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Abstract. It is known that, given a genus 2 curve C : y2 = f(x), where f(x) is

quintic and defined over a field K, of characteristic different from 2, and given

a homogeneous space Hδ for complete 2-descent on the Jacobian of C, there is
a Vδ (which we shall describe), which is a degree 4 del Pezzo surface defined

over K, such that Hδ(K) 6= ∅ =⇒ Vδ(K) 6= ∅. We shall prove that every

degree 4 del Pezzo surface V , defined over K, arises in this way; furthermore,
we shall show explicitly how, given V , to find C and δ such that V = Vδ, up to

a linear change in variable defined over K. We shall also apply this relationship

to Hürlimann’s example of a degree 4 del Pezzo surface violating the Hasse
principle, and derive an explicit parametrised infinite family of genus 2 curves,

defined over Q, whose Jacobians have nontrivial members of the Shafarevich-

Tate group. This example will differ from previous examples in the literature
by having only two Q-rational Weierstrass points.

1. Introduction

Consider a curve C of genus 2 defined over a field K, of characteristic different
from 2, with a K-rational Weierstrass point. This can be written in the form

(1) C : y2 = f(x) = x5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f(x) ∈ K[x] is a separable polynomial; furthermore, let J = Jac(C) be the
Jacobian of C. Note that C has a unique point at infinity, which will be denoted∞.
Following Chapter 1 of [5], any member of J(K) may be represented by a divisor
class in Pic0

K(C) of the form [P1 + P2 − 2∞], where P1, P2 are (not necessarily
distinct) points on C (including ∞) and either P1, P2 are both K-rational or P1, P2

are quadratic over K and conjugate. For convenience, we shall abbreviate such
a divisor class by {P1, P2}. This representation gives a 1-1 correspondence with
J(K), except that everything of the form {(x, y), (x,−y)} and {∞,∞} must be
identified into a single equivalence class O, which serves as the group identity in
J(K). Define A = K[x]/(f(x)); let θ be the image of x in A, so that A = K[θ] and
{1, θ, . . . , θ4} is a basis of A as a K-vector space, and define

(2) A′ = Ker(NA/K : A∗ → K∗/K∗2).
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Then (see the introduction of [17] or p.152 of [19]) H1(K,J [2]) ' A′/A∗2 and, mak-
ing this identification, the coboundary embedding can be given (see Theorem 1.1
of [17]) as

(3)
µ : J(K) → H1(K,J [2])

{P1, P2} = {(x1, y1), (x2, y2)} 7→ (x1 − θ)(x2 − θ),
except for the special cases when P1 or P2 =∞ or when y1 or y2 = 0. When Pi =∞,
xi − θ should be replaced with 1; see Prop. 3.2 of [17] for what xi − θ should be
replaced with, when yi = 0. Note that H1(K,J [2]) is a standard shorthand notation
for H1(Gal(Ksep/K), J [2](Ksep)).

We recall (see Sec III.1 of [18] or 2.11.2 of [15]) that, given a projective variety X
over K, and given a Galois extension K ′/K, there is a natural map

(4) ψ : {K ′/K-twists of X}/K-isomorphisms→ H1(Gal(K ′/K),Aut(XK′)),

where XK′ denotes X base-extended to K ′. This natural map ψ can be described as
follows. If Y is aK ′/K-twist of X (which comes together with aK ′-isomorphism f :
YK′ → XK′) then the corresponding cocycle is σ 7→ f ◦ σ(f−1). It can be shown
(see Sec III.1 of [18]) that ψ is bijective.

Now let δ ∈ H1(K,J [2]). Note that there is a map J [2](Ksep) → Aut(JKsep)
which sends P to translation-by-P , and this induces a map from H1(K,J [2]) to
H1(K,Aut(J)); let δ̄ denote the image of δ under this map. Let Hδ be a homoge-
neous space in the isomorphism class that corresponds to δ under ψ. Note that Hδ
is defined over K and comes together with a Ksep-isomorphism f : Hδ → J (where
we are using Hδ, J as shorthand for their base extensions to Ksep). An explicit
model for Hδ is given in [9] for the case when all Weierstrass points are defined
over K.

