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bstract

Accurate and robust methods for automatically tracking rolling leukocytes facilitate inflammation research as leukocyte motion is a primary
ndicator of inflammatory response in the microvasculature. This paper reports on an affine transformation invariance approach we proposed to
rack rolling leukocyte in intravital microscopy image sequences. The method is based on the affine transformation invariance property, which
nables the accommodation of linear affine transformations (translation, rotation, and/or scaling) of the target, and a particle filter that overcomes
he effect of image clutter. In our data set of 50 sequences, we compared the new approach with an active contour tracking method and a Monte
arlo tracker. With the manual tracking result provided by an operator as the reference, the root mean square errors for the active contour tracking
ethod, the Monte Carlo tracker and the affine transformation invariance approach were 0.95 �m, 0.79 �m and 0.74 �m, respectively, and the

ercentage of frames tracked were 72%, 75% and 89%, respectively. The affine transformation invariance approach demonstrated more robust
being able to successfully locate target leukocyte in more frames) and more accurate (lower root mean square error) tracking performance. We
lso separately studied the ability of the affine transformation invariance approach to track a dark target leukocyte and a bright target leukocyte
y using the number of frames tracked as an evaluation measure. Dark target leukocyte possesses similar image intensity to the background,
aking it difficult to be located. In 20 sequences where the target leukocyte was dark, the affine transformation invariance approach tracked more

rames in 18 sequences and fewer frames in 2 sequences when compared with the active contour tracking method. In comparison with the Monte
arlo tracker, the affine invariance method tracked more frames in 9 sequences, the same number of frames in 7 sequences and fewer frames in 4
equences. In tracking a bright target leukocyte in 30 sequences, the affine transformation invariance approach demonstrated superior performance
n 7 sequences and inferior performance in 1 sequence when compared with the active contour tracking method. It outperformed the Monte Carlo
racker in 15 sequences and underperformed in 1 sequence.

2008 Elsevier Ltd. All rights reserved.
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. Introduction

Leukocyte rolling behavior plays an important role in inflam-
ation research [1–3]. The velocity distribution of rolling

eukocytes indicates the intensity of inflammation response [4].

racking the movement of rolling leukocytes and thus acquir-

ng their velocity distribution contribute to the understanding of
he inflammation mechanism and to the development of drugs
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cyte rolling velocity

hat treat inflammatory disease [5,6]. The de facto standard for
ntravital (living animal) microscopy is manual tracking of cells,
here an operator manually identifies an individual cell in a

equence of recorded frames and the cell velocity is computed as
he leukocyte displacement between frames divided by elapsed
ime [7]. This conventional manual tracking method is not only
ime-consuming but also subject to operator bias. Our aim is
o develop an accurate and robust approach to automatically
racking rolling leukocytes in intravital image sequences.

Several approaches have been proposed to automatically
rack cells in image sequences. Methods proposed in the litera-

ure [8–10] were developed for tracking cells in vitro (in a flow
hamber). Tracking leukocytes in vivo (in a living body) is more
hallenging due to moving background and image clutter [11].
ato et al. proposed a method, in which a moving leukocyte was
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xtracted as traces in spatiotemporal images [12]. This method
s only able to track leukocytes rolling near the blood vessel
all. Ray et al. proposed an active contour-based method,
hich located moving cells through minimizing an energy

unction defined on the basis of the smoothness, shape, size,
ampling and gradient constraints [13]. However, given image
lutter near the cell, such as strong edges of the blood vessel,
he edge constraint becomes dominant in the energy function
nd “distracts” the contour from the intended target. A Monte
arlo tracker was developed by Cui et al., which estimated the

eukocyte centroid by using a weighted sample set [14]. In com-
arison with the active contour tracking solution developed in
13], which incorporated the gradient vector flow (GVF) as the
xternal force [15], the Monte Carlo tracker demonstrated more
ccurate and more robust tracking performance and was less
ffected by the strong edge of the blood vessel. Reyes-Aldasoro
t al. proposed a keyhole tracking algorithm to track red
lood cells [16]. First, a sequence of binary images containing
egmented foreground objects were obtained by preprocessing
ideos, and then tracks were formed by linking the objects in
ontiguous frames. Finally, the links in tracks resulting from
oise or joined sections that were considered to be split sections
rom a single track were removed by post-processing.

In our intravital microscopy image sequences, leukocytes
ere observed to rotate and to move in and out of the focal plane

changing scale) while interacting with endothelium (vessel
all). This observation indicates that the leukocyte movement

nvolved is not limited to sole translation but also includes rota-
ion and scaling. Neither of the methods described above took
nto account the latter two movements. Furthermore, a leukocyte
ppears dark if it is out of the focal plane. The image intensity
f a dark leukocyte is similar to that of the background and the
dge of its boundary is not always very distinctive, making a
ark leukocyte difficult to be located.

In this paper, we report on an affine transformation invariance
pproach to tracking a single rolling leukocyte in intravital image
equences. The method is based on the affine transformation
nvariance property, which enables the accommodation of linear
ffine transformations (translation, rotation, and/or scaling) of
he target, and a particle filter that overcomes the effect of image
lutter. We compared the performance of this affine transforma-
ion invariance approach with the active contour tracking method
13] and the Monte Carlo tracker [14] in terms of an accuracy
easure and a robustness measure. We also separately studied

he ability of the affine transformation invariance approach to
ocate a dark target leukocyte and a bright target leukocyte.

