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SUMMARY

The Radon transform suffers from the typical problems of loss
of resolution and aliasing that arise as a consequence of incom-
plete information, such as limited aperture and discretization.
Sparseness in Radon domain, which is equivalent to assuming
smooth amplitude variation in the transition between known
and unknown (missing) data, is a valid and useful prior infor-
mation (Trad et al., 2003). The most commonly used method
to solve sparsity-promotion inverse problems in geophysics is
reweighted least-squares inversion (IRLS) method. As IRL-
S method needs to compute the weighting function iterative-
ly at the outer loop of conjugate gradient iteration, the com-
putational cost is very expensive. In this abstract, we adopt
the dual gradient ascent methods, developed in compressive
sensing into geophysics and compare them with an updated
version of IRLS, namely conjugate guided gradient method
(CGG). Numerical tests show that the dual gradient ascen-
t method with Nesterov’s acceleration (DGAN) can provide
results with higher resolution than CGG method after a few
iterations, which is also of great potential in other seismic ap-
plications.

INTRODUCTION

The Radon transform (RT) is widely used in geophysics, such
as signal/noise seperation (Harlan et al., 1984; Hampson, 1986;
Sava and Guitton, 2005), interpolation (Sacchi and Ulrych,
1995; Trad et al., 2002), velocity analysis (Thorson and Claer-
bout, 1985) and so on. According to the integral formula, it
can be divided into several classes, including linear RT (al-
so known as slant stack), parabolic RT, hyperbolic RT (also
known as velocity stack) et al. There are two kinds of imple-
mentations of RT, i.e. time domain (Stoffa et al., 1981; Cary,
1998) and freqency domain (Beylkin, 1987; Sacchi and Ul-
rych, 1995; Jingwei Hu, 2012). In this abstract, we will focus
on time-domain hyperbolic RT.

As RT is not orthogonal like Fourier transform, wavelet trans-
form and curvelet transform, it’s not trivial to apply forward
and inverse transform. One most commonly used way is least-
squares inversion (Hampson, 1986; Beylkin, 1987). Due to
the limited information we can obtain, the resolution is often
decreased if we use Tikhonov regularization, which assumes
the solutions be of Gassian distribution (Tarantola, 2005). In
order to promote sparsity of RT, other kinds of norm and crite-
rion to measure the solution was proposed by geophysicsists,
like `1 norm (Claerbout and Muir, 1973), Huber norm (Guit-
ton and Symes, 2003), Hybrid norm (Bube and Langan, 1997),
Cauchy criterion (Sacchi and Ulrych, 1995) and so on.

One of the most commonly used algorithms to solve sparse
Radon transform is Iteratively Reweighted Least-Squares (IRL-

S) method. As the weighting function is related with model,
the original linear problem is changed into non-linear prob-
lem, IRLS needs to calculate the weighting function iterative-
ly after several inner iterations of conjugate gradient method.
so the computational cost is high if we want to get the result
with high resolution. Another variant of IRLS, namely CG-
G method, guides the gradient vector during the iteration and
only need performing one times of operator and its adjoint, so
it’s more efficient than IRLS (Ji, 2006). In this abstract, we
introduce dual gradient ascent method developed in compres-
sive sensing into solving this problem. Numerical tests show
that, compared with CGG method, our proposed method can
provide a higher resolution after a few iterations.

METHOD

In this section, we will discuss how to apply dual gradient as-
cent method to hyperbolic Random Transform (HRT). The for-
mula of HRT can be expressed as:

m(τ,v) =
xmax∑

x=xmin

d(t2 = τ
2 +

x2

v2 ,x)

where d(t,x) denotes common-midpoint (CMP) gather and m(τ,v)
denotes stack velocity spectrum. The velocity-time pair (τ,v)
are the coordinate axes of the stack velocity spectrum and the
offset-time pair (t,x) are the coordinate axes of the CMP gath-
er. The adjoint of HRT is:

d(t,x) =
vmax∑

v=vmin

m(τ2 = t2− x2

v2 ,v)

which can be transformed into a compact form as:

d = Lm

In order to improve the resolution of RT, `1 norm is commonly
used to regularize the potential velocity m, which results in the
following Basis Pursuit (BP) problem:

min
m
{‖m‖1 : Lm = d} (1)

One way to solve (1) is IRLS method, which introduces weight-

ing matrix Wm = diag(m
− 1

2
i ) and solves an equivalent form of

(1):
min

m
{‖Wmm‖2

2 : Lm = d} (2)

As the weighting matrix is related with model itself, we need
to compute it iteratively at the outer loop of inner conjugate
gradient iterations, which makes it expensive. Conjugate guid-
ed gradient (CGG) method is another variant of IRLS method
(Ji, 2006) which puts the calculation of weighting function in-
to the inner loop of CG, so that there is only one iteration loop
and one calculation of L and LT is needed at each iteration.
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Instead of solving (1) directly, we solve the following the `1`2
problem:

min
m
{‖m‖1 +

1
2α
‖m‖2

2 : Lm = d} (3)

and use its solution to approximate the solution of (1). In fact,
as long as the smooth parameter α is greater than a certain
value, the solutions for (1) and (3) are identical. Notice that (3)
is still a non-smooth constrained optimization problem, even
though the smooth term 1

2α
‖m‖2

2 is added to the non-smooth
objective function. In fact, the advantage of (3) over (1) is that
its dual problem:

min
y
{g(y) =−dT y+

α

2
‖LT y−Proj[−1,1]n(L

T y)‖2
2} (4)

is first order differentiable and its gradient is:

∇g(y) =−d+αL(LT y−Proj[−1,1]n(L
T y)) (5)

where Proj[−1,1]n(x) projects x into [−1,1]n. An example of
g(y) and ∇g(y) is shown in Fig. 1.
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Figure 1: Dual objective function g(y) (left); and its derivative
∇g(y) (right)

