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Abstract 

In order to improve the accessibility of genomic and proteomic information to medical 
researchers, we have developed a procedure to link biological information on proteins 
involved in diseases to the MeSH and ICD-10 disease terminologies. For this purpose, we 
took advantage of the manually curated disease annotations in more than 2,000 human 
protein entries of the UniProt KnowledgeBase. We mapped disease names extracted from 
the entry comment lines or from the corresponding OMIM entry to the MeSH. The 
method was assessed on a benchmark set of 200 manually mapped disease comment 
lines. We obtained a recall of 54% for 91% precision. The same procedure was used to 
map the more than 3,000 diseases in Swiss-Prot to MeSH with comparable efficiency. 
Tested on ICD-10, the coverage of the mapped terms was lower, which could be 
explained by the coarse-grained structure of this terminology for hereditary disease 
description.  The mapping is provided as supplementary material at http://research.isb-
sib.ch/unimed. 

1 Introduction 

With the emergence of high-throughput technologies, the amount of biomedical data available 
to researchers and clinicians has increased drastically over the last decade. In the 
genomic/proteomic era, new methods of knowledge management will soon allow researchers 
to move beyond the analysis of single molecule or pathway to consider global mechanisms, 
such as pathological processes, from an integrated point of view. One of the challenges for 
bioinfomatics in this context is to bridge the gap between biological knowledge and clinical 
data. Currently, the main obstacle to achieve this objective is the compartmentalization of the 
data in different databases, and the inconsistencies in the vocabulary used by these resources 
to describe biomedical entities and concepts. A key solution to this interoperability problem 
lies in the development of common terminologies capable of acting as a metadata layer to 
provide the missing links between the various resources. Successful initiatives for the 
development of standardized vocabularies in the biological domain started some years ago 
with the creation of the Gene Ontology (GO) for the description of biological functions and 
processes [1]. It was followed by the developments of numerous biological ontologies under 
the Open Biological Ontologies initiative (OBO) [2]. In the medical domain, the effort on the 
development of standard terminologies started many years before these initiatives in the 
molecular biology domain. Key vocabularies such as the International Classification of 
Diseases (ICD) [3], the SNOMED clinical terminology [4], and the Medical Subject Headings 
(MeSH) [5] were developed in order to standardize information on various domains of 
medicine, from patient care to biomedical literature indexing. The Unified Medical Language 
System (UMLS) [6] was developed by the US National Library of Medicine (NLM) to 
function as an umbrella over these resources by providing a system of interrelations between 
all these terminologies.  
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Even if the recent integration of GO in the UMLS has opened new ways of linking biological 
and medical resources via terminologies, relationships between gene functions and diseases 
are still poorly documented in terminologies. Several initiatives have been set up to link 
phenotypes to genotypes [7], and systems have been developed to detect such associations. 
For instance, GenesTraceTM [8] and BioMeKe [9] use the relationships between GO and 
UMLS concepts of disease-related semantic types to infer gene-disease relationships. 
PhenoGO uses natural language processing methods to assign phenotypic context to GO 
annotations [10]. The MedGene database gathers relationships between human gene names 
and diseases extracted from MEDLINE [11]. GFINDer uses textual information from the 
Online Meendelian Inheritance in Man database (OMIM) to analyze correlation of disease 
with gene expression in microarray results [12]. All these systems rely on inference and, 
therefore, depend closely upon the accuracy of the various methods. A straighter way to link 
genes to diseases would be to use the disease-related information directly provided by some 
specific biological databases. Take the example of the UniProt Knowledgebase (UniProtKB) 
[13], the most comprehensive protein warehouse with extensive annotation and cross-
references to other database resources. In UniProtKB, more than 2,000 human proteins 
contain manually curated information related to their involvement in pathologies. This 
information comes with the type and position of the single amino acid polymorphisms known 
to cause the disease, and cross-references to variant databases and genomic resources, such as 
dbSNP and Ensembl. While this information is clearly of value, it is not easily accessible for 
clinical researchers due to the fact that UniProtKB does not use standard medical vocabularies 
to describe diseases associated to proteins and their variants. 