Target tracking can be formulated as a Bayesian sequential
stimation problem, in which a stochastic state transition model
s built to approximate the evolution of the target state (position,
elocity, shape, etc.). An observation model establishes the rela-
ionship between the target state and the measurement (acquired
rom the image), and the tracking problem boils down to estimat-
ng the unknown posterior density of the target state recursively

ver time conditioned on available observations [17]. In a dense
mage clutter environment, the image clutter may mimic the
mage intensity features of the target, making the observation
ensity non-Gaussian [18,19]. In this case, there is no closed
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orm analytic solution for the Bayesian sequential estimation.
ence, we must resort to numerical methods [20]. The parti-

le filter is a technique that implements the Bayesian sequential
stimation via Monte Carlo simulation [21]. It generates a set of
articles (samples) to approximate the posterior density of the
arget state, where the posterior probability is simply the prob-
bility that the target has a particular state (position, velocity or
hape, for example) given the observations (the images acquired
p to, and including, the current frame in an image sequence).
particle filter stochastically explores multiple hypotheses and

rovides robust performance in highly dynamic environments.
In our proposed affine transformation invariance method, an

nergy function is defined such that locating the target bound-
ry in subsequent frames is equivalent to minimization of the
nergy function. The energy function is based on the shape con-
traint, the edge constraint, and the constraints derived from
he affine transformation invariance property. To estimate an
ptimal solution to minimize the energy function, a particle fil-
er is utilized. The affine transformation invariance approach is
ble to accommodate linear affine transformations of the tar-
et without requiring the determination of the specific forms of
ransformations and the constituent parameters. This is differ-
nt from traditional methods, which are transformation specific
nd require determination of the forms of the involved trans-
ormations and computation of the corresponding constituent
arameters [22].

. Materials and methods

.1. Data set

Our data set included 50 intravital microscopy video
equences obtained from the Biomedical Engineering Depart-
ent at the University of Virginia. In the intravital small

nimal experiments, leukocytes were imaged using transil-
uminated specimens. Video recordings were made by a
harge-coupled device (CCD) camera attached to an intrav-
tal microscope, which had a water immersion objective
W25/0.6 numerical aperture modified for telescopic imaging
6]. The video frames were recorded at a spatial resolution of
40 × 480 pixels, where pixel-to-�m ratio was 4.94 pixels/�m
orizontally and 4.68 pixels/�m vertically. The temporal resolu-
ion was 30 frames/s. Each video sequence included 91 frames.
n each sequence, a single leukocyte was selected as a “target
eukocyte”. An operator manually identified the centroid of the
arget leukocyte in all frames by using a graphical user inter-
ace. The centroid was regarded as the groundtruth position of
he target leukocyte in each frame and was used to evaluate the
erformance of the tracking method.

In intravital microscopy images, we observed that if a leuko-
yte is within the focal plane, the cell appears bright. Otherwise,
t may appear dark with severely reduced contrast. The image
ntensity of a dark leukocyte is similar to that of the background

nd its boundary is not as distinctive as that of a bright leukocyte,
hich makes locating a dark leukocyte difficult. Among all 50
ideo sequences, there were 20 sequences in which the target
eukocyte was dark and 30 sequences in which the target leuko-
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yte was bright (Here, the contrast reversal was due to imaging
way from the focal plane.).

We compared the proposed affine transformation invari-
nce approach with an active contour tracker using GVF as
he external force model [13] and a Monte Carlo tracking
pproach [14]. Each tracking method was evaluated by using
he groundtruth position as the reference. In addition to evaluate
ach tracking method in all 50 sequences, we also separately
ompared their ability to track the dark target leukocyte in
0 sequences and to track the bright target leukocyte in 30
equences. All the tracking algorithms were executed with MAT-
AB 7.3 on a PC with a Pentium 4 (2.8 GHz) CPU and 1 GB of
AM.

.2. Method

The proposed affine transformation invariance approach
ssumes that the centroid and the boundary of the target leuko-
yte in the first frame are known. In each subsequent frame,
he centroid and the boundary of the target leukocyte are auto-

atically located by minimizing an energy function, which
s based on the shape constraint, the edge constraint, and the
onstraints derived from the affine transformation invariance
roperty. To estimate an optimal solution that minimizes the
nergy function, a particle filter is employed. In our imple-
entation, the target leukocyte boundary in the first frame was

utomatically segmented by using the gradient inverse coeffi-
ient of variation (GICOV) method, which was developed in
23]. GICOV was performed by using the leukocyte centroid
hat was manually identified by an operator as initialization,
hich was the only manual input required in our implementa-

ion.

.2.1. Affine transformation invariance property
We represent the leukocyte contour by an ordered set of ver-

ices. Each vertex can be represented as a linear combination of
ts neighboring two vertices. Considering all vertices, the rela-
ionship that each vertex is written as a linear combination of its
eighboring two vertices can be represented by a matrix, which is
alled the shape matrix. The shape matrix is invariant under lin-
ar affine transformations [24]. This property is called the affine
ransformation invariance property, and provides the theoreti-
al backbone for the affine transformation invariance approach
o cell tracking.

