
SIAM J. SCI. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 27, No. 2, pp. 622–645

SECOND-ORDER CONE PROGRAMMING METHODS FOR TOTAL
VARIATION-BASED IMAGE RESTORATION∗

DONALD GOLDFARB† AND WOTAO YIN†

Abstract. In this paper we present optimization algorithms for image restoration based on the
total variation (TV) minimization framework of Rudin, Osher, and Fatemi (ROF). Our approach
formulates TV minimization as a second-order cone program which is then solved by interior-point
algorithms that are efficient both in practice (using nested dissection and domain decomposition)
and in theory (i.e., they obtain solutions in polynomial time). In addition to the original ROF
minimization model, we show how to apply our approach to other TV models, including ones that
are not solvable by PDE-based methods. Numerical results on a varied set of images are presented
to illustrate the effectiveness of our approach.

Key words. image denoising, total variation, second-order cone programming, interior-point
methods, nested dissection, domain decomposition

AMS subject classifications. 68U10, 65K10, 90C25, 90C51

DOI. 10.1137/040608982

1. Introduction. Digital images, no matter what their source, usually contain
noise. Consequently, a fundamental problem in image processing is the restoration or
denoising of such images. Early methods for doing this were based on least squares
and had the unfortunate property of either smoothing edges or creating spurious
oscillations near edges, i.e., the well-known ringing phenomenon. In [19], Rudin,
Osher, and Fatemi (ROF) proposed a method based on minimizing the total variation
(TV) of the image. Specifically, they proposed solving the minimization problem

min

∫
Ω

‖∇u‖ dx

subject to (s.t.) u + v = f,∫
Ω

|v|2 dx ≤ σ2,

(1.1)

where ‖∇u‖ denotes the Euclidean norm of ∇u at each x, Ω is an open (typically
rectangular) domain in R

2, f : Ω → R is a given noisy image in L2(Ω), u is the
computed estimate of the original image, and σ2 is an estimate of the variance of
the noise in the image f . Minimizing the TV of u allows u to have discontinuities;
hence edges and important features in the original image are preserved by the ROF
approach.

Rather than solving the constrained minimization problem (1.1), ROF and sub-
sequent researchers also considered the unconstrained minimization problem

min

∫
Ω

‖∇u‖ dx + λ

∫
Ω

|f − u|2 dx,(1.2)

∗Received by the editors May 24, 2004; accepted for publication (in revised form) February 4,
2005; published electronically October 31, 2005. This research was supported by NSF grant DMS
01-04282, ONR grant N00014-03-1-0514, and DOE grant GE-FG01-92ER-25126.

http://www.siam.org/journals/sisc/27-2/60898.html
†Department of IEOR, Columbia University, New York, NY 10027 (goldfarb@columbia.edu,

wy2002@columbia.edu).

622

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 623

which yields the same solution as (1.1) for a suitable choice of the Lagrange multiplier
λ (see, e.g., [6]). To solve (1.2), ROF proposed using an artificial time stepping method
to compute the steady state solution u of the parabolic system ∂u

∂t = g(u) with initial
condition u = f and homogeneous Neumann boundary conditions, where

g(u) ≡ 1

2λ
∇ ·

(
∇u

‖∇u‖

)
+ f − u.(1.3)

Note that g(u) = 0 is the Euler–Lagrange equation for (1.2), which is a necessary and
sufficient condition for u to be a solution of the convex minimization problem (1.2).
Other algorithms that have been proposed for solving problem (1.2) can be found in
[5, 7, 9, 12, 13, 17, 23].

We propose here a direct method for solving (1.1) based on the observation that
a discretized version of this convex optimization problem can be reformulated as a
second-order cone program (SOCP). One can also reformulate a discretized version of
the convex unconstrained minimization problem (1.2) as an SOCP. Our approach is to
solve the SOCP representation of (1.1) by an interior-point method taking advantage
of the specific structure imparted to the SOCP by the image restoration problem
and the TV-based denoising method. Of the many methods that have been proposed
for solving (1.1) (or (1.2)) or related problems, it is most closely related to the one
proposed by Chan, Golub, and Mulet in [9] based on the interior-point algorithm of
Andersen et al. [3].

In the next section we provide a formal definition of an SOCP, present the dis-
cretized version of problem (1.1) that we will address, and introduce some notation. In
section 3 we give an SOCP formulation of the ROF-based image restoration problem.
We also present a dual formulation of problem (1.1) that is essentially equivalent to the
dual formulation proposed by Chambolle [5] and show how it can be reformulated as
an SOCP. In section 4 we discuss implementational aspects that enable interior-point
methods to solve these problems efficiently in practice. In particular, we show how
nested dissection can be used to reduce storage and computational effort. A detailed
analysis is presented in the appendix. In theory the solution is obtained in polyno-
mial time. Section 5 contains our numerical results. It also contains a discussion of
how “overlapping domain decomposition” can be used to further reduce storage and
run times. Finally, in section 6 we discuss how our approach can be applied to other
image processing models. In particular, we show that it can be applied to the model
introduced by Meyer in [15] that is not solvable by PDE-based methods.

2. Notation and preliminaries. The images we discuss in this paper are de-
fined as two-dimensional n× n matrices in R

n2

. We restrict our discussion to square
domains only for the sake of simplicity. Let f be an observed image, which, in real
applications, is a noisy version of an original image u. By introducing the noise term
v, f and u have the following relation:

fi,j = ui,j + vi,j for i, j = 1, . . . , n.(2.1)

fi,j and ui,j are the values of the observed image and the original image, respectively,
at pixel (i, j). Let ∂+ be the discrete differential operator defined by

∂+ui,j
def
=

(
(∂+

x u)i,j , (∂
+
y u)i,j

)
,(2.2)

where

(∂+
x u)i,j

def
= ui+1,j − ui,j for i = 1, . . . , n− 1, j = 1, . . . , n,

(∂+
y u)i,j

def
= ui,j+1 − ui,j for i = 1, . . . , n, j = 1, . . . , n− 1.

(2.3)

624 DONALD GOLDFARB AND WOTAO YIN

In addition, the differentials on the image domain boundary, (∂+
x u)n,j for j = 1, . . . , n

and (∂+
y u)i,n for i = 1, . . . , n, are defined to be zero. Consequently, they do not

contribute to the total variation, which in the discrete case is defined by

TV (u)
def
=

∑
1≤i,j≤n

‖∂+ui,j‖,(2.4)

where ‖·‖ denotes the Euclidean norm, i.e., ‖∂+ui,j‖ = (((∂+
x u)i,j)

2+((∂+
y u)i,j)

2)1/2.

Applying our definitions of f , u, v, and ∂+u to the ROF restoration model (1.1),
we obtain the finite-dimensional minimization problem

min
∑

1≤i,j≤n

‖∂+ui,j‖

s.t. u + v = f,
‖v‖ ≤ σ.

(2.5)

Problem (2.5) can be reformulated as an SOCP, the standard form of which we
now define. The vector of variables x ∈ R

n in a standard form SOCP is composed
of subvectors xi ∈ R

ni—i.e., x ≡ (x1;x2; . . . ;xr)—where n = n1 + n2 + · · · + nr and
each subvector xi must lie in an elementary second-order cone of dimension ni

Kni ≡ {xi = (x0
i ; x̄i) ∈ R × R

ni−1 : ‖x̄i‖ ≤ x0
i }.

Definition 2.1. The standard form SOCP (see, e.g., [1]) is

min c�1 x1 + · · · + c�r xr

s.t. A1x1 + · · · + Arxr = b,
xi ∈ Kni , for i = 1, . . . , r,

(2.6)

where ci ∈ R
ni and Ai ∈ R

m×ni for i = 1, . . . , r and b ∈ R
m.

Since a one-dimensional second-order cone corresponds to a semi-infinite ray, the
above standard form SOCP can accommodate nonnegative variables. In fact if all
cones Ki are one-dimensional, then the above SOCP is just a standard form linear
program.