In this study, we have developed an automatic approach to map the disease terms in 
UniProtKB to two well-known and widely used disease terminologies within the UMLS: 
MeSH - the controlled vocabulary thesaurus used for biomedical and health-related 
documents indexing [5], and ICD-10 - the official disease classification provided by the WHO 
[3]. We took advantage of the manual annotation in UniProtKB as well as the curated links of 
UniProtKB entries to OMIM, the comprehensive knowledge base of human genes and genetic 
diseases [14]. A benchmark set was created for the refinement of term matching algorithm as 
well as for the definition of matching score and score threshold. This work provides a basis 
for further work aiming to increase the interoperability between data resources from the 
medical informatics and the bioinformatics domains. 

2 Methods 

2.1 Extraction of disease names 

The UniProtKB/Swiss-Prot (release 52.5), and the OMIM (version May 2007) were used for 
this study. In UniProtKB/Swiss-Prot entries, disease information related to the protein is 
expressed in free text comment lines qualified by the category ‘Disease’ (Figure 1). By 
manual inspection, we first established a list of regular expressions that indicates the presence 
of a disease name within these lines (e.g. ‘cause(s)’, ‘cause of’, ‘involved in’, ‘contribute(s) 
to’, ‘induce(s)’). The disease name was usually delimited either by the end of a sentence, a 
conjunction or relative clause, or by the corresponding OMIM identifier. We also defined a 
list of specific words, such as ‘susceptibility to’, ‘development (of)’, ‘various types of’ to 
remove terms that have no direct connection with the disease name. In rare cases where 
several diseases were described in the same comment line, we restricted the extraction to the 
first mentioned disease.  
In parallel, we took advantage of the citations to OMIM phenotypes (#) and genes with 
phenotypes (+) in the disease comment lines to extract the fields Title and Alternative titles; 
symbols from the corresponding OMIM entries. These two fields provide the disease name in 
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OMIM as well as a set of synonyms. For names coming from “gene with phenotype (+)” 
entries, we did not try to distinguish between gene names and diseases names, both types were 
included in the disease list.   
 

 
Figure 1: disease comment lines in a UniProtKB/Swiss-Prot entry 

 

2.2 Mapping procedure 

We mapped the extracted disease names to the terms from the disease category of the MeSH 
terminology (version 2007). The MeSH thesaurus is structured in a hierarchy of descriptors, 
each descriptor including a set of related concepts, and each concept itself containing a set of 
terms, which are synonyms and lexical variants. We mapped the disease names to the MeSH 
terms and linked the results to the corresponding MeSH descriptors. For ICD-10, we mapped 
the disease names to all non-redundant terms of ICD-10, without distinction of their types.  

The  mapping procedure consisted of two successive term matching steps: 
(1) we found exact matches, where all words composing the name had an identical 

correspondent in a MeSH term and vice versa, the word order and the case not being 
taken into consideration.  

(2) in case of no exact match, we looked for partial matches by decomposing the name into 
its word components and calculated a similarity score for names having at least one 
word in common. 

The score used to determine the similarity between two terms was calculated as a function of 
the number of words in common minus the number of words that differ. In order to take into 
account the informative content of each word composing the term, we weighted them 
according to an adaptation of the weighting schema ‘Term Frequency X Inverse Document 
Frequency’ (TF X IDF), commonly used in information retrieval techniques [15]. We 
calculated the inverse document frequency (IDF) of each word present in the three sources of 
terms, namely Swiss-Prot disease lines, OMIM Titles and Alternative titles, and disease 
MeSH terms or ICD-10 terms. The similarity score was calculated according to the following 
formula: 
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Where freq=n/N, with n the number of occurrence of the word in all OMIM (Titles, 
Alternative titles), Swiss-Prot disease comment lines, and MeSH terms (disease category) or 
ICD-10 terms. N represents the total number of words in these documents. cw stands for 
words in common and ncw for words present in only one of the terms. The term size(disease) 
is a normalization factor consisting of the number of words composing the disease name to be 
mapped. 
Hyphenated words were treated in a special way to avoid false positive matches without 
penalizing the sensitivity. Each of their components was considered as distinct word. If all 
components had a matched equivalent, their respective weights were summed up in the score 
calculation. Otherwise, their weights were subtracted. 