Suppose that (xc,yc) is both the object centroid and the
rigin of the coordinate system. Let [Lx,Ly] denote a set
f ordered vertices representing the object contour, where
x = [lx,1,lx,2, . . ., lx,n]T, and Ly = [ly,1,ly,2, . . ., ly,n]T, as shown in
ig. 1. The vertex (lx,i,ly,i), i = 1, 2, . . ., n, represents coordi-
ates of the ith vertex with respect to the object centroid, i.e.,
lx,i + xc,ly,i + yc) represents the ith vertex in the true image coor-
inate system. Each vertex (ly,i,ly,i) can be written as a linear

ombination of its neighboring two vertices:

lx,i

ly,i

]
= αi

[
lx,iα

ly,iα

]
+ βi

[
lx,iβ

ly,iβ

]
, (1)

T
k
a
c

Fig. 1. The centroid and boundary points of the target.

here αi and βi are constant coefficients, and

α =
{

i − 1, i > 1,

n, i = 1,
iβ =

{
i + 1, i < n,

1, i = n.

Considering all vertices and representing each vertex as a
inear combination of its neighboring two vertices, we have the
ollowing relationship,

Lx = 0, (2)

Ly = 0, (3)

here

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −β1 0 0 . . . −α1

−α2 1 −β2 0 . . . 0
...

...
...

...
. . .

...

0 0 −αn−1 1 −βn−1

−βn 0 . . . . . . −αn 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

he matrix A is called the shape matrix. Lai and Chin proved that
he shape matrix is invariant under linear affine transformations
24].

The shape matrix A can be derived from the set of vertices
hat represents the object boundary if the latter is available. Eq.
1) can be reformulated as

lx,i

ly,i

]
=
[

lx,iα lx,iβ

ly,iα ly,iβ

][
αi

βi

]
. (4)

f (lx,i,ly,i), (lx,iα , ly,iα ) and (lx,iβ , ly,iβ ) are known with
x,iα ly,iβ /= lx,iβ ly,iα , αi and βi can be derived from

αi

βi

]
=
[

lx,iα lx,iβ

ly,iα ly,iβ

]−1 [
lx,i

ly,i

]
. (5)

he shape matrix A can be constructed from the values of (αi,
i), i = 1, 2, . . ., n.

In leukocyte tracking, we assume that the centroid and the
oundary of the target leukocyte in the first frame are known.

hat is, the set of vertices representing the leukocyte boundary is
nown. The shape matrix A can thus be computed by following
bove derivations. In the subsequent frames, even if the leuko-
yte translates, rotates, or scales, the shape matrix A remains
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nvariant. That is, the following relationship still holds:

L′
x = 0, (6)

L′
y = 0, (7)

here [L′
x, L

′
y] is the updated set of vertices representing the

eukocyte boundary after transformations.

.2.2. Energy function
To locate the target leukocyte, we defined an energy function,

hich is based on the shape constraint, the edge constraint, and
he constraints derived from the affine transformation invariance
roperty. In leukocyte tracking, we used (Lx,Ly,xc,yc) to denote
he position of a target leukocyte in an image, where (xc,yc)
s the centroid of the leukocyte and (Lx,Ly) denotes the set of
ertices representing the leukocyte boundary with (xc,yc) as the
rigin of the coordinate system. Consequently, (Lx + xc,Ly + yc)
epresents the leukocyte boundary in the true image coordi-
ate system, where Lx + xc = [lx,1 + xc,lx,2 + xc,. . .,lx,n + xc]T and
y + yc = [ly,1 + yc,ly,2 + yc,. . .,ly,n + yc]T. The normal directional

mage intensity gradient along the leukocyte boundary was
efined as

(Lx + xc, Ly + yc) = ∇I(Lx + xc, Ly + yc)

·N(Lx + xc, Ly + yc), (8)

here �I(Lx + xc,Ly + yc) represents the image intensity gradi-
nt at (Lx + xc,Ly + yc) and N(Lx + xc,Ly + yc) is the unit outward
ormal to the contour (Lx + xc,Ly + yc).

Let the position of a target leukocyte in frame t be repre-
ented by (Lx,t,Ly,t,xc,t,yc,t). To track the leukocyte, we defined
n energy function such that locating the leukocyte position
n frame t + 1 is equivalent to the minimization of the energy
unction:

(Lx, Ly, xc, yc) = (Lx − Lx,t)
T(Lx − Lx,t)

+(Ly − Ly,t)
T(Ly − Ly,t)

+γ(Z(Lx + xc, Ly + yc) − F )T

× (Z(Lx + xc, Ly + yc) − F ), (9)

ubject to the constraints

Lx − Lx,t)
TATA(Lx − Lx,t) = 0, (10)

nd

Ly − Ly,t)
TATA(Ly − Ly,t) = 0, (11)

here F is the normal directional image intensity gradient along
he leukocyte boundary and γ is a constant coefficient. In our
mplementation, F was the normal directional image intensity
radient along the target leukocyte boundary in the first frame.

