorem 8 Let A be a fuzzy subset of L . Then A is an (∈h, ∈h)-fuzzy filter if and only if A is a fuzzy filter of L .

Proof Let A be an (∈h, ∈h)-fuzzy filter of L . Since xA(x) ∈h A for any x ∈ L, we have IA(x) ∈h A, that is A(I) ≥ A(x).
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There is a fact that xA(x) ∈h A, (x → y)A(x→y) ∈h A, it follows that ymin{A(x),A(x→y)} ∈h A, that is A(y) ≥ min{A(x), A(x → y)}.
Therefore, A is a fuzzy filter of L .

Conversely, let xt ∈h A, that is A(x) ≥ t > h, then A(I) ≥ A(x) for any x ∈ L since A is a fuzzy filter. Therefore,

A(I) ≥ A(x) ≥ t > h, that is It ∈h A.

Let xt ∈h A, (x → y)r ∈h A, then A(x) ≥ t > h and A(x → y) ≥ r > h. Since A is a fuzzy filter, we have

A(y) ≥ min{A(x), A(x → y)} ≥ min{t, r} > h, it follows that ymin{t,r} ∈h A. Therefore A is an (∈h, ∈h)-fuzzy filter of L .

Theorem 9 Let h, δ ∈ [0, 1], h < δ and A be an (∈h, ∈h ∨qδ)-fuzzy filter of L and A(x) < δ for any x ∈ L. Then A is an

(∈h, ∈h)-fuzzy filter of L .

Proof Let x ∈ L and t ∈ (h, 1] such that xt ∈h A, then A(x) ≥ t > h. It follows that max{A(I), h} ≥ min{A(x), δ} = A(x) ≥
t > h. Then A(x) > h, We have A(I) ≥ t > h, that is It ∈h A.

Let x, y ∈ L and t, r ∈ (0, 1] such that xt ∈h A and (x → y)r ∈h A. Hence A(x) ≥ t > h and A(x → y) ≥ r > h. Since A is

an (∈h, ∈h ∨qδ)-fuzzy filter, we have max{A(y), h} ≥ min{A(x), A(x → y), δ} = min{A(x), A(x → y)} ≥ min{t, r} > h. It

follows that A(y) > h. Therefore A(y) ≥ min{t, r} > h, that is ymin{t,r} ∈h A. We have A is an (∈h, ∈h)-fuzzy filter of L .

Let r ∈ (h, 1], h < δ and A be fuzzy set of L . We denote

Ar = {x ∈ L|xr ∈h A},
Ar,δ = {x ∈ L|xrqδA},∑
= {x ∈ L|xr ∈h ∨qδA}.

Obviously,
∑
= Ar

⋃
Ar,δ.

Theorem 10 Let A be fuzzy set of L and h < δ.

(1) A is an (∈h, ∈h ∨qδ)-fuzzy filter if and only Ar(� ∅) is a filter of L for any r ∈ (h, δ].

(2) If 1 + h = 2δ, then A is an (∈h, ∈h ∨qδ)-fuzzy filter if and only Ar,δ(� ∅) is a filter of L for any r ∈ (δ, 1].

(3) If 1 + h = 2δ, then A is an (∈h, ∈h ∨qδ)-fuzzy filter if and only
∑

(� ∅) is a filter of L for any r ∈ (h, 1].

Proof (1) The proof is straightforward from the Theorem 2.7 in (J.M.Zhan,2009).

We only to prove (3), (2) can be proved analogously.

Let A be an (∈h, ∈h ∨qδ)-fuzzy filter, for any r ∈ (h, 1], x ∈ ∑
, we have max{A(I), h} ≥ min{A(x), δ}. Since xr ∈h ∨qδA, it

follows that A(x) ≥ r > h or A(x) ≥ 2δ − r ≥ 2δ − 1 = h. Hence

max{A(I), h} ≥ min{A(x), δ} > min{h, δ} = h,

we have A(I) > h. Therefore A(I) = max{A(I), h} ≥ min{A(x), δ}. There are two cases need to be discussed:

Case I: When r ∈ (h, δ], then 2δ ≥ δ > r. We have A(I) ≥ min{A(x), δ} ≥ min{r, δ} = r > h or A(I) ≥ min{A(x), δ} ≥
min{δ, 2δ − r} = δ ≥ r > h, then Ir ∈h A.