If we define K to be the Cartesian product K = Kn1 × · · · ×Knr and the vector c
and the matrix A by c = (c1; . . . ; cr), and A = (A1, . . . , Ar), then the above SOCP
can be written compactly as

min c�x
s.t. Ax = b,

x ∈ K
(2.7)

A crucial aspect of the above SOCP is that the cone K is pointed, closed, convex,
and self-dual—i.e., the dual cone K∗ ≡

{
z : x�z ≥ 0 ∀x ∈ K

}
= K as is the cone

corresponding to the nonnegative orthant in R
n. This similarity between SOCPs and

linear programs is more than superficial; as is the case for linear programs, SOCPs
can be solved in polynomial time by interior-point methods. This is the approach we
propose in this paper.

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 625

3. Second-order cone programming formulation.

3.1. Primal formulation. By introducing ti,j and the relations ((∂+
x u)i,j)

2 +
((∂+

y u)i,j)
2 ≤ (ti,j)

2 for each pixel i, j = 1, . . . , n, and including equations (2.3) that
define (∂+

x u)i,j and (∂+
y u)i,j , problem (2.5) can be reformulated as

min
∑

1≤i,j≤n

ti,j

s.t. ui,j + vi,j = fi,j for i, j = 1, . . . , n,

−(∂+
x u)i,j + (ui+1,j − ui,j) = 0 for i = 1, . . . , n− 1, j = 1, . . . , n,

−(∂+
y u)i,j + (ui,j+1 − ui,j) = 0 for i = 1, . . . , n, j = 1, . . . , n− 1,

(∂+
x u)n,j = 0 for j = 1, . . . , n,

(∂+
y u)i,n = 0 for i = 1, . . . , n,

v0 = σ,

(ti,j ; (∂
+
x u)i,j ; (∂

+
y u)i,j) ∈ K3 for i, j = 1, . . . , n,

(v0; v) ∈ Kn2+1,

(3.1)

where, for i, j = 1, . . . , n, ui,j , (∂+
x u)i,j , (∂+

y u)i,j , vi,j , and ti,j are treated as variables
and fi,j for i, j = 1, . . . , n and σ as constants.

Although solving for u is our ultimate goal, in the above formulation u can be
eliminated and (∂+

x u)n,j = 0 for j = 1, . . . , n and (∂+
y u)i,n = 0 for i = 1, . . . , n can be

removed; hence, (3.1) simplifies to

min
∑

1≤i,j≤n,(i,j) �=(n,n)

ti,j

s.t. (∂+
x u)i,j + (vi+1,j − vi,j) = fi+1,j − fi,j for i = 1, . . . , n− 1, j = 1, . . . , n,

(∂+
y u)i,j + (vi,j+1 − vi,j) = fi,j+1 − fi,j for i = 1, . . . , n, j = 1, . . . , n− 1,

v0 = σ,

(ti,j ; (∂
+
x u)i,j ; (∂

+
y u)i,j) ∈ K3 for i, j = 1, . . . , n− 1,

(tn,j ; (∂
+
y u)n,j) ∈ K2 for j = 1, . . . , n− 1,

(ti,n; (∂+
x u)i,n) ∈ K2 for i = 1, . . . , n− 1,

(v0; v) ∈ Kn2+1.
(3.2)

After solving the above problem, u can be recovered via ui,j = fi,j − vi,j for i, j =
1, . . . , n.

Problem (3.2) is a standard form SOCP. It has 4n2 − 2n variables, 2n(n− 1) + 1
equality constraints, (n−1)2 three-dimensional and 2(n−1) two-dimensional second-
order cone constraints, and one large second-order cone constraint.

3.2. Alternative (dual) formulations. Recalling the definition (2.2) of ∂+ui,j ,

let us define ∂+u ≡ {∂+ui,j} ∈ R
n2 × R

n2

. If we further define qi,j ≡ (q1
i,j , q

2
i,j) and

626 DONALD GOLDFARB AND WOTAO YIN

(divq) ≡ {(divq)i,j}, where (divq)i,j = (∂−
x q1)i,j + (∂−

y q2)i,j and

(∂−
x q1)i,j

def
= q1

i,j − q1
i−1,j for i = 2, . . . , n− 1, j = 1, . . . , n,

(∂−
x q1)1,j

def
= q1

1,j for j = 1, . . . , n,

(∂−
x q1)n,j

def
= −q1

n−1,j for j = 1, . . . , n,

(∂−
y q2)i,j

def
= q2

i,j − q2
i,j−1 for i = 1, . . . , n, j = 2, . . . , n− 1,

(∂−
y q2)i,1

def
= q2

i,1 for i = 1, . . . , n,

(∂−
y q2)i,n

def
= −q2

i,n−1 for i = 1, . . . , n− 1,

(3.3)

then q ∈ R
n2 × R

n2

and

〈q, ∂+u〉 =
∑
i,j

(q1
i,j(∂

+
x u)i,j + q2

i,j(∂
+
y u)i,j) =

∑
i,j

−(divq)i,jui,j = 〈−divq, u〉.(3.4)

Let z∗ denote the optimal value of

min
∑

1≤i,j≤n

‖∂+ui,j‖

s.t. ‖u− f‖2 ≤ σ2.
(3.5)

Using the fact that ‖a‖ = max‖b‖≤1 a
�b (an immediate consequence of the Cauchy–

Schwarz inequality), if we define the set

S ≡ {q ∈ R
n2 × R

n2

: ‖qi,j‖ ≡ ‖(q1
i,j , q

2
i,j)‖ ≤ 1 ∀ i, j},

then

z∗ = min
‖u−f‖2≤σ2

max
q∈S

〈q, ∂+u〉(3.6)

= min
‖u−f‖2≤σ2

max
q∈S

〈−divq, u〉(3.7)

= max
q∈S

min
‖u−f‖2≤σ2

〈−divq, u〉.(3.8)

From the inner minimization, u must satisfy u = f + divq
‖divq‖σ. Hence, substituting

this expression for u and letting p = −q yields the following maximization problem:

z∗ = max
p∈S

{〈divp, f〉 − σ‖divp‖} .(3.9)

In [5], Chambolle derived a dual formulation of a discrete formulation of problem
(1.2), which is the Lagrangian version of (3.5), and proposed a method for solving
this formulation using a PDE approach. A related dual formulation is presented in
[21] and [4]. We now show how to derive Chambolle’s formulation in a direct manner.
Specifically, Chambolle considered

z̃∗ = min
u

⎧⎨
⎩

‖u− f‖2

2λ
+

∑
1≤i,j≤n

‖∂+ui,j‖

⎫⎬
⎭ ,(3.10)

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 627

which, by arguments identical to those used to derive (3.8), is equivalent to

z̃∗ =
1

2λ
max
q∈S

{
min
u

{‖u− f‖2 + 〈−2λdivq, u〉}
}
.(3.11)

Since u = f + λdivq solves the inner minimization problem, substituting this expres-
sion for u yields

z̃∗ =
1

2λ
max
q∈S

{
‖λdivq‖2 + 〈−2λdivq, f + λdivq〉

}
(3.12)

=
1

2λ
max
q∈S

{
−‖λdivq + f‖2 + ‖f‖2

}
,(3.13)

which, letting p = −q, is equivalent to

z̃∗ =
1

2λ
‖f‖2 − 1

2λ
min
p∈S

{
‖λdivp− f‖2

}
.(3.14)

This minimization problem is identical to problem (8) in [5].
In fact problem (3.9) is equivalent to problem (3.14) for an appropriate choice

of σ in terms of λ. For this equivalence to hold, problem (3.5) and its Lagrangian
version (3.10) must be equivalent. Hence, for a fixed q, the solutions to the inner
minimization problem in (3.8) and (3.11) must be equal; i.e.,

u = f + σ
divq

‖divq‖ = f + λdivq.(3.15)

Since p = −q, this gives

σ = λ‖divq‖ = λ‖divp‖.(3.16)

Note that adding the term ‖u−f‖2/2λ to the objective in (3.9) and then using (3.15)
and (3.16) to substitute for u− f and σ yields

1

2λ
max
p∈S

{
2λ〈divp, f〉 − λ2‖divp‖2

}
,

which is easily seen to be equivalent to (3.14).
Next, we present the SOCP formulation of the problem minq∈S

{
‖λdivp− f‖2

}
.