2.3 Mapping evaluation 

In order to evaluate the mapping procedure, 200 disease comments from 97 
UniProtKB/Swiss-Prot entries were manually mapped to MeSH by a medical expert. Swiss-
Prot entries were selected randomly. However, care was taken so that the chosen sample of 
entries would be representative and lead to a proportion of exact and partial matches similar to 
that found in a preliminary mapping attempt. The disease terms were mapped, whenever 
possible, to a single MeSH term of the same granularity or close in the hierarchy. However, 
when no equivalent term was found in the terminology, the disease name was mapped to 
several parents in different hierarchies or to high level concepts.  
The mapping procedure was assessed in terms of precision=TP/(TP+FP) and recall=TP/total 
number of terms, where TP is the number of correct mappings (true positives), and FP the 
number of incorrect mappings (false positives). 

3 Results 

In UniProtKB/Swiss-Prot (release 52.5), 2,167 human protein entries contained information 
on the involvement of these proteins in diseases. This corresponded to a total of 3,197 
diseases, mainly of genetic causes. Among these diseases, 2,410 had a link to a corresponding 
phenotype described in OMIM, which represented 77% of the total OMIM entries of 
phenotypes with a known molecular basis (version May. 2007). We mapped the disease 
names to the 38,646 terms of the MeSH disease category (version 2007) and 29,550 non-
redundant terms of ICD-10. We treated independently names provided by Swiss-Prot and 
those provided by OMIM. A benchmark set consisting of 200 disease comment lines with 173 
references to OMIM was used to evaluate the mapping procedure. 

3.1 Disease name extraction 

Swiss-Prot disease names were extracted from the comment lines with a set of regular 
expressions. As the Swiss-Prot disease lines are usually well structured, we were able to 
extract almost all disease names. The extraction failed in only 7 comment lines where a clear 
reference to a disease was not expressed, for instance: 

 “(CBL) can be converted to an oncogenic protein by deletions or mutations that disturb its 
ability to down-regulate RTKs.” (P22681) 

The system was constructed to extract only a single disease name per line. By manual 
assessment of the extraction results, we noticed that in some cases it failed to treat correctly 
lines such as: 

“KRT16 and KRT17 are coexpressed only in pathological situations such as metaplasias and 
carcinomas of the uterine cervix and in psoriasis vulgaris.” (P08779) 
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We did not investigate further these cases, as the structure of disease lines is planned for a 
revision in the framework of Swiss-Prot comment standardization efforts.  

Extraction of OMIM’s disease names from Title and Alternative title; symbols was simple. 
We kept all words composing a term, except qualifiers such as “included” or “obsolete”. 

3.2 Mapping on the benchmark 

The results from a benchmark of 200 diseases manually mapped to MeSH terms are shown in 
Table 1. The mapping was done independently on disease names extracted from Swiss-Prot 
and on Title or Alternative titles of OMIM.  

The mapping procedure was divided into two successive steps. First, we checked for exact 
matches with MeSH terms. Exact matches covered about 20% of the benchmark with an 
excellent precision. The only three false positive matches were caused by a difference of 
classification between MeSH and OMIM. More specifically, OMIM considers these terms as 
synonyms, whereas MeSH classified them in different concepts. For instance, two types of 
epidermolysis bullosa, which are distinct MeSH descriptors, are synonyms in OMIM. When 
we gathered the exact matches provided by the two resources, the coverage increased to 26%.  

The terms without exact matches went through a partial matching procedure where the 
similarity between terms was measured according to a score derived from information 
retrieval scoring techniques. The score threshold for taking the mapping into consideration 
was set at 0. This appeared to be a good trade-off between recall and precision (Figure 2), 
given that precision is an essential requirement for an automatic mapping procedure. 
Therefore, the recall is rather low (24%) but the precision is good (86-89%). Adding the 
partial mappings of Swiss-Prot and OMIM increased the recall to 29% with the same 
precision.  