Case II: When r ∈ (δ, 1], then 2δ < δ < r. We have A(I) ≥ min{A(x), δ} ≥ min{r, δ} = r > 2δ − r or A(I) ≥ min{A(x), δ} ≥
min{δ, 2δ − r} = 2δ − r, then IrqδA.

Therefore, we have Ir ∈h ∨qδA from Case I,II. That is, I ∈ ∑
.

Let x, x → y ∈ ∑
, then xr ∈h ∨qδA and (x → y)r ∈h ∨qδA. There are four cases need to be discussed:

(a) If xr ∈h A and (x → y)r ∈h A, then yr ∈h ∨qδA, that is y ∈ ∑
.

(b) If xr ∈h A and (x → y)rqδA, then A(x) ≥ r > h and A(x → y) + r > 2δ. It follows that A(x) ≥ r > h and

A(x → y) > 2δ−r. Since A is an (∈h, ∈h ∨qδ)-fuzzy filter, we have maxA(y), h ≥ min{A(x), A(x → y), δ} > min{r, 2δ−r, δ}.
If r ∈ (h, δ], then 2δ − r ≥ δ ≥ r. Therefore maxA(y), h ≥ min{A(x), A(x → y), δ} > min{r, 2δ − r, δ} > r, that

is A(y) ≥ r > h, so yr ∈h A. Hence yr ∈h ∨qδA, so y ∈ ∑
. If r ∈ (δ, 1], then 2δ − r < δ < r. It follows that

max{A(y), h} ≥ min{A(x), A(x → y), δ} > min{r, 2δ − r, δ} = 2δ − r > 2δ − 1 = h, so A(y) > h. Therefore A(y) =

maxA(y), h ≥ min{A(x), A(x → y), δ} > min{r, 2δ − r, δ} = 2δ − r, so A(y) + r > 2δ. It follows that yrqδA, of course,

yr ∈h ∨qδA, that is y ∈ ∑
.

(3) If xrqδA and (x → y)r ∈h A, then, similar with proof of (2), we can obtain y ∈ ∑
.

(4) If xrqδA and (x → y)rqδA, then A(x) + r > 2δ and A(x → y) + r > 2δ, that is A(x) > 2δ − r and A(x → y) > 2δ − r.

Since A is an (∈h, ∈h ∨qδ)-fuzzy filter, we have maxA(y), h ≥ min{A(x), A(x → y), δ} > min{2δ − r, δ}. The remaining

discussion is analogous to the (2). We have y ∈ ∑
.
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Sum up above,
∑

is a filter of L .

Conversely, Let
∑

is a filter of L , then I ∈ ∑
, that is Ir ∈h ∨qδA.

Let xr ∈h A and (x → y)t ∈h A, that is A(x) ≥ r > h and A(x → y) ≥ t > h. We have A(x) ≥ r ≥ min{t, r} > h and

A(x → y) ≥ t ≥ min{t, r} > h,

then xmin{t,r} ∈h A and (x → y)min{t,r} ∈h A. We can obtain x, x → y ∈ ∑
. Since

∑
is a filter, we have y ∈ ∑

, that is

ymin{t,r} ∈h ∨qδA. Therefore A is an (∈h, ∈h ∨qδ)-fuzzy filter of L .

Corollary 11 Let A be fuzzy set of L .

(1) A is an (∈, ∈ ∨q)-fuzzy filter if and only U(A; r)(� ∅) is a filter of L for any r ∈ (0, 0.5], where U(A; r) = {x ∈ L|xr ∈
A}.
(2) A is an (∈, ∈ ∨q)-fuzzy filter if and only U(A; r)(� ∅) is a filter of L for any r ∈ (0.5, 1], where Q(A; r) = {x ∈ L|xrqA}.
(3) A is an (∈, ∈ ∨q)-fuzzy filter if and only

∑
(A; r)(� ∅) is a filter of L for any r ∈ (0, 1], where

∑
(A; r) = {x ∈ L|xr ∈

∨qA}.
4. (α, β)-fuzzy filters

Definition 2 A fuzzy subset A on L is said to be an (α, β)-fuzzy filter, if it satisfies, for any x, y ∈ L ,t, r ∈ (h, 1] and

h < δ:

(F7) ItαA implies xtβA,

(F8) if ymin{t,r}αA, then xtβA or (x → y)rβA, where α, β ∈ {∈h, qδ, ∈h ∨ qδ, ∈h ∧ qδ} but α � ∈h ∧ qδ.