Following the definition of S, the discretization of the above problem gives the follow-
ing SOCP:

min w0

s.t. λ(divq)i,j − wi,j = fi,j for i, j = 1, . . . , n,

(w0; (wi,j)) ∈ Kn2+1,

(q0
i,j ; q

1
i,j ; q

2
i,j) ∈ K3 for i, j = 1, . . . , n− 1,

(q0
n,j ; q

2
n,j) ∈ K2 for j = 1, . . . , n− 1,

(q0
i,n; q1

i,n) ∈ K2 for i = 1, . . . , n− 1,

q0
i,j = 1 for i, j = 1, . . . , n,

(3.17)

in which (divq)i,j is explicitly given by (divq)i,j = (∂−
x q1)i,j + (∂−

y q2)i,j and (3.3).

628 DONALD GOLDFARB AND WOTAO YIN

Many other dual formulations are possible. For example, if rather than relaxing
the constraint ‖f −u‖2 ≤ σ2, we relax the equivalent one, ‖f −u‖ ≤ σ, we obtain the
Lagrangian version of (2.5),

min
∑

1≤i,j≤n

‖∂+ui,j‖ + λ‖f − u‖,(3.18)

which can be reformulated as the following SOCP:

min
∑

1≤i,j≤n

ti,j + λ v0

s.t. (∂+
x u)i,j + (vi+1,j − vi,j) = fi+1,j − fi,j for i = 1, . . . , n− 1, j = 1, . . . , n,

(∂+
y u)i,j + (vi,j+1 − vi,j) = fi,j+1 − fi,j for i = 1, . . . , n, j = 1, . . . , n− 1,

(ti,j ; (∂+
x u)i,j , (∂+

y u)i,j) ∈ K3 for i, j = 1, . . . , n− 1,

(tn,j ; (∂+
y u)n,j) ∈ K2 for j = 1, . . . , n,

(ti,n ; (∂+
x u)i,n) ∈ K2 for i = 1, . . . , n,

(v0; v) ∈ Kn2+1.
(3.19)

By assigning dual variables r1
i,j and r2

i,j to each of the first two constraints and asso-

ciating (s0
i,j ; s

1
i,j , s

2
i,j) to (ti,j ; (∂

+
x u)i,j , (∂

+
y u)i,j) and (w0;w) to (v0; v), we obtain the

SOCP dual of (3.19):

max
∑

1≤i,j≤n,i �=n

r1
i,j(fi+1,j − fi,j) +

∑
1≤i,j≤n,j �=n

r2
i,j(fi,j+1 − fi,j)

s.t. −(∂−
x r1)i,j − (∂−

y r2)i,j + wi,j = 0 for i, j = 1, . . . , n,

r1
i,j + s1

i,j = 0 for i = 1, . . . , n− 1, j = 1, . . . , n,

r2
i,j + s2

i,j = 0 for i = 1, . . . , n, j = 1, . . . , n− 1,

s0
i,j = 1 for i, j = 1, . . . , n,

w0 = λ,

(s0
i,j ; s1

i,j , s
2
i,j) ∈ K3 for i, j = 1, . . . , n− 1,

(s0
n,j ; s2

n,j) ∈ K2 for j = 1, . . . , n,

(s0
i,n ; s1

i,n) ∈ K2 for i = 1, . . . , n,

(w0 ; w) ∈ Kn2+1.
(3.20)

By eliminating variables r1
i,j , r2

i,j , s0
i,j , and w0, this maximization problem can be

simplified to the following minimization problem:

min
∑

1≤i,j≤n,i �=n

s1
i,j(fi+1,j − fi,j) +

∑
1≤i,j≤n,j �=n

s2
i,j(fi,j+1 − fi,j)

s.t. (∂−
x s1)i,j + (∂−

y s2)i,j + wi,j = 0 for i, j = 1, . . . , n,

(1 ; s1
i,j , s

2
i,j) ∈ K3 for i, j = 1, . . . , n− 1,

(1 ; s2
n,j) ∈ K2 for j = 1, . . . , n,

(1 ; s1
i,n) ∈ K2 for i = 1, . . . , n,

(λ ; w) ∈ Kn2+1.

(3.21)

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 629

4. Nested dissection. SOCPs can be solved very efficiently in practice and, in
theory, in polynomial time by interior-point methods. For example, path-following
interior-point methods generate a sequence of interior points (i.e., points in the in-
terior of K) that follow the so-called central path toward an optimal solution. At
each iteration, a set of primal-dual equations, which depend on current variable
values and a duality gap parameter μ, are solved to yield an improving search di-
rection. Rather than solving this system of equations directly, most implementa-
tions of interior-point methods first reduce these equations to a smaller system of
linear equations involving a symmetric positive definite matrix that has the form
AFA�. This system of linear equations is solved by computing the Cholesky fac-
torization LDL� of AFA�, where L is a unit lower triangular matrix and D is
a positive diagonal matrix. Although A remains fixed from one iteration to the
next, F depends on the current primal-dual solution, so AFA� must be factor-
ized at every iteration. Even though interior-point methods terminate in a poly-
nomial number of iterations, each iteration can be very time consuming due to
the O(m3) computational complexity of solving the Cholesky factorization of the
m × m matrix AFA�, or even fail because of the lack of enough memory to store
a dense m × m lower triangular matrix L. In our applications, m is quite large
(e.g., in the SOCP (3.2), m = 2n(n − 1) + 1, so that for n = 1024, m is roughly
2 × 106).

This difficulty can be overcome by exploiting the sparsity of the matrix A and
the structure of F . In all interior-point methods, F is a block diagonal matrix
F ≡ Diag{F1, . . . , Fr}, where each of the diagonal submatrices Fi ∈ R

ni×ni can
be expressed as a sum of a scaled identity matrix and two rank-one terms (or for
some methods, three rank-one terms), one with a positive coefficient and the other
with a negative coefficient. Hence,

AFA� =

r∑
i=1

AiFiA
�
i ,(4.1)

where Fi = γiI +uiu
�
i −viv

�
i (ui and vi are two columns vectors, not the signal and

noise defined before).

It is easily verified that for the SOCP (3.2) the terms AiFiA
�
i have the same spar-

sity structure as AiA
�
i for all i corresponding to two- and three-dimensional cones

K2 and K3. However, for the one large cone Kn2+1, AiFiA
�
i has a totally dense

(n2 + 1) × (n2 + 1) block, whereas AiA
�
i is very sparse. To take advantage of the

sparsity of the latter matrix, implementations of interior-point methods compute the
Cholesky factorization of only the sparse part of AFA�—i.e., for large cones, they
include only the sparse term γiAiA

�
i in the sum (4.1) when computing this factor-

ization and then update the factorization to account for the dense part using either
a product-form approach (see [11]) or a version of the Sherman–Morrison–Woodbury
updating identity (see [2]). The latter approach is simpler but unfortunately less
numerically stable than the former. The interior-point codes that we used in our
experiments treated large cones in this fashion; hence in the following discussion we
consider only the sparsity structure of AiA

�
i .