Assume that there is a point D ∈ J(K) such that µ(D) = δ. Then there
exists Q ∈ J(Ksep) such that 2Q = D and such that δ̄ can be represented by the
cocycle: σ 7→ Tσ(Q)−Q, where Tσ(Q)−Q denotes translation by σ(Q) − Q. Then
f−1(−Q) ∈ Hδ(K). Similarly, any member of Hδ(K) gives D ∈ J(K) such that
µ(D) = δ. It follows that

(5) Hδ(K) 6= ∅ ⇐⇒ {D ∈ J(K) : µ(D) = δ} 6= ∅.

To simplify notation, we shall let δ ∈ A′ or A∗ but will also use δ to de-
note its class in A′/A∗2 or A∗/A∗2, respectively, in expressions such as: Hδ,
δ ∈ µ(J(K)), δ = µ(D). The variety Vδ, which we shall shortly define, strictly
speaking depends on the choice of representative δ; however, changing δ mod-
ulo A∗2 only alters Vδ by an invertible linear change of variables over K, and we
are ultimately interested (for our main result) only in Vδ modulo invertible linear
change of variables over K.

Let δ = δ0 + . . .+ δ4θ
4 ∈ A′ and suppose that Hδ(K) 6= ∅ so that, by (5), there

exists D = {(x1, y1), (x2, y2)} which satisfies D ∈ J(K) and µ(D) = δ. Then there
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exist u0, . . . , u4 ∈ K such that

(6) (x1 − θ)(x2 − θ) = δ

(
4∑
i=0

uiθ
i

)2

.

For δ ∈ A′ we define Qδ,i ∈ K[u] = K[u0, . . . , u4] by

δ

(
4∑
i=0

uiθ
i

)2

=
4∑
i=0

Qδ,i(u)θi.

For δ ∈ µ(J(K)) there must then be points on the projective variety

(7) Vδ :
{
Qδ,3(u0, u1, u2, u3, u4) = 0,
Qδ,4(u0, u1, u2, u3, u4) = 0.

The above gives that {D ∈ J(K) : µ(D) = δ} 6= ∅ =⇒ Vδ(K) 6= ∅. Using (5), this
also gives that Hδ(K) 6= ∅ =⇒ Vδ(K) 6= ∅. As we shall soon note, in Lemma 1,
Vδ is a smooth intersection of two quadrics in P4, and so is a degree 4 del Pezzo
surface.

In the next section, we shall not need to appeal to any of the structure of J as
an abelian variety, and indeed we shall need only think of the above as a map that
sends a pair C, δ to Vδ. Our main aim will be to show how, given any degree 4 del
Pezzo surface V , to find C, δ such that V is the same as Vδ (up to linear change
in variable); the algorithm in the next section will not require anything of the
geometry of Hδ or J . For a description of the underlying geometry, see [12],[20]
and Lemma 6.1 of [8].

As stated previously, even without mentioning homogeneous spaces the above
construction associates to a pair C, δ, for δ ∈ A′, a degree 4 del Pezzo surface Vδ.
Note also that this can be extended to any δ ∈ A∗; that is, we can define Vδ, as
above, derived from C, δ, for any δ ∈ A∗. We recall the following result (Lemma 17
in [3]).

Lemma 1. Let C be a curve of genus 2 of the form (1), defined over K, let δ ∈ A∗,
where A = K[θ] = K[x]/(f(x)), let Vδ be as in (7), and let Mδ,3,Mδ,4 be the
symmetric matrices representing the quadrics Qδ,3, Qδ,4, respectively. Then Vδ is
smooth, and so is a degree 4 del Pezzo surface. Furthermore, det(xMδ,3−Mδ,4), the
characteristic polynomial of Vδ, is f(x), up to multiplication by a nonzero constant
and invertible linear change in variable.

Our first aim will be to prove the following converse.

Theorem 2. Let V be any degree 4 del Pezzo surface, defined over K, given as the
smooth intersection of quadrics

(8) V :
{

G(u0, u1, u2, u3, u4) = 0,
H(u0, u1, u2, u3, u4) = 0.
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Then there exists a genus 2 curve C of the form (1), defined over K, and δ ∈ A∗

such that V is the Vδ of (7), up to a linear change in variable which is defined
over K. Furthermore, there exist such C, δ with δ ∈ A′, where A′ is as in (2).