In Definition 2, the case α = ∈h ∧ qδ can be omitted, the same reason with Definition 1.

Example 3 In Example 1, we define a fuzzy set A as follows:

A(O) = 0.4, A(I) = A(b) = A(c) = 0.9, A(a) = A(d) = 0.5.

It is routine to verify A is an (∈0.3, ∈0.3 ∨ q0.6)-fuzzy filter of L .

Theorem 12 Let A be a fuzzy subset of L , then A is an (∈h, ∈h ∨ qδ)-fuzzy filter if and only if for any x, y ∈ L, t, r ∈ (h, 1]

and h < δ,

(1)max{A(I), δ} ≥ A(x),

(2)max{A(y), δ} ≥ min{A(x), A(x → y)}.
Proof Assume that (F7) hold and there exists x ∈ L such that max{A(I), δ} < A(x) = t. Then t ∈ (δ, 1] and It∈hA. It

follows that xtβA from (F7). Hence A(x) < t or A(x) + t ≤ 2δ, we have t ≤ δ for A(x) = t, contradiction. Therefore,

max{A(I), δ} ≥ A(x), (1) is valid.

Assume that there exist x, y ∈ L such that max{A(y), δ} < min{A(x), A(x → y)} = t, then A(y) < t and t ∈ (δ, 1]. It follows

that yt∈hA. But xt ∈h A and (x → y)t ∈h A. By (F8), we have xtqδA or (x → y)tqδA. It follows that A(x) ≥ t and

A(x) + t ≤ 2δ, A(x → y) = t and A(x → y) + t ≤ 2δ, we have that t ≥ δ, contradiction. Therefore, (2) holds.

Conversely, assume that there exist x, y ∈ L and t, r ∈ (h, 1] such that It∈hA, but xt∈h ∨ qδA, then A(I) < t, A(x) ≥ t > h
and A(x)+ t ≥ 2δ. Therefore, A(x) ≥ δ. Thus max{A(x), δ} < max{t, δ} ≥ max{A(x), t} = A(x), contradiction. That is, ItαA
implies xtβA.

Let ymin{t,r}∈hA, then A(y) < min{t, r}. There are two cases to be discussed.

(a) If A(y) ≥ min{A(x), A(x → y)}, then min{t, r} > min{A(x), A(x → y)}. It follows that A(x) < t or A(x → y) < t, that is,

xt∈hA or (x → y)r∈hA. Of course, xt∈h ∨ qδA or (x → y)r∈h ∨ qδA.

(b) If A(y) < min{A(x), A(x → y)}, then δ ≥ max{A(y), δ} ≥ min{A(x), A(x → y)}. Assume that xt∈h ∨ qδ and (x →
y)r∈h ∨ qδ, then A(x) ≥ r and A(x) + r > 2δ, A(x → y) ≥ r and A(x → y) + r > 2δ. It follows that A(x) > δ and

A(x → y) > δ. Hence min{A(x), A(x → y)} > δ, which contradicts with min{A(x), A(x → y)} ≤ δ. Therefore, xt∈h ∨ qδ or

(x → y)r∈h ∨ qδ.

Theorem 13 Let h < δ and A be a fuzzy subset of L . Then U(A;α), α ∈ (δ, 1] is a filter of L if and only if A satisfies

(1) (∀x ∈ L)(max{A(I), δ}) ≥ A(x),

(2) (∀x, y ∈ L)(max{A(y), δ}) ≥ min{A(x), A(x → y)}, where U(A;α) = {x ∈ L|A(x) ≥ α}.
Proof Assume that U(A;α), α ∈ (δ, 1] is a filter of L . If there exists a ∈ L such that max{A(I), δ} < A(a), then A(a) ∈ (δ, 1]
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and a ∈ U(A; A(a)), but A(I) < A(a), that is I � U(A; A(a)), which contradicts with U(A; A(a)) is a filter. Hence (1) is

valid.

Assume that there exist a, b ∈ L such that max{A(b), δ} < min{A(a), A(a → b)} = β, then β ∈ (δ, 1] and A(a) ≥ β,

A(a → b) ≥ β, that is a, a → b ∈ U(A; β). Since U(A; β) is a filter of L , we have b ∈ U(A; β), that is A(b) ≥ β. Therefore

max{A(b), δ} ≥ max{β, δ} = β. But max{A(b), δ} < β, contradiction. Hence (2) holds.