It is well known that sparsity in a symmetric matrix M does not guarantee that
the Cholesky factor L will be sparse. For example, Cholesky factorization of the

630 DONALD GOLDFARB AND WOTAO YIN

rather sparse matrix

M =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 0 0 0
1 0 3 0 0
1 0 0 7 0
1 0 0 0 43

⎤
⎥⎥⎥⎥⎦(4.2)

yields D = I and

L =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
1 1 0 0 0
1 −1 1 0 0
1 −1 −2 1 0
1 −1 −2 −6 1

⎤
⎥⎥⎥⎥⎦ .(4.3)

However, by reversing the order of the rows and columns of M , we obtain a matrix
M̃ whose Cholesky factorization yields D̃ = Diag(43, 7, 3, 2, 1) and

L̃ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1/43 1/7 1/3 1/2 1

⎤
⎥⎥⎥⎥⎦ .(4.4)

Nested dissection [10] is a scheme for symmetrically permuting the rows and
columns of a symmetric matrix M so that the resulting Cholesky factorization takes
optimal advantage of certain types of sparsity in M . To describe nested dissection,
we let GM be the adjacency graph associated with M . If M ∈ R

m×m, then GM has m
nodes and has an edge (i, j) if the (i, j)th element of M is nonzero. Nested dissection
recursively applies the following divide and conquer strategy. Given a graph GM , find
a separator set of nodes NS , whose removal from GM divides it into two unconnected
components GU and GV with corresponding node sets NU and NV . If the nodes in
NS in GM are numbered after those in NU and NV , then the matrix M corresponding
to this row and column ordering has the form

M =

⎡
⎣ MUU 0 MUS

0 MV V MV S

M�
US M�

V S MSS

⎤
⎦ ,(4.5)

and most importantly, the Cholesky factor L of M inherits a similar structure, i.e.,

L =

⎡
⎣ LUU 0 0

0 LV V 0
LSU LSV LSS

⎤
⎦ .(4.6)

This strategy is then applied recursively to the subgraphs GU and GV .
Let us now consider the application of nested dissection to the matrix AA� aris-

ing from the SOCP (3.2), which as explained above corresponds to the sparse part
of AFA�. (AA�)l,k �= 0 if and only if the lth and kth constraints share decision
variables. The equality constraints in our problem are

(∂+
x u)i,j + (vi+1,j − vi,j) = fi+1,j − fi,j for i = 1, . . . , n− 1, j = 1, . . . , n,(4.7)

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 631

Fig. 1. Constraint dependency of (3.2). Fig. 2. Constraint dependency of (3.17).

(∂+
y u)i,j + (vi,j+1 − vi,j) = fi,j+1 − fi,j for i = 1, . . . , n, j = 1, . . . , n− 1,(4.8)

v0 = σ.(4.9)

Clearly, the last constraint shares no variable with any other constraint; thus its
position in the ordering of the constraints is irrelevant . Let C1

i,j and C2
i,j denote the

(i, j)th constraints in (4.7) and (4.8), respectively. For a particular pair (i, j) (i.e.,
row of A), C1

i,j shares at least one decision variable with the following constraints,
given their existence:

C1
i−1,j , C2

i,j−1, C2
i,j (sharing vi,j),

C1
i+1,j , C2

i+1,j−1, C2
i+1,j (sharing vi+1,j).

C2
i,j shares at least one decision variable with the following constraints, given their

existence:

C1
i−1,j , C1

i,j , C2
i,j−1 (sharing vi,j),

C1
i−1,j+1, C1

i,j+1, C2
i,j+1 (sharing vi,j+1).

The constraint dependency relations (i.e., adjacency graph GM of AA� excluding the
row and column corresponding to (4.9), which we shall refer to as M) are depicted
in Figure 1 for the case of n = 8, in which squares represent C1

i,j and bullets C2
i,j .

Clearly, removal of the row of squares C1
4,j , j = 1, . . . , 8, separates the dependency

graph in Figure 1 into two independent parts. If we let S ≡ {C1
4,j : j = 1, . . . , 8} and

let U and V denote the sets of constraints corresponding to the upper and the lower
independent parts, and order the constraints in U before those in V and those in V
before those in S, then M has the form of (4.5).

Furthermore, removal of the column of bullets C2
i,4, i = 1, . . . , 4, separates U

into two independent parts—UL and UR—and removal of the column of bullets C2
i,4,

i = 5, . . . , 8, separates V into two independent parts—VL and VR. As a result, MUU

and MV V can be ordered so that each has the form (4.5). This process is then repeated
recursively until every node has been assigned to some separator set (i.e., every row
and column of M has been numbered). In the appendix, we analyze the storage cost
and the number of multiplications for factorizing M = AAT corresponding to the

632 DONALD GOLDFARB AND WOTAO YIN

equality constraints (4.7) and (4.8) after ordering this matrix by nested dissection.
These costs are (31/4)n2 log2 n + O(n2) and 943n3/84 + O(n2 log2 n) for an n × n
image, respectively.

Finally, we depict in Figure 2 the dependency graph of the dual SOCP formulation
(3.17). In Figure 2 the (i, j)th bullet C̄1

i,j represents the constraint (divq)i,j − wi,j =

fi,j , and the (i, j)th square C̄2
i,j represents the constraint q0

i,j = 1. Since constraints

C̄1
i,j , C̄1

i+1,j , and C̄1
i,j+1 contain either q1

i,j or q2
i,j or both of them, and the 3 × 3

fully dense block Fk corresponding to cone (q0
i,j ; q

1
i,j ; q

2
i,j) causes the 3 corresponding

columns in A to merge, constraint C̄2
i,j in AFAT essentially shares variables with

constraints C̄1
i,j , C̄1

i+1,j , and C̄1
i,j+1; hence, in Figure 2, C̄2

i,j is connected to C̄1
i,j ,

C̄1
i+1,j , and C̄1

i,j+1. The connections between bullets C̄1
i,j ’s are due to the sharing of

q1
i,j or q2

i,j for some i, j.

5. Numerical results. In this section, we present numerical results that illus-
trate the effectiveness of our SOCP approach and compare it to the PDE approach.
We then discuss the use of domain decomposition to reduce the storage and compu-
tational effort needed by the SOCP approach.

5.1. SOCP/PDE comparison. We used the commercial optimization package
Mosek as our SOCP solver. Mosek is designed to solve a variety of large-scale op-
timization problems, including SOCPs. Before solving a large-scale problem, Mosek
uses a presolver to remove redundant constraints and variables and to reorder con-
straints. The Mosek presolver reorders the coefficient matrix A using a combination of
a graph partitioning–based method and an approximate minimum local-fill-in order-
ing method to increase the sparsity of the Cholesky factors of AFA�. This general-
purpose reordering produced results for our problem that were very good, but not as
good as nested dissection, which further reduced the time per iteration and the total
time by approximately 30 percent in our tests on a 512 × 512 image. Therefore, we
turned off Mosek’s reordering heuristic and replaced it by our own nested dissection
reordering code in our tests.

Existing PDE approaches require the ROF model to be represented in the relaxed
form (1.2) and the existence of the Euler–Lagrange equation g(u) = 0, where g(u) is
given by (1.3). To handle the case of ‖∇u‖ = 0, most PDE approaches add a small
perturbation ε > 0 to ‖∇u‖ in (1.3). The PDE method that we used in our numerical
tests is an artificial time stepping method which computes the steady state solution
u of the parabolic system

∂u

∂t
=

1

2λ
∇ ·

(
∇u

‖∇u‖ + ε

)
+ f − u.(5.1)

To compare the two approaches for each noisy image, we first solved the SOCP for-
mulation (3.2) of (1.1) and calculated λ from the optimal dual solution using the
following theorem.

Theorem 5.1. The discrete versions of problems (1.1) and (1.2) have the same

optimal solution u if 2λσ = z0, where z0 is the first entry of (z0, z) ∈ Kn2+1 and
(z0, z) is the dual vector corresponding to (v0, v) in the SOCP formulation (3.2) of
problem (1.1). (Recall that

∫
Ω
|v|2 dx ≤ σ2 is represented in the discrete form by

(v0, v) ∈ Kn2+1 with v0 = σ.)
We then used this Lagrange multiplier λ in the PDE method. In practice, it is

much easier to estimate the noise level of an image than it is to estimate an appropriate

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 633

Table 1

Numerical comparison between SOCP (MATLAB+Mosek) and PDE (C++) approaches.

Name Size Fig. SOCP result u1 vs. PDE result u2

n× n maxi,j |u1 − u2| ‖u1 − u2‖L1/n2

Books 64×64 3–5 0.58 0.04
Dotplus 100×100 6–8 0.97 0.10
Scale 252×252 9–11 0.74 0.02
Barbara 256×256 12–14 0.90 0.05
Barbara 350×350 15–17 0.95 0.06
Barbara 512×512 24–26 0.96 0.06

λ. Experiments show that a σ that is a little smaller than the true one (i.e., a slight
amount of undersmoothing) yields the best results.