In our data set, the elapsed time between two consecutive
rames was 1/30-s. In this short time period, the shape of the

eukocyte was not observed to change significantly. The first two
erms in Eq. (9) constrain (Lx,Ly) to remain similar to (Lx,t,Ly,t).
s the image intensity inside the leukocyte differed from that
f the background, the leukocyte edge information (the image

s
l

t
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ntensity gradient along the leukocyte boundary) was used as an
mage intensity feature to locate the leukocyte. The third term
n Eq. (9) indicates that the normal directional image intensity
radient along the contour (Lx + xc,Ly + yc) is expected to match
hat along the leukocyte boundary. Eqs. (10) and (11) are derived
rom the affine transformation invariance property. Under lin-
ar affine transformations, in frame t + 1, (Lx,Ly) is expected to
atisfy the affine transformation invariance constraints, that is,
Lx = 0 and ALy = 0. In frame t, ALx,t = 0 and ALy,t = 0. Conse-
uently, A(Lx − Lx,t) = 0 and A(Ly − Ly,t) = 0 are obtained, from
hich Eqs. (10) and (11) can be derived.
Eqs. (10) and (11) can be incorporated into Eq. (9) by using

he Lagrangian formulation,

(Lx, Ly, xc, yc) = λ(Lx − Lx,t)
TATA(Lx − Lx,t)

+λ(Ly − Ly,t)
TATA(Ly − Ly,t)

+(Lx − Lx,t)
T(Lx − Lx,t)

+(Ly − Ly,t)
T(Ly − Ly,t)

+γ(Z(Lx + xc, Ly + yc) − F )T

× (Z(Lx + xc, Ly + yc) − F )

= (Lx − Lx,t)
T(λATA + I)(Lx − Lx,t)

+(Ly − Ly,t)
T(λATA + I)(Ly − Ly,t)

+γ(Z(Lx + xc, Ly + yc) − F )T

× (Z(Lx + xc, Ly + yc) − F ), (12)

here λ is the Lagrangian multiplier. The energy function was
ased on the affine transformation invariance constraint, the tar-
et leukocyte shape constraint and the target leukocyte edge
onstraint. The parameters λ and γ are weight coefficients of
he affine transformation invariance constraint and the edge con-
traint, respectively. As a result, locating the target leukocyte in
rame t + 1 can be performed by minimizing the energy function.
hat is,

Lx,t+1, Ly,t+1, xc.t+1, yc,t+1) = arg min
Lx,Ly,xc,yc

E(Lx, Ly, xc, yc).

(13)

.2.3. Estimation of the optimal solution
Since the energy function Eq. (12) is non-convex, its opti-

al solution cannot be written in a closed form and solved in a
traightforward way. We applied a particle filter to estimate the
ptimal solution. In frame t + 1, to locate the target leukocyte,

e generated a sample set {L(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1}

M

m=1
,

here M is the size of the sample set, in such a way that the
ample with the largest weight makes the energy function mini-
al. The maximum a posteriori (MAP) estimation of the sample
et was thus used as the optimal solution and the estimated target
eukocyte position.

In the Bayesian sequential estimation scenario, the
arget state was defined as the target leukocyte posi-
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ion, that is, Xt+1 = (Lx,t+1,Ly,t+1,xc,t+1,yc,t+1). A particle filter
enerated a sample set to approximate the posterior
ensity p(Lx,t+1,Ly,t+1,xc,t+1,yc,t+1|Z1:t+1), where Z1:t+1 repre-
ents the image intensity observation from frame 1 to
rame t + 1. Suppose that, in frame t, the sample set

L
(m)
x,t , L

(m)
y,t , x

(m)
c,t , y

(m)
c,t , π

(m)
t }M

m=1 approximates the posterior

ensity p(Lx,t,Ly,t,xc,t,yc,t|Z1:t), where π
(m)
t is the associated

eight of the sample (L(m)
x,t , L

(m)
y,t , x

(m)
c,t , y

(m)
c,t ). The posterior den-

ity p(Lx,t+1,Ly,t+1,xc,t+1,yc,t+1|Z1:t+1) can be expressed as

(Lx,t+1, Ly,t+1, xc,t+1, yc,t+1|Z1:t+1)

∝ p(Zt+1|Lx,t+1, Ly,t+1, xc,t+1, yc,t+1)

×
M∑

m=1

p(Lx,t+1, Ly,t+1, xc,t+1, yc,t+1|Lx,t = L
(m)
x,t ,

Ly,t = L
(m)
y,t , xc,t = x

(m)
c,t , yc,t = y

(m)
c,t )π(m)

t . (14)

Under linear affine transformations, the relationship of the
arget leukocyte position in two consecutive frames (frame t and
rame t + 1) can be formulated as

Lx,t+1

Ly,t+1

xc,t+1

yc,t+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

ρx,t+1 cos θt+1 −ρx,t+1 sin θt+1 0 0

ρy,t+1 sin θt+1 ρy,t+1 cos θt+1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