Conversely, assume that A satisfies (1)(2). Let α ∈ (δ, 1], for any x ∈ U(A;α), we have max{A(I), δ} ≥ A(x) ≥ α > δ.
Then A(I) > δ, it follows that max{A(I), δ} = A(I) ≥ A(x) ≥ α, therefore I ∈ U(A;α).

Let x, y ∈ L and x, x → y ∈ U(A;α), then A(x) ≥ α, A(x → y) ≥ α. Since max{A(y), δ}) ≥ min{A(x), A(x → y)} ≥ α > δ
for any x, y ∈ L, we have A(y) > δ. Hence max{A(y), δ} = A(y) ≥ min{A(x), A(x → y)} ≥ α, then y ∈ U(A;α). Therefore

U(A;α)(α ∈ (δ, 1]) is a filter of L .

By the Theorem 12 and Theorem 13, we have the following theorem:

Theorem 14 Let A be a fuzzy subset of L . If A is an (∈h, ∈h ∨ qδ)-fuzzy filter, then U(A;α) is a filter of L , where

U(A;α) = {x ∈ L|A(x) ≥ α} and α ∈ (h, δ].

Proposition 15 Let A be a fuzzy subset of L . If A is an (∈h ∨ qδ, ∈h ∨ qδ)-fuzzy filter, then A is an (∈h, ∈h ∨ qδ)-fuzzy

filter.

The converse of Proposition 15 doesn’t hold in general. For example, in Example 4, A is an (∈0.3, ∈0.3∨q0.6)-fuzzy filter, but

A isn’t an (∈0.3, ∈0.3)-fuzzy filter. Since O0.45∈0.3A, but A(b) = 0.9 > 0.45 > 0.3 and A(b → O) = A(d) = 0.5 > 0.45 > 0.3,

we have b0.45 ∈0.3 A and (b → O)0.45 ∈0.3 A. Therefore, A isn’t an (∈0.3, ∈0.3)-fuzzy filter of L .

Proposition 16 Let A be a fuzzy subset of L . If A is an (∈h, ∈h)-fuzzy filter, then A is an (∈h, ∈h ∨ qδ)-fuzzy filter.

The converse of Proposition 16 doesn’t hold in general. For example, in Example 1, we define a fuzzy subset B as follows:

B(I) = B(b) = B(c) = 0.7, B(O) = B(a) = (d) = 0.8. It is routine to verify B is an (∈0.3, ∈0.3 ∨ q0.6)-fuzzy filter. But B isn’t

an (∈0.3 ∨ q0.6, ∈0.3 ∨ q0.6)-fuzzy filter. Since B(I) = 0.7 + 0.45 < 2 × 0.6, that is, I0.45∈0.3 ∨ q0.6A. But B(d) = 0.8 and

B(d) + 0.45 > 2 × 0.6, that is, d0.45 ∈0.3 A and d0.45q0.6A. Therefore, d0.45∈0.3 ∨ q0.6A.

Theorem 17 Let A be a fuzzy subset of L .

(1) A is an (∈h, ∈h ∨ qδ)-fuzzy filter if and only if Ar(� ∅) is a filter of L for any r ∈ (δ, 1].

(2) A is an (∈h, ∈h ∨ qδ)-fuzzy filter if and only if Ar,δ(� ∅) is a filter of L for any r ∈ (h, δ].

Proof (1) Let A is an (∈h, ∈h ∨ qδ)-fuzzy filter of L and I � Ar, then Ir∈hA, that is A(I) < r. Since A is an (∈h, ∈h ∨ qδ)-
fuzzy filter of L , we have max{A(I), δ} ≥ A(x) for any x ∈ Ar, it follows that r = max{r, δ} ≥ max{A(I), δ} ≥ A(x). Thus

A(x) < r. But x ∈ Ar, that is A(x) ≥ r > h, contradiction. Therefore I ∈ Ar.

Assume that x, x → y ∈ Ar, that is A(x) ≥ r > h and A(x → y) ≥ r > h. Since A is an (∈h, ∈h ∨ qδ)-fuzzy filter of L ,

we have max{A(y), δ} ≥ min{A(x), A(x → y)} ≥ r. It follows that A(y) ≥ r for r ∈ (δ, 1]. Hence yr ∈h A, that is y ∈ Ar.

Therefore, Ar is a filter of L .