We shall first give the following short proof, due to Alexei Skorobogatov (personal
communication; see also [20]), and then describe the algorithm in the next section.
Proof Let K be a field of characteristic not equal to 2 with separable closure K̄,
and Galois group Γ = Gal(K̄/K). Let V be a del Pezzo surface of degree 4, that is,
a smooth intersection of two quadrics in P4

K . Choose the coordinates in the pencil
of quadrics through V so that the characteristic polynomial f(x) =

∏(
x − θi

)
,

θi ∈ K̄, has degree 5. Then A = K[x]/
(
f(x)

)
is a 5-dimensional étale K-algebra,

that is, A = ⊕ Kj for some field extensions Kj/K.
Consider the finite étale abelian group K-scheme (that is, an abelian group with

an action of Γ) G = RA/K(µ2)/µ2, where RA/K is the Weil restriction of scalars.
The abelian group G(K̄) ∼=

(
Z/2

)4 is generated by five elements of order 2 whose
product is the identity. These generators are permuted by Γ in the same way as
the θi.

Over K̄ the quadrics of the pencil can be simultaneously diagonalized (Prop.
2.1 of [16]). More precisely, we can write P4

K = P
(
RA/KA1

A
)
, and let u be a

variable in A1
A. For an arbitrary del Pezzo surface V of degree 4 with characteristic

polynomial f(x) there exist α, β ∈ A∗ such that V is given by the equations

(9) TrA/K
(
αu2

)
= TrA/K

(
βu2

)
= 0, or, equivalently,

4∑
i=0

αiv
2
i =

4∑
i=0

βiv
2
i = 0,

where (αi) ∈ (K̄)5 is the image of α in A ⊗K K̄ = (K̄)5, and similarly for β.
Here Γ acts on the αi, the βi and the K̄-coordinates vi in the same way it acts on
the θi. We have θi = α−1

i βi, hence θ = α−1β ∈ A∗. The K-group G acts on P4
K by

changing the signs of xi, so G leaves invariant every quadric that contains V , and
thus preserves V .

From (9) it is clear that the natural morphism V → V/G sends u to u2, so
that V/G is a subset of P4

K = P
(
RA/KA1

A
)

with A-coordinate w = u2, given by

(10) TrA/K(αw) = TrA/K(αθw) = 0.

In particular, V/G ∼= P2
K . The linear span L of 1, θ, θ2, θ3 in the vector space A

over K has codimension 1, hence up to a constant from K∗ there is a unique
δ ∈ A∗ such that TrA/K(αδ−1`) = 0 for any ` ∈ L. Then the 3-dimensional
subspace of RA/KA1

A given by (10) is spanned by δ−1, δ−1θ, δ−1θ2, that is, we can
write w = δ−1(t0 + t1θ + t2θ

2), where t0, t1, t2 are coordinates over K. Therefore,
V is given by the vanishing of the θ3 and θ4 terms in

(11) t0 + t1θ + t2θ
2 = δu2 = δ

( 4∑
i=0

uiθ
i
)2

,
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which is equivalent to (6). Now let C be the curve of genus two given by y2 = f(x);
then V is defined by C and δ as in the statement of the theorem. Thus all del Pezzo
surfaces of degree 4 are obtained in this way.

It only remains to show that we can choose δ ∈ A′. Note that replacing δ with
kδ, for any k ∈ K, does not affect Vδ; in particular, we can take k = NA/K(δ), so
that NA/K(kδ) = k6, giving kδ ∈ A′, as required. �

Our aim in the next section will be to provide an explicit and straightforward
route from any such V to C, δ; this will ease the work of others who wish to use the
literature on degree 4 del Pezzo surfaces and apply it to Shafarevich-Tate groups
of Jacobians. To illustrate this, we shall then consider an example of Hürlimann
(given in [10] and Example 15.7 of [7]), and derive an explicit parametrised infinite
family of genus 2 curves, defined over Q, whose Jacobians have nontrivial members
of the Shafarevich-Tate group.