In our tests, we called Mosek from MATLAB, while we called the PDE-based code
(an improved version of a C++ code provided to us by Stanley Osher and Jinjun Xu
of UCLA) directly. The running times given in Table 2 for the problems whose sizes
are given in Table 1 are the total times in seconds needed to solve the problem on a
Sun E450 with four 300MHz SuperSparc II processors and 4GB memory. Since both
codes are single-threaded, they run only on one processor and use 1GB memory at a
time. The SOCP run times do not include the time taken by our nested dissection
code to reorder constraints and the time taken by Mosek for presolving, since the
process of constraint reordering and presolving remains the same for all images of the
same size.

During their execution, both approaches record the objective values of (1.2):

z(t) =

∫
Ω

‖∇ut‖ dx + λ

∫
Ω

|f − ut|2 dx.(5.2)

The objective values obtained by the PDE approach decrease with time t over the
long run but fluctuate and never reach as low a value as that obtained by the SOCP
approach. Given a nearly optimal objective value, the PDE approach may have to
iterate further for a large number of steps to obtain a lower objective value. For these
reasons, we used the following stopping rules for the PDE approach:

• initially, let zmin = ∞ and tmin = 0, where zmin and tmin denote the minimal
objective value and its time;

• at time t, update zmin := z(t) and tmin := t if zmin < z(t) − λ;
• to denoise an image of size n×n, stop at time t once t−tmin ≥ max{0.15tmin, n}.

These stopping criteria ensure that the PDE method spends a reasonable amount of
time searching for a possibly lower objective value but does not waste too much time
trying to obtain an insignificant improvement.

In all of our tests starting from the same noisy image, the two approaches pro-
duced images that were visually indistinguishable from one another. Table 1 shows
that in all our tests the gray values (u1 and u2) produced by the two approaches differ
by at most 0.97 over all pixels with an average difference of less than 0.10. Therefore,
we present in Figures 3–17, in addition to the original and noisy images, only the
SOCP images. Similar results were obtained on the other images.

From Table 2, one can see that the SOCP approach requires a smaller number of
iterations than the PDE approach while every iteration takes more time. Note that as
the size of the image grows, the number of iterations required by the SOCP approach
remains relatively constant, while that number grows for the PDE approach. In spite

634 DONALD GOLDFARB AND WOTAO YIN

Fig. 3. Original books
64 × 64.

Fig. 4. Noisy books
(σ = 20).

Fig. 5. Denoised im-
age by the SOCP method.

Fig. 6. Original dot-
plus 100 × 100.

Fig. 7. Noisy dotplus
(σ = 40).

Fig. 8. Denoised im-
age by the SOCP method.

Fig. 9. Original scale
252 × 252.

Fig. 10. Noisy scale
(σ = 20).

Fig. 11. Denoised im-
age by the SOCP method.

Fig. 12. Original
Barbara 256 × 256.

Fig. 13. Noisy Bar-
bara (σ = 20).

Fig. 14. Denoised im-
age by the SOCP method.

of this, the SOCP approach took roughly between one and two times the total time
that the PDE approach took. This is because, in theory, the PDE method takes O(n2)
CPU time per iteration for an n × n image, while the SOCP method (implemented

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 635

Fig. 15. Original Barbara 350 × 350. Fig. 16. Noisy Barbara (σ = 20).

Fig. 17. Denoised image by the SOCP method.

Table 2

Numerical comparison between SOCP (MATLAB+Mosek) and PDE (C++) approaches (cont.).

Name λ SOCP PDE (Δt = 0.1)
Total
time

Itr. Obj.
value

Total
time

Itr. Obj.
value

Books 0.0374718930 4.42 15 128927 3.22 950 128976
Dotplus 0.0180513895 13.68 16 592183 14.90 1875 592438
Scale 0.0337088230 157.86 17 3706529 81.21 1479 3706980
Barbara 0.0374657886 130.13 16 1691196 61.73 1166 1692180
Barbara 0.0374969349 283.56 16 2905191 151.71 1464 2907500
Barbara 0.0375681804 806.70 16 5895359 456.25 1900 5900690

as described in section 4) takes O(n3) CPU time per iteration. In our numerical tests
the SOCP approach took between O(n2 log n) and O(n3) time per iteration due to
the effect of memory references, which are slower than floating-point operations.

We also measured the running times on a PC with a Pentium IV 1.7GHz CPU
and 512MB memory. We used the MS Windows versions of MATLAB, Mosek, and
GUN g++ compiler. On this newer computer, the SOCP code ran 2–2.5 times faster
and the PDE code ran about 4 times faster solving the same set of problems. Due to
the PC’s smaller amount of memory and cache, the SOCP approach, which performs
more memory fetches, got a smaller speedup than the PDE approach, exhibiting a

636 DONALD GOLDFARB AND WOTAO YIN

running time somewhere between the n×n-image storage cost of O(n2) and the nested
dissection Cholesky factorization storage cost of O(n2 log n).

5.2. Domain decomposition. Even with nested dissection the SOCP approach
requires O(n2 log n) memory. Hence, to denoise large (or three-dimensional) images,
we consider here a domain decomposition approach. Let ñ ≈ n/k, where k is a positive
integer and ñ > n/k. By subdividing an n × n image into k2 ñ × ñ subimages with
some overlap and applying the SOCP method to each of the subimages, we can reduce
the storage needed by a factor of approximately 1/k2. Since, in applying the SOCP
method to each subimage, the number of multiplications per iteration is reduced by a
factor of approximately 1/k3 compared with applying the SOCP method to the entire
image, and there are k2 subimages, the total CPU time should also be reduced by a
factor of approximately 1/k. After obtaining the denoised subimages, we discarded
the values of u for the rows (columns) of pixels in that half of any region of overlap
closest to the boundary of the subimage. For example, Figure 20 illustrates a 2 × 2
domain decomposition with a 4-pixel overlap between subimages. After obtaining the
denoised 65 × 65 image u for the top left block, we discarded the u values for the
rightmost two columns and bottommost two rows of pixels. These values have indices
(i, j) with i = 64, 65 and j = 1, . . . , 65, and j = 64, 65 and i = 1, . . . , 65. An analogous
statement applies to the overlapped pixels of the other 3 denoised subimages.

Due to the different graphical characteristics of the subimages, including signal-to-
noise ratio, contrast, and homogeneity, applying the SOCP method to all subimages
using the same σ does not usually give the same output as applying the SOCP method
to the entire image. In some cases the results obtained by using the former are better,
while in other cases they are worse. The following numerical example illustrates this.
Figure 18 is the noisy image obtained by selecting a rectangular area of the noisy
image in Figure 13 and removing the outside portion of the image. Figure 19 is the
result of the ROF method (3.2) separately applied to 4 equal subimages of size 65×65
with the same σ = 18×652. In the numerical tests, we chose the size of all subimages
so that all adjacent image pairs had overlapping regions that were 4 pixels wide.
Figure 20 illustrates the 2 × 2 domain decomposition applied to the image in Figure
18. Figure 21 is the result of ROF applied to the entire image with σ = 18 × 652.
In Figure 21, Barbara’s left eye is clearer than in Figure 19. This shows that the
subimage at the bottom right is oversmoothed. After reducing σ2,2 from 18 × 652 to
16×652 for this oversmoothed subimage, the ROF method yields Figure 22, in which
Barbara’s left eye is much clearer. Figure 23 gives the ten-times amplified differences
between Figures 21 and 22. The differences in the regions of the four subimages vary,
but we cannot see any big differences by comparing Figures 21 and 22. However, as
we shall now demonstrate, we can obtain even closer results.

In [20], Strong and Chan give exact analytical solutions to the relaxed TV de-
noising problem (1.2) applied to one-, two-, and three-dimensional piecewise constant
images and smooth radially symmetric ones. Their results establish an exact rela-
tionship between the Lagrange multiplier λ and the effect of TV regularization (1.2)
on an image feature and show its localness property (i.e., in a piecewise constant or
smooth radially symmetric region the solution of (1.2) depends only on λ and whether
or not the region is on the image boundary, and is independent to the features of other
regions). This can be extended approximately to complicated noisy images since they
are composed of many tiny piecewise constant or smooth radially symmetric regions.
Therefore, we can expect solving (1.2) with the same λ (or σ’s for all subimages
so that z0/(2σ) = λ) as used for the entire image to give close results. Since TV

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 637

Fig. 18. Noisy image
(σ = 20 × 652).