Conversely, suppose that there exists x ∈ L such that max{A(I), δ} < A(x) = r, then r ∈ (δ, 1], A(I) < r. That is Ir∈hA.

Hence I � Ar, which contradicts with the hypothesis that Ar is a filter. Therefore, max{A(I), δ} ≥ A(x), (F). Analogously,

we can obtain max{A(y), δ} ≥ min{A(x), A(x → y)} for any x, y ∈ L. Thus A is an (∈h, ∈h ∨ qδ)-fuzzy filter of L by

Theorem 12.

(2) Assume that I � Ar,δ, that is, IrqδA. Thus A(I)+r ≤ 2δ, that is A(I) ≤ 2δ−r. Since A is an (∈h, ∈h∨qδ)-fuzzy filter of L ,

then, for any x ∈ Ar,δ, max{A(I), δ} ≥ A(x). Since x ∈ Ar,δ, then A(x)+ r > 2δ. It follows that max{A(I), δ} ≥ A(x) > 2δ− r.

By hypothesis r ∈ (h, δ], we have 2δ − r ≥ δ. Thus A(I) > 2δ − r, contradiction. Hence I ∈ Ar,δ.

Assume that x, x → y ∈ Ar,δ, then A(x) + r > 2δ and A(x → y) + r > 2δ. Since A is an (∈h, ∈h ∨ qδ)-fuzzy filter of L , we

have max{A(y), δ} ≥ min{A(x), A(x → y)} > 2δ − r. Since 2δ − r > δ for r ∈ (h, δ], it follows that A(y) > 2δ − r, that is

A(y) + r > 2δ, thus y ∈ Ar,δ. Therefore, Arδ is a filter of L .

Conversely, assume that there exist x, y ∈ L such that max{A(I), δ} < A(x), then for any r such that 2δ − max{A(I), δ} >
r > 2δ − A(x), we have min{2δ − A(I), δ} > r > 2δ − A(x). Thus r < δ, A(I) + r < 2δ and A(x) + r > 2δ. That is, IrqδA,

hence I � Ar,δ, contradiction. Therefore, max{A(I), δ} ≥ A(x). Analogously, we have max{A(y), δ} ≥ min{A(x), A(x → y)}
for any x, y ∈ L. Thus A is an (∈h, ∈h ∨ qδ)-fuzzy filter of L by Theorem 12.

In Theorem 17, taking h = 0, δ = 0.5, we have following Corollaries:

Corollary 18 Let A be a fuzzy subset of L .

(1) A is an (∈h, ∈h ∨qδ)-fuzzy filter of L if and only if U(A; r)(� ∅) is a filter of L for any r ∈ (0.5, 1].
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(2) A is an (∈h, ∈h ∨qδ)-fuzzy filter of L if and only if Q(A; r)(� ∅) is a filter of L for any r ∈ (0, 0.5].

5. Conclusion

In order to research the many-valued logical system whose propositional value is given in a lattice, Xu initiated the concept

of lattice implication algebras. Hence for development of this many-valued logical system, it is needed to make clear the

structure of lattice implication algebras. In the notion of lattice implication algebra, the partial order can be applied

to describe the incomparability and the implication operation can be used to represent the transfer of incomparability.

In this paper, we extend the belongs to (∈) relation and quasi-coincidence with(q) relation between fuzzy points and a

fuzzy subsets, the concept of (α, β)-fuzzy filters and (α, β)-fuzzy filters of lattice implication algebras is introduced and

some related properties are investigated. Some equivalent characterizations of these generalized fuzzy filters are derived.

Finally, we discussed relations among these generalized fuzzy filters. This idea of this paper can be applied to the fuzzy

implicative filter, fuzzy ultra-filter, and so on. We generalized some results in(Y.B.Jum,2007, J.M.Zhan,2009).

Based on these results, we will study primeness and maximality in the (∈h, ∈h ∨qδ)-fuzzy setting. From the view of

universal algebra, we will try to investigated the unifying definition of (∈h, ∈h ∨qδ)-fuzzy filter on all logical algebras and

study their common properties.
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Table 1. Operators ′ and → in L

x x
′ → O a b c d I

O I O I I I I I I
a c a c I b c b I
b d b d a I b a I
c a c a a I I a I
d b d b I I b I I
I O I O a b c d I
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Figure 1. Hasse Diagram of L = {O, a, b, c, d, I}
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