2. Deriving C and δ from the Degree 4 del Pezzo Surface

Given V as in (8), a degree 4 del Pezzo surface defined over K, we know from
Lemma 1 that when V does arise as claimed in Theorem 2 then we should use the
curve C : y2 = f(x), where f(x) is the characteristic polynomial of V . We shall
describe in this section an algorithm to derive both C and δ; note that this section
also provides an independent proof of Theorem 2.

The defining equations for V might not immediately be in the form Vδ for a
given C, δ; it might first be necessary to change variables and change defining equa-
tions. Our strategy is fairly straightforward; given V , we first change variables over
a field extension L so that the defining equations are simultaneously diagonalised;
we then show C, δ exist over L; we then change variables again to force C, δ to be de-
fined over K; finally we force δ ∈ A′, rather than merely A∗. There will be a small
amount of finesse here; the standard proof of simultaneous diagonalisability of two
symmetric matrices uses orthonormal changes of basis, which require unnecessary
field extensions. We shall instead use a initial change of basis over K so that one of
the matrices is diagonalised, and then use only the splitting field of f(x) to perform
the simultaneous diagonalisation. It will then be clear how to perform a further
change of variable to obtain C, δ which are defined over K. We first see, given C, δ,
how Vδ appears when diagonalised (see also the proof of Lemma 17 in [3]).

Lemma 3. Let C : y2 = f(x),K, δ ∈ A∗, Vδ, Qδ,3, Qδ,4,Mδ,3,Mδ,4 be as in Lemma 1.
Let L be the splitting field of the quintic f(x), and let f(x) = (x− θ0) . . . (x− θ4),
where all θi ∈ L. Then a linear change of variable over L, from u0, . . . , u4 to
v0, . . . , v4, makes Vδ of (7) become:

(12)
4∑
i=0

div
2
i /Ei =

4∑
i=0

diθiv
2
i /Ei = 0,
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where each Ei =
∏
j 6=i(θi− θj) and each di = δ0 + δ1θi+ . . .+ δ4θ

4
i , for i = 0, . . . , 4.

Note that (12) is the same as (9), with αi = di/Ei, βi = diθi/Ei.

Proof Let N denote the 5× 5 Van der Monde matrix (θij), that is,

(13) N =


θ00 θ01 θ02 θ03 θ04
θ10 θ11 θ12 θ13 θ14
θ20 θ21 θ22 θ23 θ24
θ30 θ31 θ32 θ33 θ34
θ40 θ41 θ42 θ43 θ44

 ,

so that (d0, . . . , d4) = (δ0, . . . , δ4)N , and define vi by (v0, . . . , v4) = (u0, . . . , u4)N ,
for i = 0, . . . 4. This linear change in variable (defined over L) puts the two defining
equations for Vδ into the required form. �

The following proves our desired direction, from V to C, δ for the special case
when we are given defining equations of V which are both diagonal.

Lemma 4. Let V be a degree 4 del Pezzo surface, defined by G,H, as in (8), and
suppose that G,H are both diagonal and defined over some field L, of characteristic
different from 2. Then V is, up to a linear change in variable defined over L, the
same as Vδ of (7) for some C : y2 = f(x), where f(x) is quintic in x and defined
over L, and some δ = δ0 + . . .+ δ4θ

4 ∈ L[θ]∗, with δ0, . . . , δ4 ∈ L.

Proof Let G(u) = g0u
2
0 + . . .+ g4u

2
4 and H(u) = h0u

2
0 + . . .+ h4u

2
4 be the diagonal

defining equations of V . Since V is nonsingular, we can arrange that all gi 6= 0.
For i = 0, . . . , 4, let θi = hi/gi, let di denote giEi where Ei =

∏
j 6=i(θi − θj), and

define δi by: (δ0, . . . , δ4) = (d0, . . . , d4)N−1 where, as usual, N is the 5 × 5 Van
der Monde matrix (θij), as in (13). It now follows from Lemma 3 that the given V

is (up to a linear change in variable defined over L) the Vδ of (7) for the curve
C : y2 = f(x) = (x− θ0) . . . (x− θ4) and δ = δ0 + . . .+ δ4θ

4. �

We are now in a position to describe our algorithm for any degree 4 del Pezzo
surface; the following gives explicitly the steps which derive C, δ from V .