Lx,t

Ly,t

xc,t

yc,t

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

	xc,t+1

	yc,t+1

⎤
⎥⎥⎥⎦ , (15)

here ρx,t+1 and ρy,t+1 represent the scaling coefficient along
he horizontal and the vertical direction, respectively, 	xc,t+1
nd 	yc,t+1 denote the horizontal and the vertical translation,
espectively, and θt+1 is the rotation angle. Because of the 1/30-s
lapsed time between two consecutive frames, the rotation angle
t+1 is almost zero, and sin θt+1 ≈ 0. The transformation in Eq.
15) can be approximated by

Lx,t+1

Ly,t+1

xc,t+1

yc,t+1

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

ρx,t+1 cos θt+1 0 0 0

0 ρy,t+1 cos θt+1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

Lx,t

Ly,t

xc,t

yc,t

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

	xc,t+1

	yc,t+1

⎤
⎥⎥⎥⎦ (16)

e assumed that Lx,t+1 depends only on Lx,t, Ly,t+1 depends only
n Ly,t, and (xc,t+1,yc,t+1) depends only on (xc,t,yc,t). Eq. (14) can

hus be simplified to

(Lx,t+1, Ly,t+1, xc,t+1, yc,t+1|Z1:t+1)

∝ p(Zt+1|Lx,t+1, Ly,t+1, xc,t+1, yc,t+1)

i
w
r
t

ng and Graphics 32 (2008) 554–565

×
M∑

m=1

p(Lx,t+1|Lx,t = L
(m)
x,t )p(Ly,t+1|Ly,t = L

(m)
y,t )

×p(xc,t+1, yc,t+1|xc,t = x
(m)
c,t , yc,t = y

(m)
c,t )π(m)

t . (17)

Based on the particle filter framework and Eq. (15), the

ample set {L(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1, π

(m)
t+1}

M

m=1
, with π

(m)
t+1

eing the associated weight, that approximates the posterior
ensity p(Lx,t+1,Ly,t+1xc,t+1,yc,t+1|Z1:t+1) was generated in the
ollowing steps:

. Resample from the sample set

{L(m)
x,t , L

(m)
y,t , x

(m)
c,t , y

(m)
c,t , π

(m)
t }M

m=1, i.e., draw sample

(L
′(m)
x,t+1, L

′(m)
y,t+1, x

′(m)
c,t+1, y

′(m)
c,t+1) = (L(p)

x,t , L
(p)
y,t , x

(p)
c,t , y

(p)
c,t )

with probability π
(p)
t where p ∈ {1, 2, . . ., M} and m = 1,

2, . . ., M.
. Generate a new sample L

(m)
x,t+1 from p(Lx,t+1|Lx,t = L

′(m)
x,t+1),

L
(m)
y,t+1 from p(Ly,t+1|Ly,t = L

′(m)
y,t+1), and (x(m)

c,t+1, y
(m)
c,t+1)

from p(xc,t+1, yc,t+1|xc,t = x
′(m)
c,t+1, yc,t = y

′(m)
c,t+1) for m = 1,

2, . . ., ,M.
. Weight the new sample set

{L(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1}

M

m=1
by the image intensity

observation.

(m)
t+1

=
p(Zt+1|Lx,t+1=L

(m)
x,t+1, Ly,t+1=L

(m)
y,t+1, xc,t+1=x

(m)
c,t+1, yc,t+1=y

(m)
c,t+1)∑M

j=1
p(Zt+1|Lx,t+1=L

(j)
x,t+1, Ly,t+1=L

(j)
y,t+1, xc,t+1=x

(j)
c,t+1, yc,t+1=y

(j)
c,t+1)

,

m = 1, 2, . . . , M. (18)

State transition models p(Lx,t+1|Lx,t), p(Ly,t+1|Ly,t) and
(xc,t+1,yc,t+1|xc,t,yc,t) were defined to generate the sample set

L
(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1}

M

m=1
. The first two terms in the

nergy function Eq. (12) constrain the shape change of the target
eukocyte between two consecutive frames and enforce the affine
ransformation invariance property. Based on these constraints,
e defined

(Lx,t+1|Lx,t)

∝ exp

(
−(Lx,t+1 − Lx,t)T(λATA + I)(Lx,t+1 − Lx,t)

2σ2

)
,

(19)

(Ly,t+1|Ly,t)

∝ exp

(
−(Ly,t+1 − Ly,t)T(λATA + I)(Ly,t+1 − Ly,t)

2σ2

)
,

(20)
n which p(Lx,t+1|Lx,t) and p(Ly,t+1|Ly,t) are Gaussian densities
ith standard deviation σ. The standard deviation denotes the

ange of the shape variation of the target leukocyte between
wo consecutive frames. The density p(xc,t+1,yc,t+1|xc,t,yc,t) was
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efined as

(xc,t+1, yc,t+1|xc,t, yc,t) ∝ exp

(
− (xc,t+1 − xc,t)2

2σ2
x

)

exp

(
− (yc,t+1 − yc,t)2

2σ2
y

)
, (21)

here σx and σy are standard deviations of the Gaussian den-
ities, representing the range of the leukocyte horizontal and
ertical translations between two consecutive frames, respec-
ively.