Fig. 19. 2× 2 parti-
tioned result (σ1,1 = σ1,2

= σ2,1 = σ2,2 = 18 × 652).

Fig. 20. 2× 2 domain
decomposition applied to
image of size 126 × 126.

Fig. 21. Nonpartition
result (σ = 18 × 652).

Fig. 22. 2 × 2 parti-
tioned result (σ1,1 = σ1,2

= σ2,1 = 18 × 652, σ2,2 =
16 × 652).

Fig. 23. Ten-times
amplified difference be-
tween Figures 21 and
22.

regulation treats regions on boundaries differently, domain decomposition may give
different results near subimage boundaries. Sharp edges are different from sharp noise
by the surrounding geometry, e.g., two sides of sharp edges have very different bright-
ness. Therefore, if a sharp edge is very close to the image boundaries, the difference
between edges and noise is weaker. Moreover, every pixel in an image may affect the
denoising results of the whole image, and their dependency is ambiguous. This effect,
however, is limited to strips a few pixels wide when noise is present. Hence, in our
tests, we discarded redundant information in these boundary strips of the subimages.

In our first test of the above approach we applied a 4 × 4 domain decomposition
to a 512 × 512 image. The results are depicted in Figures 24–26. All subimages were
of size 137×137, giving overlapping regions between adjacent subimages that were 12
pixels wide. The image values for the 6 rows (columns) of pixels in the overlapping
regions closest to the boundaries of each subimage were discarded. The σ’s for the
full image and all of the subimages were chosen so that z0/(2σ) = 0.0375. Table 3
gives the numerical results. The results obtained by the two approaches by more
than 1 on the 256 gray-level scale was 0.11% of the total 512 × 512 pixels. The
average difference per pixel was 0.07 and the maximum difference was +0.97 and
−1.15. The running time 1280 seconds for denoising the entire image was estimated
based on the O(n3) theoretical CPU time. The difference was more than 1 on the 256
gray-level scale for only 0.0008% of the pixels. The average difference per pixel was
0.04 and the maximum difference was +0.75 and −1.31. Clearly, SOCP with domain
decomposition gave nearly identical results to SOCP applied to the full image.

638 DONALD GOLDFARB AND WOTAO YIN

Fig. 24. Original 512 × 512 image. Fig. 25. Noisy 512 × 512 image (σ = 20).

Fig. 26. 4 × 4 domain decomposition applied to Figure 25.

Table 3

4×4 domain decomposition applied to Figure 24. Blk. = block (subimage) index; itr. = number
of SOCP iterations for denoising subimage; time = SOCP running time in seconds for denoising
subimage.

Blk. Itr. Time Blk. Itr. Time Blk. Itr. Time Blk. Itr. Time
(1,1) 19 33.03 (1,2) 20 34.84 (1,3) 18 32.01 (1,4) 17 29.95
(2,1) 18 31.97 (2,2) 18 31.74 (2,3) 17 29.73 (2,4) 17 30.25
(3,1) 18 31.34 (3,2) 17 30.61 (3,3) 20 35.70 (3,4) 18 31.18
(4,1) 17 30.10 (4,2) 17 31.06 (4,3) 18 32.03 (4,4) 18 32.72
Sum of the total time (seconds) for denoising all subimages (Figure 26): 508.26
Total time for denoising the entire image: 806.70

In this example the total computation time for the domain decomposition ap-
proach was about 37 percent less than the time required by the SOCP method applied
to the full image. Since 16 · 1373/5123 ≈ 0.33, one would expect something close to a
67 percent reduction in running time. The reason this was not the case is explained
by our remark in section 5.1 about execution time and memory references when cache
is limited and slow.

We also applied an 8 × 8 domain decomposition to the noisy 512 × 512 image in

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 639

Table 4

8×8 domain decomposition applied to Figure 24. Time (itr.) = SOCP running time in seconds
(iterations) for denoising subimage

Block Column
index 1 2 3 4 5 6 7 8

1 6.86(16) 6.56(16) 8.37(19) 6.24(15) 5.80(14) 5.32(13) 5.67(14) 6.12(14)
2 7.07(17) 6.90(16) 6.51(16) 5.70(14) 6.04(14) 6.02(14) 6.38(15) 5.83(14)

R 3 5.65(14) 6.64(16) 6.90(16) 7.53(17) 7.02(16) 5.86(14) 5.77(14) 6.02(15)
o 4 6.76(16) 7.17(17) 7.21(17) 5.79(14) 5.88(13) 5.84(14) 5.38(13) 6.29(15)
w 5 6.19(15) 7.19(17) 6.63(16) 6.17(14) 5.93(14) 5.75(14) 6.74(16) 6.97(17)

6 5.99(14) 6.75(16) 6.88(17) 7.06(16) 6.80(15) 5.73(14) 6.50(15) 6.21(15)
7 7.06(17) 7.22(17) 7.16(16) 6.59(15) 6.35(15) 6.35(15) 6.71(16) 6.14(15)
8 7.04(17) 7.58(17) 7.10(17) 7.83(19) 7.25(17) 6.39(15) 7.13(17) 7.57(18)

Sum of the total time (seconds) for denoising all subimages: 418.06

Figure 25 after extending it to one with a size of 516× 516 so that all subimages were
of the same size (75× 75) and the overlapping regions remained 12 pixels wide. As in
the previous test, the σ’s were chosen so that z0/(2σ) = 0.0375 for all subimages. The
numerical results given in Table 4 show that the reduction in the total computation
time was further improved from 37 percent to 52 percent. Moreover, the total run time
of 418.06 seconds was less than the 456.25-second run time of the PDE approach. The
difference between the results obtained by applying the SOCP method with domain
decomposition and applying it to the entire image was more than 1 on the 256 gray-
level scale for 0.0015% of the pixels. The average difference per pixel increased to
0.08 and the maximum difference was +1.47 and −1.06. This difference was still not
perceivable to the naked eye.

6. SOCP formulations of other restoration models. Meyer [15] introduced
the following image restoration model based on TV and the space of oscillating func-
tions:

min

∫
Ω

‖∇u‖dx + λ‖v‖∗ s.t. f = u + v,(6.1)

where ‖v‖∗ is defined as the infimum of ‖
√

g2
1(x, y) + g2

2(x, y)‖L∞ over all g1, g2 ∈
L∞(R2) satisfying v = ∂xg1 + ∂yg2. To handle ‖

√
g2
1(i, j) + g2

2(i, j)‖L∞ in the dis-
cretized version of (6.1), we introduce a three-dimensional quadratic cone

(g0(i, j); g1(i, j), g2(i, j)) ∈ K3

for each i, j and let w ≥ g0(i, j) for all i, j. The infimum of ‖
√
g2
1(i, j) + g2

2(i, j)‖L∞ is
then equal to the minimum of w. Thus we can solve a discretized problem of (6.1) as
an SOCP. It is important to note that because Meyer’s model (6.1) is not amenable
to the PDE approach, it has been primarily of theoretical interest. Thus, the SOCP
approach can be applied to image restoration models that cannot be solved by a PDE
approach.

In [22], Vese and Osher proposed an approximate version of Meyer’s model and
showed that their PDE-based method can decompose a given image f into u and v,
where u and v represent cartoon and texture, respectively. Their method solves the
minimization problem

min

∫
Ω

‖∇u‖dx + λ

∫
|f − u− ∂xg1 − ∂yg2| + μ

[∫
(
√
g2
1 + g2

2)p
]1/p

,(6.2)

640 DONALD GOLDFARB AND WOTAO YIN

where λ and μ are tuning parameters and p ≥ 1. Inequalities with p-norm for p
being rational can be represented as a system of second-order conic inequalities (refer
to [1]). Therefore, (6.2), after discretization, can be formulated as an SOCP and
solved by interior-point methods. In a forthcoming paper [24], we solve Meyer’s
model as an SOCP and compare the solutions with those obtained by the Vese–Osher
approximation.