Description of the algorithm. Let V be any degree 4 del Pezzo surface, given as the
smooth intersection of quadrics G,H in (8), each defined over K, represented by
the symmetric matrices A0, B0, respectively.

Step 1. First check that A0 has nonzero determinant; if not, then replace A0 by
some A0 + kB0 with nonzero determinant for some k ∈ K (which must exist, by
the nonsingularity of V ). Now perform a congruence diagonalisation of A0 (see
Algorithm 12.1 on p.379 of [13]), in which one forms (A0|I) and applies at each
stage both a row operation and its corresponding column operation to the left hand
matrix, with only the column operation applied to the right hand matrix, until we
obtain (A|P ), with A diagonal. This gives A = PTA0P ; the method guarantees
a change of basis which is defined over K. Also define B = PTB0P , which is
symmetric.
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Step 2. Let θ0, . . . , θ4 be the eigenvalues of A−1B, with corresponding eigen-
vectors z0, . . . , z4 (in column form) chosen so that {(θi, zi) : i = 0, . . . , 4} is in-
variant under the action of the Galois group. Note that the nonsingularity of V
guarantees that θ0, . . . , θ4 are distinct and so z0, . . . , z4 are linearly independent.
Let Q be the 5 × 5 matrix (z0 . . . z4), let D1 be the 5 × 5 diagonal matrix with
diagonal entries θ0, . . . , θ4, and let D2 be the diagonal matrix with diagonal en-
tries zT0 Az0, . . . , z

T
4 Az4. Fix A1 to be any choice of diagonal matrix such that

A2
1 = A−1. The A−1

1 zi, for i = 0, . . . , 4, are the eigenvectors of the symmetric
matrix A1BA1. Then (PQ)TA0(PQ) = QTAQ = (A−1

1 Q)T (A−1
1 Q) = D2 and

(PQ)TB0(PQ) = QTBQ = D2D1 are simultaneously diagonal, and are defined
over L, the splitting field of det(xA−B); in particular, the field of definition of A1

is not required.

Step 3. Now apply Lemma 4 to our diagonalised pair (PQ)TA0(PQ) = D2 and
(PQ)TB0(PQ) = D2D1, defined over L. Following the proof of Lemma 4, for
i = 0, . . . 4 define N as usual to be the Van der Monde matrix (θij) as in (13), and
define

M = PQNT , f(x) = det(xI −A−1B) =
4∏
i=0

(x− θi),

di = (zTi Azi)
∏
j 6=i

(θi − θj), (δ0, . . . , δ4) = (d0, . . . , d4)N−1, δ = δ0 + . . .+ δ4θ
4.

Then f(x),M and all δi are symmetric in θ0, . . . , θ4 and so are defined over K (the
original field of definition of A0, B0), and it follows from Lemma 4 that MTB0M ,
MTA0M give the Vδ for y2 = f(x) and δ ∈ A∗, as required.

As already mentioned, we can finally take k = NA/K(δ), so that NA/K(kδ) = k6,
giving kδ ∈ A′, as required. �

When f(x) is an irreducible quintic, one should leave the θi as variables; the
above steps will then give the δi as symmetric polynomials in the θi, which will
then be polynomials in the coefficients of f(x).

Suppose that C : y2 = f(x), δ and C′ : y2 = g(x), δ′ give the same del Pezzo
surface (up to K-rational linear change of variable), where f(x), g(x) are quintic
and defined over K. Then it can be checked that these are related by g(x) =
`(cx + d)5f

(
φ(x)

)
, where ` ∈ K∗ and φ(x) = (ax + b)/(cx + d) is an invertible

fractional linear transformation, defined over K, and δ′ is the image of δ under the
isomorphism from K[x]/

(
f(x)

)
to K[x]/

(
g(x)

)
induced by x 7→ φ(x). That is to

say, if K[θ] = K[x]/
(
f(x)

)
and K[θ′] = K[x]/

(
g(x)

)
then δ = δ0 + δ1θ + . . .+ δ4θ

4

maps to δ′ = δ0 + δ1φ(θ′) + . . .+ δ4φ(θ′)4.
Note that the above description includes, up to birational equivalence, the curves

in sextic form y2 = `(x− s)f(x), for any ` ∈ K∗, s ∈ K such that f(s) 6= 0; these
are birationally equivalent to y2 = `x5f

(
(sx+ 1)/x

)
. Different values of ` ∈ K give
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quadratic twists (geometrically the same curve), whereas different values of s ∈ K
can give geometrically distinct curves.