The sample (x(m)
c,t+1, y

(m)
c,t+1) can be generated directly from

q. (21). The generation of sample (L(m)
x,t+1, L

(m)
y,t+1) is not triv-

al. Based on p(Lx,t+1|Lx,t) (Eq. (19)) and p(Ly,t+1|Ly,t) (Eq. (20)),
e applied the Cholesky factorization to obtain the sample

L
(m)
x,t+1, L

(m)
y,t+1). Suppose that D is the Cholesky factorization

f λATA + I, that is,

TD = λATA + I. (22)

et ux,t+1 = D(Lx,t+1 − Lx,t). Eqs. (19) and (20) can be written as

(Lx,t+1|Lx,t) ∝ exp

(
−uT

x,t+1ux,t+1

2σ2

)
, (23)

nd

(Ly,t+1|Ly,t) ∝ exp

(−uT
y,t+1uy,t+1

2σ2

)
, (24)

espectively.
The above equations imply that ux,t+1 and uy,t+1 are random

ectors with normal distribution N(0,σ2In×1). Therefore, we first
enerated the samples u

(m)
x,t+1 and u

(m)
y,t+1 from the normal distri-

ution N(0,σ2In×1) and then derived the samples L
(m)
x,t+1 and

(m)
y,t+1 as

(m)
x,t+1 = D−1u

(m)
x,t+1 + L

(m)
x,t , (25)

(m)
y,t+1 = D−1u

(m)
y,t+1 + L

(m)
y,t . (26)

The observation model p(Zt+1|Lx,t+1,Ly,t+1,xc,t+1,yc,t+1)
as defined to weight the sample set

L
(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1}

M

m=1
. The third term in the energy

unction Eq. (12) constrains the normal directional image
ntensity gradient along the contour (Lx,t+1,xc,t+1,Ly,t+1,yc,t+1),
orcing it to match that along the target leukocyte boundary.
ased on this constraint, the observation model was defined as

(Zt+1|Lx,t+1, Ly,t+1, xc,t+1, yc,t+1)

∝ exp

(
−γ(Vt+1 − F )T(Vt+1 − F )

2σ2

)
, (27)
here p(Zt+1|Lx,t+1,Ly,t+1xc,t+1,yc,t+1) is a Gaussian density with
tandard deviation σ/

√
γ , and Vt+1 = Z(Lx,t+1,xc,t+1,Ly,t+1,yc,t+1)

defined in Eq. (8)) represents the normal directional image
ntensity gradient at (Lx,t+1,xc,t+1,Ly,t+1,yc,t+1). The standard

(

ng and Graphics 32 (2008) 554–565 559

eviation represents the range of the variation of the image inten-
ity gradient along the contour (Lx,t+1,xc,t+1,Ly,t+1,yc,t+1) from
hat along the target leukocyte boundary. Large value of γ makes
he standard deviation σ/

√
γ small, which indicates strong edge

onstraint.
Based on Eqs. (19)–(21) and (27), Eq. (14) can be written as

(Lx,t+1, Ly,t+1, xc,t+1, yc,t+1|Z1:t+1)

∝
M∑

m=1

exp

(−E(Lx,t+1, Ly,t+1, xc,t+1, yc,t+1)

2σ2

)

exp

⎛
⎝− (xc,t+1 − x

(m)
c,t )

2

2σ2
x

⎞
⎠ exp

⎛
⎝− (yc,t+1 − y

(m)
c,t )

2

2σ2
y

⎞
⎠π

(m)
t .

(28)

q. (28) implies that, if the sample set

L
(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1}

M

m=1
has been generated,

mong all the samples, the sample with the largest
eight p(Zt+1|L(m)

x,t+1, L
(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1) makes the

nergy function E(L(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1) mini-

um. Therefore, the MAP estimation of the sample set

L
(m)
x,t+1, L

(m)
y,t+1, x

(m)
c,t+1, y

(m)
c,t+1, π

(m)
t+1}

M

m=1
was used as the

stimated minimum solution for the energy function and the
stimated target leukocyte position in frame t + 1.

.2.4. Performance measures
To evaluate the performance of the tracking method, four

erformance indices were considered [25]:

1) Percentage of frames tracked: The leukocyte in each frame
was considered as tracked if the distance between the esti-
mated target leukocyte centroid position and the groundtruth
position was less than a threshold (2 �m in our study). Divid-
ing the number of frames tracked by the total number of
frames in the image sequence, we obtained the percentage
of frames tracked.

2) Root mean square error (RMSE): The RMSE was computed
by

RMSE =

√√√√√√
N∑

t=1

((x̂c,t − xc,t)2 + (ŷc,t − yc,t)2)

N
, (29)

where (x̂c,t, ŷc,t) and (xc,t,yc,t) are, respectively, the esti-
mated target leukocyte centroid position and the groundtruth
position in frame t, and N is the total number of frames. To
better compare the accuracy of a tracking method, in each
sequence, we computed the RMSE only in the frames in
which the target leukocyte was tracked.

3) Last frame tracked: If the last frame in the video sequence
was tracked, we regarded the sequence as “last frame

tracked”.

4) 100% frames tracked: If all the frames in the video sequence
were tracked, we considered the sequence as one with
“100% frames tracked”.
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Fig. 2. RMSE with the three methods for tracking 50 sequences.