In [14], Lysaker, Lundervold, and Tai introduced a method for image restoration
based on solving the following two-dimensional problem:

min

∫
Ω

|ux1x1 | + |ux2x2 | dx

s.t. u + v = f,∫
Ω

|v|2 dx1 dx2 ≤ σ2.

(6.3)

The discretization of the second derivative of u = {ui,j} is linear in the ui,j ’s. To
handle absolute values in minimization problems, say min |z|, one can introduce an
extra variable and transform min |z| into equivalent problems:

min |z|(6.4)

⇐⇒ min t s.t. z ≤ t, −z ≤ t(6.5)

(s
def
= t + z) ⇐⇒ min(s− z) s.t. 2z ≤ s, s ≥ 0.(6.6)

Both (6.5) and (6.6) have a linear objective subject to linear constraints. In some
cases, (6.6) is preferred since s ≥ 0 is easier to handle. Therefore, expressing

∫
Ω
|v|2 dx

≤ σ2 as a second-order conic constraint as before, it is clear that problem (6.3) can
be formulated as an SOCP. This also works if the objective function is replaced by∫
Ω
|ux1x1 | + 2|ux1x2 | + |ux2x2 | dx.

A variant of (1.1) was proposed by Osher, Solé, and Vese (OSV) in [16]. The
model assumes that f − u = divg, where g = (g1, g2), and there exists a unique
decomposition g = ∇P+Q, where Q satisfies divQ = 0. Therefore, f−u = divg = ΔP
or Δ−1(f − u) = P . The OSV model is

min

∫
Ω

‖∇u‖ dx

s.t.

∫
Ω

‖∇(Δ−1(f − u))‖ dx ≤ σ2,

(6.7)

or equivalently

min

∫
Ω

‖∇u‖ dx

s.t.

∫
Ω

‖∇P‖ dx ≤ σ2,

f − u = ΔP.

(6.8)

Clearly, by using a finite difference form of the Laplace operator and expressing
the objective function and the constraint

∫
Ω
‖∇P‖ dx ≤ σ2 as we have previously

described, we can reformulate (6.8) as an SOCP.

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 641

In [8], the authors analyzed the ROF model with an L1 fidelity term
∫
Ω
|v| ≤ σ.

Clearly, by discretizing
∫
Ω
|v| as the sum

∑
i,j |vi,j | and handling the absolute values

|vi,j | using (6.5) or (6.6), this problem can be formulated as an SOCP.
It is not difficult to see that various TV-based deblurring models can also be

formulated as SOCPs.

Appendix. In this appendix, we present a detailed analysis of Cholesky factor-
ization of a matrix M whose rows and columns have been symmetrically reordered
by applying nested dissection to the adjacency graph of M , assuming that the latter
is an n× n grid graph of the type shown in Figure 1. We follow an approach similar
to the one given in [18]. First, let us introduce some graph notation.

A graph G is defined as the pair (VG, EG), where VG is the set of nodes and EG

is the set of edges of G. In Figure 27, each square or bullet is a node, and each line
segment connecting a pair of nodes is an edge. Figure 27 has 8 rows and 7 columns
corresponding to the C2 constraints, and 7 rows and 8 columns corresponding to the
C1 constraints. For convenience, we number node Ck

i,j by (i, j)k. In this way, C1
3,1

corresponds to node (3, 1)1 and C2
8,1 to node (8, 1)2. Due to the boundary conditions,

the row of nodes (8, ·)1 and the column of nodes (·, 8)2, corresponding to (∂+
x u)8,j = 0

and (∂+
y u)i,8 = 0 for 1 ≤ i, j ≤ 8, do not appear in Figure 27. Let us denote by G2n,2n

a graph of the form of Figure 27 with nodes (i, j)k for k = 1, 2 and i, j = 1, . . . , n− 1,
(i, n)1 for i = 1, . . . , n, and (n, j)2 for j = 1, . . . , n. For example, Figure 27 depicts a
G16,16 mesh.

Given the graph G2n,2n, we define three extended graphs A2n,2n, B2n,2n, and
C2n,2n as follows:

A2n,2n
def
= (VA, EA), whereVA = VG

⋃
Lleft

⋃
Lbottom ,(A.1)

B2n,2n
def
= (VB , EB), whereVB = VG

⋃
Lleft

⋃
Lbottom

⋃
Lright ,(A.2)

C2n,2n
def
= (VC , EC), whereVC = VG

⋃
Ltop

⋃
Lleft

⋃
Lbottom

⋃
Lright ,(A.3)

where

Lleft = {(i, 0)2 | i = 1, 2, . . . , n},(A.4)

Lright = {(i, n)2 | i = 1, 2, . . . , n},(A.5)

Ltop = {(0, j)1 | j = 1, 2, . . . , n},(A.6)

Lbottom = {(n, j)1 | j = 1, 2, . . . , n},(A.7)

and EA, EB , and EC are the sets of edges that connect VA, VB , and VC by a grid of
the type shown in Figure 27. For example, for n = 8, A16,16, B16,16, and C16,16 are
depicted in Figures 28, 29, and 30, in which extended boundaries are distinguished
by being enclosed in ellipses.

The reason that we need these extended graphs in our analysis can be illustrated
as follows. As we described in section 4, the graph G16,16 can be separated into four
subgraphs, each of which is a G8,8, by separators (4, j)1, j = 1, . . . , 8, followed by
(i, 4)2, i = 5, . . . , 8, and (i, 4)2, i = 1, . . . , 4. The order of the graph separators is
just the reverse of the order assigned to the rows and columns in the matrix. It is
well known that, in Cholesky factorization (CF), eliminating a node of degree d (i.e.,
the number of nodes directly connected to it) costs Km = d(d + 3)/2 multiplies and
requires Ks = d + 1 storage. In the next stage the case is different from that of G8,8

642 DONALD GOLDFARB AND WOTAO YIN

Fig. 27. G16,16. Fig. 28. A16,16.

Fig. 29. B16,16. Fig. 30. C16,16.

since, for example, the subgraph G8,8 in the upper right corner of G16,16 is connected
to the nodes (4, j)1, j = 5, . . . , 8, and (i, 4)2, i = 1, . . . , 4, which are the bottom
and left extended boundaries of G8,8. Therefore, we need to consider separating A8,8

instead of G8,8. Since applying any rotation or reflection to A8,8 does not change the
multiplication and storage costs of CF, separating any of the other three subgraphs
of G16,16 is essentially the same as separating A8,8. Similar remarks apply to any
rotation or reflection of A2n,2n, B2n,2n, and C2n,2n.

Let μ(·) denote a function of a graph whose value gives the complexity of applying
CF to a matrix corresponding to that graph. Specifically, we use μm(·) and μs(·) to
present the multiplication cost and the storage cost, respectively. In the divide and
conquer approach, the complexity of applying CF to G2n,2n can be calculated by the
recursion

μ(G2n,2n) = 4μ(An,n) + μ(SG
2n,2n),(A.8)

where SG
2n,2n is defined as the separator of G2n,2n.