3. Worked Examples and a Family of X(J/Q)[2]

As motivation, we first give the following result from [10] (see also Example 15.7
of [7]).

Lemma 5. The Hasse principle is violated by the following degree 4 del Pezzo
surface, defined over Q:

(14) u2
0 − 17u2

1 + 386u2
2 − 34u2

3 − 3u2
4 = 0, u0u2 − 17u1u3 = 0. �

For other examples, due to the Brauer-Manin obstruction, see [1],[11]. The first
equation is already in diagonal form, so that Step 1 is not required. Letting A,B
denote the symmetric matrices for these equations, we apply Step 2 and note that
A−1B has characteristic equation f(x) = (x2−1/1544)(x2−1/8)x with eigenvalues
θ0 = 1/(2

√
386), θ1 = 1/(2

√
2), θ2 = −1/(2

√
386), θ3 = −1/(2

√
2), θ4 = 0; we

use corresponding eigenvectors z0 = (1, 0, 1/
√

386, 0, 0)T , z1 = (0, 1, 0, 1/
√

2, 0)T ,
z2 = (1, 0,−1/

√
386, 0, 0)T , z3 = (0, 1, 0,−1/

√
2, 0)T , z4 = (0, 0, 0, 0, 1)T . After

substituting u0 = v0+v2, u2 = (v0−v2)/
√

386, u1 = v1+v3, u3 = (v1−v3)/
√

2, u4 =
v4, we obtain the following simultaneous diagonalisation, defined over the splitting
field of f(x).

(15)
2v2

0 + 2v2
2 − 34v2

1 − 34v2
3 − 3v2

4 = 0,
(1/
√

386)v2
0 − (1/

√
386)v2

2 − (17/
√

2)v2
1 + (17/

√
2)v2

3 = 0.

Applying Step 3, the di are: d0 = −12/37249, d1 = −204/193, d2 = −12/37249, d3 =
−204/193, d4 = −3/12352, and computing (δ0, . . . , δ4) = (d0, . . . , d4)N−1, where
N = (θij) as in (13), gives

δ = − 3
12352

+
60456960

37249
θ +

697228131
148996

θ2 − 93373857792
37249

θ3 − 280065062019
37249

θ4.

This is not in A′, as NA/K(δ) = −579 modulo squares; so we take instead δ =
−579 δ ∈ A′, which gives the same Vδ. We now have y2 = (x2−1/1544)(x2−1/8)x
and δ for which the example in (14) arises as Vδ. Furthermore, the same Vδ will arise
from y2 = (x2 − 1/1544)(x2 − 1/8)x(x− s), for any s ∈ Q∗. Replacing (x, y) with
(1/2x, y/8x3), letting t = 1/s ∈ Q∗, and noting that Vδ is unaffected by multiplying
the quintic by a member of Q∗, we see that we can take instead the curve

y2 = F`,t(X) = `(x2 − 386)(x2 − 2)(x− t).

Note that A = Q[θ] ' Q(
√

386)×Q(
√

2)×Q. In this representation we obtain, for
{(x1, y1), (x2, y2)} ∈ J(Q),

(16)
µ : {(x1, y1), (x2, y2)}

7→ [(x1 −
√

386)(x2 −
√

386), (x1 −
√

2)(x2 −
√

2), (x1 − t)(x2 − t)].
Using this representation, we can take δ = [193, 17, 1], giving the following result.
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Lemma 6. Let C`,t : Y 2 = F`,t(x), with Jacobian J`,t, and δ be given by

(17) Y 2 = F`,t(x) = `(x2 − 386)(x2 − 2)(x− t), δ = [193, 17, 1] ∈ A′.