. Results

.1. Leukocyte tracking within intravital microscopy image
equences

For tracking the target leukocyte in our data set of 50 intravi-
al microscopy image sequences, the parameters of the proposed
ffine transformation invariance approach were set as λ = 1,
= 0.25, σ = 1, σx = 2, σy = 2, and the sample size M was 100.
igs. 2 and 3 compare the tracking results of the active con-

our tracking method, the Monte Carlo tracker, and the affine
ransformation invariance approach. Fig. 2 shows the RMSE

esults where a lower RMSE indicates a higher accuracy. The
MSEs were 0.95 �m, 0.79 �m and 0.74 �m, respectively, for

he active contour tracking method, the Monte Carlo tracker,
nd the affine transformation invariance approach. Fig. 3 and

t
m
i
w

able 1
ercentage of frames tracked, percentage of sequences with the last frame tracked a
or tracking 50 sequences (%)

Percentage of frames
tracked (%)

ctive contour 72
onte Carlo 75
ffine transformation invariance 89

Fig. 4. Number of frames tracked in 20
ig. 3. Percentage of frames tracked, percentage of sequences with the last frame
racked and percentage of sequences with 100% frames tracked with the three

ethods for tracking 50 sequences (%).

able 1 show the percentage of frames tracked, the percentage
f sequences with the last frame tracked, and the percentage
f sequences with 100% (all) frames tracked, where large per-
entage values indicate that the tracking method is able to
ocate the target leukocyte in more frames and demonstrates

ore robust tracking performance. The percentage of frames

racked were 72%, 75% and 89% for the active contour tracking

ethod, the Monte Carlo tracker and the affine transformation
nvariance approach, respectively. The percentage of sequences
ith the last frame tracked were 58%, 54% and 82%, and

nd percentage of sequences with 100% frames tracked with the three methods

Percentage of sequences with
the last frame tracked (%)

Percentage of sequences with
100% frames tracked (%)

58 42
54 44
82 75

sequences (dark target leukocyte).
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Fig. 5. Number of frames tracked in

he percentage of sequences with 100% (all) frames tracked
ere 42%, 44% and 75%, respectively, for the three tracking
ethods.
We also compared the ability of the three tracking methods to

ocate a dark target leukocyte and to track a bright target leuko-
yte. The number of frames tracked in each sequence was used
s a performance measure to evaluate the tracking method. Large
umber of frames tracked indicates robust tracking performance
s the tracking method is able to locate the target leukocyte in
ore frames. Fig. 4 shows the result of tracking a dark tar-

et leukocyte in 20 sequences. When compared with the active
ontour tracking method, the affine transformation invariance
pproach tracked more frames in 18 sequences and fewer frames
n 2 sequences. When compared with the Monte Carlo tracker,
he affine transformation invariance approach tracked more
rames in 9 sequences, the same number of frames in 7 sequences
nd fewer frames in 4 sequences. Fig. 5 shows the result of
racking 30 sequences in which the target leukocyte was bright.
he affine transformation invariance approach demonstrated
uperior performance in 7 sequences, equal performance in 22
equences, and inferior performance in 1 sequence when com-
ared with the active contour tracking method. It outperformed
he Monte Carlo tracker in 15 sequences and underperformed in
sequence. In 14 sequences, the two methods tracked the same
umber of frames.

Fig. 6 shows an example of tracking a dark target leukocyte.
he red contour marks the estimated target leukocyte boundary
nd the red ‘*’ denotes the estimated target centroid. Fig. 6(a)
nd (b) show the tracking result of the active contour track-
ng method and the affine transformation invariance approach,
espectively. As seen in Fig. 6(a), the active contour tracking

ethod is “distracted” by the strong edge caused by the ves-

el wall, while the affine transformation invariance approach
s able to successfully locate the target leukocyte, as shown in
ig. 6(b).

n
o
s
m

equences (bright target leukocyte).

.2. Tracking within synthetic image sequences

To illustrate that the proposed affine transformation invari-
nce tracking approach is able to accommodate linear affine
ransformations, we constructed a synthetic image sequence in
hich the target experiences translation, rotation and scaling

ransformations and there exists image clutter (in the form of a
trong edge and objects with similar shape as the target) in the
mage. The parameters were set as λ = 10, γ = 2.5, σ = 5, σx = 2,
nd σy = 2. The sample size M was 300. Fig. 7 shows several
elected frames of the tracking result. The estimated target posi-
ion is denoted by the target boundary (the red contour) and
he centroid position (the red ‘*’). As seen in Fig. 7, the affine
ransformation invariance approach is able to successfully locate
he target boundary although the target experiences linear affine
ransformations and there exists clutter in the image.

Note that the objective of this synthetic study is to examine
he performance of the tracker over a range of linear affine trans-
ormations rather than to test the sensitivity to different levels
f clutter. For quantification of clutter in regards to recognition
nd detection, please refer to the literature [26,27].