 

 
Figure 2: Recall-precision at each integer unit of the similarity score in the interval [-7,+7]. The 
black points correspond to the recall/precision at the selected score threshold (0). 

The final performance of the system was measured by adding exact and partial matches from 
the two resources. In this case, we obtained a recall of 55% for a precision of 92%. In order to 
increase the confidence of the mapping, we also calculated the performance when we 
considered the union of exact matches and the intersection of partial matches. For the latter, 
we counted only matches where the two sources (SP and OMIM) pointed to the same MeSH 
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descriptor. In this case, the number of partial matches from both sources was half reduced, but 
the precision increased to 95%, for a global recall of 39%.  

 
Table 1: Result of the mapping of 200 disease comment lines from Swiss-Prot on MeSH terms.  
SP∩OMIM means that both mappings correspond to the same MeSH descriptor. 

Exact match Partial match Total 
 

Retrieval Recall Precision Retrieval Recall Precision Retrieval Recall Precision

SP 
35 

(18%) 

35 

(18%) 
100% 

54 

(27%) 

47 

(24%)
87% 

89 

(45%) 

82 

(41%) 
92% 

OMIM 
43 

(22%) 

40 

(20%) 
93% 

54 

(27%) 

48 

(24%)
89% 

97 

(49%) 

88 

(44%) 
91% 

SP ∩ OMIM 
23 

(12%) 

23 

(12%) 
100% 

28 

(14%) 

26 

(13%)
93% 

62 

(31%) 

60 

(30%) 
97% 

SP ∪ OMIM 
54 

(27%) 

52 

(26%) 
96% 

64 

(32%) 

57 

(29%)
89% 

118 

(59%) 

109 

(55%) 
92% 

 
SP: Swiss-Prot 

 

3.3 MeSH and ICD-10 mapping to UniProtKB/Swiss-Prot disease comment 
lines 

We applied the mapping procedure set up with the benchmark to a total number of 3197 
disease comment lines present in Swiss-Prot, with 75 % of them having a corresponding 
OMIM entry. The mapping was performed on both MeSH and ICD-10 terminologies and the 
results are detailed in table 2. We extrapolated the same procedure to map ICD-10, even if a 
condition such as the score threshold was not assessed on this terminology. 

In term of retrieval, i.e. the number of disease names matching a term above the threshold, the 
results of the mapping with MeSH were just slightly lower compared with those of the 
benchmark. The lower coverage of the OMIM mapping could be explained by the fact that the 
proportion of Swiss-Prot diseases with OMIM cross-references was higher in the benchmark 
(86% instead of 75%). Considering matches with Swiss-Prot and OMIM terms, 54% of the 
disease comment lines were mapped. 

It was not possible to measure the performance of the system in terms of precision and recall. 
As a first assessment of the mapping, we simply checked if, in case of exact matches, 
corresponding Swiss-Prot and OMIM terms mapped to identical MeSH descriptors. This was 
confirmed in all but 12 cases. One case was due to a problem of multiple diseases mentioned 
in the Swiss-Prot comment line. In this case, the Swiss-Prot disease term with an OMIM 
reference was different from the extracted one. In the other cases, the discrepancy was due to 
an OMIM synonym (alternative title) classified into a distinct descriptor in MeSH. When this 
happened, a parent/child relationship was usually observed between the two MeSH terms 
mapped with either OMIM or Swiss-Prot diseases. 

The performance of the mapping on ICD-10 was less good. This can be explained by the fact 
that, in contrast to the MeSH terminology, ICD-10 concepts are not enriched with synonyms 
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and lexical variants. We should refine the matching procedure to ICD-10 using more 
sophisticated natural language processing techniques such as normalisation and stemming.  