Let µ be as defined in (16). Then δ 6∈ imµ = µ
(
J`,t(Q)

)
.

Proof The existence of D ∈ J`,t(Q) such that µ(D) = δ would imply Vδ(Q) 6= ∅.
However, as we have seen, this would give a Q-rational point on (14) which we
know to be impossible from Lemma 5. Hence δ 6∈ imµ. �

This means that δ ∈X(J`,t/Q)[2] precisely when, for all primes p of bad reduc-
tion, at least one of the local solutions to Vδ lifts to a local solution of Hδ. For
example, this happens when ` = 17, t = 1/3.

Lemma 7. Let C17, 13 and δ be as in Lemma 6 with ` = 17, t = 1/3:

C17, 13 : y2 = F17, 13
(x) = 17

(
x2 − 386

)(
x2 − 2

)(
x− 1

3

)
, δ = [193, 17, 1].

Then δ ∈X(J17, 13
/Q)[2].

Proof We first show that δ ∈ S(2)(J17, 13
/Q), the 2-Selmer group, equivalent to Hδ

having points every locally. It is sufficient to check the primes of bad reduction
p = 2, 3, 17, 23, 151, 193,∞. For any prime p, let µp : J17, 13

(Qp)→ H1(Qp, J17, 13
[2])

denote the map of (3), with K replaced by Qp; also let qp denote the natural
injection qp : H1(Q, J17, 13

[2]) → H1(Qp, J17, 13
[2]). Rather than writing out the

equations of Hδ explicitly, a simpler approach is to check, for each p, that there
exists Dp ∈ J17, 13

(Qp) such that µp(Dp) = qp(δ). For p = 2, 3, 151,∞, we can
take Dp to be the identity O. For p = 17, take D17 = {(−s17, 0), (1/3, 0)} ∈
J17, 13

(Q17), where s17 ∈ Q17 satisfies s217 = 2, s17 ≡ 6 (mod 17). For p = 23,
take D23 = {(s23, 0), (4, β)} where s23 ∈ Q23 satisfies s223 = 2, s23 ≡ 5 (mod 23)
and β ∈ Q23 satisfies β2 = F17, 13

(4) = −968660/3. For p = 193, take D193 =
{(s193, 0), (10, γ)} where s193 ∈ Q193 satisfies s2193 = 2, s193 ≡ 52 (mod 193) and
γ ∈ Q193 satisfies γ2 = F17, 13

(10) = −13817804/3. All of these satisfy µp(Dp) =
qp(δ), so that δ = [193, 17, 1] ∈ S(2)(J17, 13

/Q). Furthermore, we already know, from
Lemma 6, that δ 6∈ imµ, so that δ ∈X(J17, 13

/Q)[2], as required. �

This gives rise to the following infinite family of Jacobians with X[2].

Lemma 8. Let C`,t : y2 = `(x2 − 386)(x2 − 2)(x− t), and let J`,t be the Jacobian
of C`,t. Let S = {2, 3, 17, 23, 151, 193,∞}. There exists a nontrivial member of
X(J17k, 13

/Q)[2] when k ∈ Q∗ satisfies:

(i) For all primes q 6∈ S, such that vq(k) is odd:
(

193
q

)
=
(

17
q

)
= 1.

(ii) For all p ∈ S, k ∈ (Q∗p)2. [ including k > 0 from p =∞ ].

Proof From Lemma 6, we have that δ = [193, 17, 1] 6∈ imµ for any k and, from
Lemma 7, that δ ∈ S(2)(J17k, 13

/Q) when k = 1. It is therefore only necessary to
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choose k so that Hδ continues to have solutions at members of S, and at any new
bad primes introduced by k. Since the map µ is only affected by translating some
entries multiplicatively by k, the above conditions on k are sufficient. �

Note that, when k = q prime, (i),(ii) are equivalent to a congruence condition
on q, which immediately gives infinitely many such k (and indeed k can be taken
to be any product of distinct such primes). For curves of this form there is also the
available alternative of trying to show the existence of members of X(J17k, 13

/Q)[2]
by finding the curve D17k, 13

with Richelot isogenous Jacobian (see [2]), when there
might be a difference between the 2-Selmer bounds on the ranks of the Mordell-
Weil groups of the Jacobians of C17k, 13 and D17k, 13

. We find that this applies to the
case k = 1 in the above family; however, it does not apply to the case k = 577,
when there exist nontrivial members of X[2] on both Jacobians.