Following similar arguments, one can divide each of A2n,2n, B2n,2n, and C2n,2n

into 4 subgraphs and derive the following recursions:

μ(A2n,2n) = μ(An,n) + 2μ(Bn,n) + μ(Cn,n) + μ(SA
2n,2n),(A.9)

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 643

μ(B2n,2n) = 2μ(Bn,n) + 2μ(Cn,n) + μ(SB
2n,2n),(A.10)

μ(C2n,2n) = 4μ(Cn,n) + μ(SC
2n,2n).(A.11)

The next step is to calculate μ(SG
2n,2n), μ(SA

2n,2n), μ(SB
2n,2n), and μ(SC

2n,2n). Take

μ(SG
16,16), for example. Recall that we eliminate (i, 4)2, i = 1, . . . , 4, followed by

(i, 4)2, i = 5, . . . , 8, and (4, j)1, j = 1, . . . , 8. At the time we eliminate (1, 4)2, all
nodes except for those in SG

2n,2n are eliminated. Therefore, (1, 4)2 is connected to
(i, 4)2, i = 2, . . . , 4, and (4, j)1, j = 1, . . . , 8. Therefore, d(1,4)2 = 3 × (n/2) − 1,
where n = 8. Next, (2, 4)2 is eliminated with d(2,4)2 = 3 × (8/2) − 2. When we
eliminate (4, 4)2, it has degree of 3× (8/2)−4 = 8 since it is connected to eight nodes
(4, j)1, j = 1, . . . , 8. Hence, the sums of d and d2 for G2n,2n’s separator (i, n/2)2,

i = 1, . . . , n/2, are given by
∑3n/2−1

j=n j and
∑3n/2−1

j=n j2, respectively. By symmetry,

this is also true for the separator (i, n/2)2 for i = n/2 + 1, n/2 + 2, . . . , n. Last, we
eliminate the n nodes (n/2, j) for j = 1, 2, . . . , n. Whenever we eliminate one of them,
it is connected to all the nodes to be eliminated. Therefore, for these last n nodes,
the sums of d and d2 are given by

∑n−1
j=0 j and

∑n−1
j=0 j2, respectively. Altogether,

∑
v∈SG

2n,2n

d2
v = 2

3n/2−1∑
j=n

j2 +

n−1∑
j=0

j2 =
23

12
n3 + O(n2),(A.12)

∑
v∈SG

2n,2n

dv = 2

3n/2−1∑
j=n

j +

n−1∑
j=0

j =
7

4
n2 + O(n),(A.13)

where the first summand is for nodes (i, n/2)2 for i = 1, . . . , n, and the second one
for nodes (n/2, j)1 for j = 1, . . . , 8. Consequently,

μm(SG
2n,2n) =

∑
v∈SA

2n,2n

dv(dv + 3)/2 =
23

24
n3 + O(n2),(A.14)

μs(S
G
2n,2n) =

∑
v∈SA

2n,2n

(dv + 1) =
7

4
n2 + O(n).(A.15)

We skip the detailed analysis but just list the results for A, B, and C below:

∑
v∈SA

dv =

2n−1∑
j=3n/2

j +

5n/2−1∑
j=2n

j +

3n−1∑
j=2n

j,(A.16)

μm(SA
2n,2n) =

125

24
n3 + O(n2),(A.17)

μs(S
A
2n,2n) =

9

2
n2 + O(n);(A.18)

∑
v∈SB

dv = 2

3n−1∑
j=5n/2

j +

4n−1∑
j=3n

j,(A.19)

μm(SB
2n,2n) =

239

24
n3 + O(n2),(A.20)

μs(S
B
2n,2n) =

25

4
n2 + O(n);(A.21)

644 DONALD GOLDFARB AND WOTAO YIN

∑
v∈SC

dv = 2

7n/2−1∑
j=3n

j +

5n−1∑
j=4n

j,(A.22)

μm(SC
2n,2n) =

371

24
n3 + o(n3),(A.23)

μs(S
C
2n,2n) =

31

4
n2 + o(n2).(A.24)

While SG
2n,2n and SC

2n,2n are eliminated in the order of the column nodes (·, n/2)2

followed by the row nodes (n/2, ·)1, we eliminate SB
2n,2n in the order of the row nodes

(n/2, ·)1 followed by the column nodes (·, n/2)2. Moreover, we eliminate SA
2n,2n by

(i, n/2)2 for i = 1, . . . , n/2,

(n/2, j)1 for i = n/2 + 1, . . . , n,

(n/2, j)1 for i = 1, . . . , n/2,

(i, n/2)2 for i = n/2 + 1, . . . , n,

in this order. This approach gives a better result.
Given μ(SG

2n,2n), μ(SA
2n,2n), μ(SB

2n,2n), and μ(SC
2n,2n), we can solve from the

above recursions (see [18]) that the multiplication cost of applying CF to G2n,2n

is 943n3/84 + O(n2 log2 n) and the storage cost is (31/4)n2 log2 n + O(n2). Similar
results can be derived for matrices whose adjacency graphs have the form shown in
Figure 2.

Acknowledgments. We would like to thank Stanley Osher for introducing us
to total variation image restoration and for many helpful and stimulating discussions,
and Jinjun Xu for making his PDE codes available to us.

REFERENCES

[1] F. Alizadeh and D. Goldfarb, Second-order cone programming, Math. Program., 95 (2003),
pp. 3–51.

[2] F. Alizadeh and S. Schmieta, Optimization with Semidefinite, Quadratic, and Linear Con-
straints, Technical report, RUTCOR, Rutgers University, Piscataway, NJ, 1997.

[3] K.D. Andersen, E. Christiansen, A.R. Conn, and M.L. Overton, An efficient primal-dual
interior-point method for minimizing a sum of Euclidean norms, SIAM J. Sci. Comput., 22
(2000), pp. 243–262.

[4] G. Aubert and P. Kornprobst, Mathematical Problems in Image Processing, Appl. Math.
Sci. 147, Springer, New York, 2002.

[5] A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imag-
ing Vis., 20 (2004), pp. 89–97.

[6] A. Chambolle and P.-L. Lions, Image recovery via total variation minimization and related
problems, Numer. Math., 76 (1997), pp. 167–188.

[7] R. Chan, T. Chan, and H.-M. Zhou, Continuation Method for Total Variation Denoising
Problems, CAM Report 95-18, UCLA, 1995.

[8] T. Chan and S. Esedoglu, Aspects of Total Variation Regularized L1 Function Approximation,
CAM Report 04-07, UCLA, 2004.

[9] T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-
based image restoration, SIAM J. Sci. Comput., 20 (1999), pp. 1964–1977.

[10] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal., 10
(1973), pp. 345–363.

[11] D. Goldfarb and K. Scheinberg, Numerically Stable Product-Form Cholesky (LDLT) Fac-
torization Based Implementations of Interior Point Methods for Second-Order Cone Pro-
gramming, CORC Report TR-2003-05, IEOR Department, Columbia University, New York,
2003.

SOCP METHODS FOR TOTAL VARIATION IMAGE RESTORATION 645

[12] M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally
constrained optimization problem, SIAM J. Appl. Math., 64 (2004), pp. 1311–1333.

[13] M. Hintermüller and G. Stadler, An Infeasible Primal-Dual Algorithm for TV -Based inf-
Convolution-type Image Restoration, Technical report TR04-15, CAAM Department, Rice
University, Houston, TX, 2004.

[14] M. Lysaker, A. Lundervold, and X.-C. Taj, Noise removal using fourth-order partial differ-
ential equations with applications to medical magnetic resonance images in space and time,
IEEE Trans. Image Process., 12 (2003), pp. 1579–1590.

[15] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Univ.
Lecture Ser. 22, AMS, Providence, RI, 2002.

[16] S. Osher, A. Solé, and L. Vese, Image decomposition and restoration using total variation
minimization and the H−1 norm, Multiscale Model. Simul., 1 (2003), pp. 349–370.

[17] I. Pollak, A. Willsky, and Y. Huang, Nonlinear evolution equations as fast and exact solvers
of estimation problems, IEEE Trans. Signal Process., 53 (2005), pp. 484–498.

[18] D. Rose and G. Whitten, A recursive analysis of dissection strategies, in Sparse Matrix
Computations, Academic Press, New York, 1976, pp. 59–84.

[19] L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms,
Phys. D, 60 (1992), pp. 259–268.

[20] D. Strong and T. Chan, Edge-preserving and scale-dependent properties of total variation
regularization, Inverse Problems, 19 (2003), pp. 165–187.

[21] L. Vese, A study in the BV space of a denoising-deblurring variational problem, Appl. Math.
Optim., 44 (2001), pp. 131–161.

[22] L. Vese and S. Osher, Modeling textures with total variation minimization and oscillating
patterns in image processing, J. Sci. Comput., 19 (2003), pp. 553–572.

[23] C.R. Vogel and M.E. Oman, Iterative methods for total variation denoising, SIAM J. Sci.
Comput., 17 (1996), pp. 227–238.

[24] W. Yin, D. Goldfarb, and S. Osher, Total Variation-Based Image Cartoon-Texture Decom-
position, CORC Report, TR-2005-01, IEOR Department, Columbia University, New York,
2005.