 

Table 2: Mapping of 3197 disease comment lines of Swiss-Prot on MeSH and ICD-10 terms. 
SP∩OMIM means that both mappings correspond to the same MeSH descriptor. 

MeSH ICD-10  
Exact match Partial match Total Exact match Partial match Total 

SP 577 (18%) 819 (26%) 1396 (44%) 13 (7%) 37 (19%) 50 (25%) 

OMIM 655 (20%) 680 (21%) 1335 (42%) 14 (7%) 40 (20%) 54 (27%) 

SP ∩ OMIM 354 (11%) 390 (12%) 929 (29%) 6 (3%) 18 (9%) 30 (15%) 

SP ∪ OMIM 866 (27%) 860 (27%) 1726 (54%) 21 (11%) 48 (24%) 69 (35%) 
 
SP: Swiss-Prot 
 

4 Discussion 

In this study, we designed a mapping procedure to link the UniProtKB/Swiss-Prot human 
protein entries and the corresponding OMIM entries to the MeSH and ICD-10 disease 
terminologies. The procedure which combined exact and partial matches of disease names 
was able to map with good precision more than the half of the disease comment lines in 
UniProtKB/Swiss-Prot. Although this recall could be considered as satisfactory, we are 
currently trying to improve the coverage of the mapping. 

The main problem encountered in the mapping process lay in the difference of granularity 
between the terminologies. MeSH is indeed relatively coarse-grained in terms of genetic 
diseases, and the situation with ICD-10 is even worse. Even if less specific terms exist, their 
matching scores are usually below the score threshold. For example, the disease term 
recurrent intrahepatic cholestasis of pregnancy matches with intrahepatic cholestasis with a 
score of -0.36, which is below the threshold. In fact, as the score threshold was set up from 
few data, it does not correspond to a clear cut in the recall/precision curve. Therefore, future 
improvement will consist in tuning the scoring schema to recover these terms. First, we can 
improve the word weighting by considering a common vocabulary resource for the word 
frequency calculation, and by excluding insignificant common words with a list of stopwords. 
Previous studies had shown the efficiency of methods using natural language processing pre-
treatment, such as word normalisation or stemming, in terminology mapping processes 
[16,17]. We did not use such methods because the MeSH terms include various orthographic 
and lexical variants. However, a word normalisation step could have help mapped the disease 
polycystic ovarian syndrome to the MeSH term polycystic ovary syndrome. Second, it may be 
worth investigating ways to better exploit the hierarchical structure of these terminologies. 
For instance, a term such as hypophosphatasia, adult type, which matches with 
hypophosphatasia below the score, is clearly a child of this term. We should find ways to 
include this information in the score calculation. Such an attempt has been made, for instance, 
to categorise OMIM phenotypes using MeSH terms [18]. 

Nevertheless, the problem of MeSH granularity will hardly be completely solved by these 
methods. We need definitely to explore the mapping to other medical terminology resources, 
in particular the UMLS which provides other terminologies, together with relationships 
between concepts and semantic categories. This information could help identify related 
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concepts if an exact match is not available. Another direction will be to use the cited 
literature. Indeed, both UniProtKB and OMIM contain an important set of PubMed citations 
which are annotated with MeSH terms. Combining the similarity scores and term frequency in 
MEDLINE annotations will probably increase the chance of finding the correct term.  We are 
currently working on this strategy. However, the best solution would be to complete MeSH 
and ICD-10 with new terms for genetic diseases. Our mapping could possibly help identify 
the gaps in these terminologies. 

In conclusion, it becomes obvious that the use of a common terminology is required to help 
the integration of molecular biology data at clinical level. The indexing of human protein 
entries in UniProtKB with widely used disease terminologies will permit either clinicians or 
researchers to navigate from diseases to genes and from genes to diseases in an efficient way. 
Moreover, the ontological organisation of these terminologies will provide high-level search 
functionalities, such as the possibility to retrieve all genes involved in a class of diseases for a 
specific organ. This could be a major contribution in enforcing the interaction between 
biomedical researchers and clinicians for the benefit of research and patient care. 
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