We can now find a parametrised family of curves y2 = F17k, 13
(x) all of which

are guaranteed to contain a nontrivial member of X(J17k, 13
/Q)[2]. The follow-

ing example is the first using this method to have only two Weierstrass points
(whereas the examples in [3],[4] have three Weierstrass points; see also the exam-
ples in [6],[12],[14]).

Proposition 9. Let C`,t : y2 = `(x2 − 386)(x2 − 2)(x − t) and let J`,t be the
Jacobian of C`,t. There exists a nontrivial member of X(J17k, 13

/Q)[2] for any k
of the form

(18)
k = (wm − w + 1)8 + 105N(wm − w + 1)6 + 2064N2(wm − w + 1)4

+ 6720N3(wm − w + 1)2 + 4096N4,

for any w ∈ Q, where N = 8 · 3 · 17 · 23 · 151 · 193 = 273477912 and m = 52801.
Furthermore, J17k, 13

is absolutely simple.

Proof From Lemma 8, it is sufficient to show that k satisfies conditions (i),(ii). For
reasons which soon will become apparent, we first parametrise r2 = s2− 176, using
r0 = 7, s0 = 15 as a basepoint. This gives: r(z) = (7z2 − 30z + 7)/(z2 − 1) and
s(z) = (15z2 − 14z + 15)/(z2 − 1). Now take:

(19) k =
(
(7z2 − 30z + 7)2 − 17(z2 − 1)2

)
/2 = 16z4 − 210z3 + 516z2 − 210z + 16.

Note that k > 0 as long as z < 0. Suppose q is prime, not in S, such that vq(k)
is odd. Then vq(z) ≥ 0 (since if vq(z) < 0 then vq(16z4) < vq(210z3), vq(516z2),
vq(210z), vq(16) and so, by (19), vq(k) = vq(16z4) = 4vq(2z), giving 4|vq(k), a
contradiction). Now, vq(z2 − 1) = vq(7z2 − 30z + 7), since otherwise vq(k) would
be even; say that r = vq(z2 − 1) = vq(7z2 − 30z + 7). Then vq(k) ≥ 2r and so
vq(k) ≥ 2r + 1, since vq(k) is odd. So, 17 ≡ ((7z2 − 30z + 7)/(z2 − 1))2 (mod q),
giving

(
17
q

)
= 1. Also,

193 = 17 + 176 ≡
(7z2 − 30z + 7

z2 − 1

)2

+ 176 =
(15z2 − 14z + 15

z2 − 1

)2

,
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giving
(

193
q

)
= 1, so that any k in (19) satisfies (i) in Lemma 8. For (ii), it is

sufficient that z < 0 (so that k > 0), z ∈ pZp for all p ∈ S\{2} (so that, from (19),
k ∈ Z∗p and k ≡ 16 mod p, giving k ∈ (Q∗p)2), and z ∈ 64Z2 (so that k = 16k′,
where k′ ∈ Z∗2 and k′ ≡ 1 (mod 8), giving k ∈ (Q∗2)2). It is sufficient to take
z = −64 ·3 ·17 ·23 ·151 ·193 ·u2, as long as u ∈ Zp for all p ∈ S. It is then sufficient
to take u = 1/(wm − w + 1), where m = 52801, which is obtained by taking the
smallest integer m > 1 satisfying m ≡ 1 (mod p − 1), for all p ∈ S, that is to say:
m = 1 + lcm(2 − 1, 3 − 1, 17 − 1, 23 − 1, 151 − 1, 193 − 1) = 52801. Substituting
these into (19) and multiplying by 1

4 (wm−w+ 1)8 ∈ (Q∗)2 gives (18), as required.
The fact that J17k, 13

is absolutely simple can be shown, using the method in [21]
(also described on p.158 of [5]) at p = 29. �

The author thanks Ronald van Luijk, Ed Schaefer, Alexei Skorobogatov and
Damiano Testa for helpful discussions.
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