. Discussion

In this study, we developed an affine transformation invari-
nce approach to automatically tracking a single rolling
eukocyte in intravital sequences and compared its performance
ith an active contour tracking method and a Monte Carlo

racker. Four performance measures were used to evaluate the
racking method. One measure (RMSE) quantifies the tracking
ccuracy. The other three measures relate to tracking robust-

ess; these are the percentage of frames tracked, the percentage
f sequences with the last frame tracked, and the percentage of
equences with 100% (all) frames tracked. The affine transfor-
ation invariance approach had a slightly lower RMSE than the
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ig. 6. Result of tracking an intravital image sequence: (a) active contour track
he references to colour in text, the reader is referred to the web version of the a

onte Carlo tracker (0.74 �m vs. 0.79 �m). The RMSE of the

ctive tracking method was much higher (0.95 �m). This indi-
ates that the affine transformation invariance approach and the
onte Carlo tracker demonstrated more accurate performance

han the active contour tracking method. The active contour

s
t
a
w

ethod and (b) affine transformation invariance approach. (For interpretation of
.)

racking method and the Monte Carlo tracker demonstrated

imilar performance for robustness. The percentage of frames
racked, the percentage of sequences with the last frame tracked
nd the percentage of sequences with 100% (all) frames tracked
ere 72% vs. 75%, 58% vs. 54%, and 42% vs. 44%, respectively.



J. Cui et al. / Computerized Medical Imaging and Graphics 32 (2008) 554–565 563

F n of t
a

T
a
d
s
f
t
t
H
f

t
b
s
a
s
t
O
e
t
t
p
l
i
s
i
m
o
t

a
s
f
d
s
i
σ

t
s
λ

e
s
g

o
t
O
i
f
b
i
d
b

ig. 7. The example of tracking a synthetic image sequence. (For interpretatio
rticle.)

he corresponding results of the affine transformation invari-
nce approach were 89%, 82% and 75%, respectively, which
emonstrated a much stronger robust tracking ability. The mea-
ure “100% (all) frames tracked,” which requires that in all the
rames the RMSE should be less than the threshold, is more strict
han the measure “the last frame tracked,” which only requires
hat, the RMSE should be less than the threshold in the last frame.
owever, the measure “the last frame tracked” does provide use-

ul information that a cell is tracked to the end of the sequence.
We also separately studied the ability of the three methods

o track a dark target leukocyte and a bright target leukocyte
y using the number of frames tracked as a performance mea-
ure. For tracking the dark target leukocyte in 20 sequences, the
ctive contour tracking method showed poor performance. As
hown in Fig. 4(a), in most sequences, the number of frames
racked was low, which means that the target was lost very soon.
ne reason for this might be that the image intensity gradi-

nt along a dark leukocyte boundary is not very distinctive and
he strong edge nearby the target “distracts” the active contour
racking method. The affine transformation invariance approach
erformed slightly better than the Monte Carlo tracker with a
arger number of frames tracked in more sequences, as shown
n Fig. 4(b). As for tracking the bright target leukocyte in 30
equences, the affine transformation invariance approach exhib-

ted slightly better performance than the active contour tracking

ethod, as shown in Fig. 5(a). Fig. 5(b) shows that the result
f the Monte Carlo tracker was inferior to that of the affine
ransformation invariance approach.

i
m

m

he references to colour in text, the reader is referred to the web version of the

The parameters of the affine transformation invariance
pproach can be adjusted to accommodate different tracking
cenarios. In our implementation, the parameters which were set
or tracking intravital sequences and the synthetic sequence were
ifferent. For tracking intravital sequences, since the leukocyte
hape change between two consecutive frames was not as signif-
cant as the target in the synthetic image sequence, the parameter
, which indicates the shape variation range of the target between

wo consecutive frames, was set to 1, which was lower than that
et in tracking the synthetic sequence, σ = 5. The parameters of
and γ were changed according to different σ in each param-

ter set. The sample sizes were also different. In tracking the
ynthetic sequence, more samples (sample size M = 300) were
enerated to accommodate the larger shape variation.

In some frames where the target leukocyte was occluded by
ther leukocytes or structures in the image, the affine transforma-
ion invariance approach failed in locating the target leukocyte.
ne possible reason for this might be that we used the image

ntensity gradient along the target leukocyte boundary in the first
rame as the edge constraint. If the target leukocyte is occluded
y other leukocytes or structures, the image intensity gradient
nformation along the target leukocyte boundary changes and is
ifferent from that in the first frame. Consequently, it might not
e appropriate to use the image intensity gradient information

n the first frame as the edge constraint. In this case, an adaptive

odel might be helpful.
In examining the computational expense, the affine transfor-

ation invariance approach proves to be the most efficient of the
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hree methods tested. The time needed to process each frame was
bout 0.87 s for the active contour tracking method, 0.78 s for
he Monte Carlo tracker and 0.45 s for the affine transformation
nvariance approach.

. Conclusions

In this paper, based on the affine transformation invariance
roperty and a particle filter, we proposed an affine transfor-
ation invariance approach to automatically tracking a single

olling leukocyte in intravital image sequences. Tracking exper-
ments involving both real and synthetic data demonstrated that
he proposed method was able to accommodate linear affine
ransformations of the target and, compared with the snake
racker and the Monte Carlo tracker, the affine transformation
nvariant solution exceeds the performance of the trackers tested
n both accuracy and robustness.
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