Note that objective function g(y) is a convex function and its
gradient ∇g(y) is not smooth, hence, we can only apply first
order methods to solve (4) and derive the following update
scheme:

yk+1 = yk−δ∇g(yk) (6)

where δ > 0 is the step size. After the sequence {yk} generat-
ed by (6) converges to the optimal solution y∗, the first-order
optimal condition ∇g(y∗) should be satisfied, i.e., αL(LT y−
Proj[−1,1]n(LT y)) = d. Let m∗ = LT y∗ − Proj[−1,1]n(LT y∗),
then we have Lm∗ = d, thus m∗ is a feasible solution to the
original problem, it has been proved that the objective value of
the primal problem given by m∗ matches the optimal value of
the dual objective given by y∗ (Yin, 2010). Hence, m∗ is also
optimal. To conclude, we have the following fixed step size
dual gradient ascent algorithm:

Algorithm 1 DGD with fixed stepsize
1: for k = 0,1, · · · ,niter do
2: yk+1 = yk +δ (d−Lmk)
3: mk+1 = α(LT yk+1−Proj[−1,1]n(LT yk+1))
4: end for

It is natural to speedup fixed stepsize gradient descent method
by incorporating methods such as line search, quasi-Newton

methods and Nesterov’s acceleration scheme (Nesterov, 2007),
all of which requires only gradient computations. Here we will
focus on Nesterov’s method. Instead of only using informa-
tion from previous iteration, Nesterov’s method use the usual
projection-like step, evaluated at an auxiliary point which is
constructed by a special linear combination of the previous t-
wo points zk−1,zk, the accelerated algorithm is described as:

Algorithm 2 DGD with Nesterov’s acceleration
1: θ0 = 1,h > 0
2: for k = 0,1, · · · ,niter do

3: βk =
(1−θk)(

√
θ 2

k +4−θk)
2

4: zk+1 = yk +δ (d−LT mk)
5: yk+1 = zk+1 +βk(zk+1− zk)
6: mk+1 = α(LT yk+1−Proj[−1,1]n(LT yk+1))

7: θk+1 = θk

√
θ 2

k +4−θk
2

8: end for

NUMERICAL TESTS

Synthetic data

To examine the performance of the proposed DGAN method,
a synthetic CMP data set with various types of noise and miss-
ing traces is used. Figure 2(a) shows the original synthetic
data modeled by the adjoint of HRT with five spikes. Three
of them simulate primaries and two of them simulate multi-
ples. Moveover, Gassian noise is added in the original data
and 60% of traces are removed randomly. The input data is
shown in figure 2(b).

Figure 2: (a) Original data; (b) Input data

As we can see from figure 2(b), it’s very hard to discriminate
primaries from multiples when the data is under-sampled and
the S/N is low. However, if we assume that all the events are
consistent with the formula of HRT, which is true in our syn-
thetic test, we can make use of sparsity of Radon transform.
CGG and DGAN are used to solve this sparsity-promoting op-
timization problem respectively.

In our first test, the iteration is performed 50 times. From
the relative model error ( ‖m

k−m∗‖
‖m∗‖ , k is the iteration number)
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curves of CGG and DGAN method (figure 3), . we can see that
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Figure 3: Relative model error curve of CGG method and
DGAN method

both of them are decreased at the first stage of iterations and in-
creased afterwards. That’s because both of them are over-fitted
after too many iterations. However, we should also note that
the model error of DGAN is smaller than CGG after about 10
iterations and it can achieve a much smaller value than CGG
method, which demonstrates that the proposed method is more
accurate than CGG method in sparsity promotion after certain
number of iterations.

Figure 4: Inversion result with (a) CGG method; (b) DGAN
method

Figure 4 shows the inversion results of CGG and DGAN at
their best iteration number from the relative model error curve,
i.e., 8 iterations for CGG and 30 iterations for DGAN respec-
tively. From these figures, we can see that the best solution
of DGAN is more sparse than CGG. After picking a line in
the middle of two different velocity and muting the the low
velocity part in the Radon domain, which often corresponds to
multiples, we can reconstruct the CMP gather using the adjoint
of HRT.

From the reconstructed results of CGG and DGAN as shown in
Figure 5(a) and 5(b), we can see that both of these two methods
can suppress random noise, eliminate multiples and interpolate
missing traces successfully, but CGG method also introduces
some coherent noise, which is due to the lower sparse solution
it obtained.

Figure 5: Reconstructed data with (a) CGG method; (b)
DGAN method

Figure 6: Residual with (a) CGG method; (b) DGAN method

Figure 6 is the difference in the same scale between recon-
structed results and the correct ”answer”, which can be mod-
eled by the adjoint of HRT with the three spikes at the right
side. From these figures, we can also see that the proposed
method provides the better result after denoising and interpo-
lation.

Real data

We test the proposed method on a real data set that contains
various types of noise and missing traces. The data set is a
super CMP gather from a marine survey. The trajectories of
the events in the data set look ”hyperbolic” enough to be tested
with HRT. Figure 7 shows the real data set after data binning.
From this figure, we can see that there are lots of missed traces
and multiples.

Figure 7: CMP gather after data binning
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(a)

(b)

Figure 8: Inversion result with (a) CGG method; (b) DGAN
method

(a)

(b)

Figure 9: Denosing and interpolation result with (a) CGG
method; (b) DGAN method

Figure 8(a) and Figure 8(b) shows the velocity spectrum calcu-
lated by HRT with CGG and DGAN method after 30 iterations
respectively. From these two figures, we can see that both of
them can get a sparse solution and we can separate primaries
and multiples visually in Radon domain. Moreover, the results
obtained by DGAN method is more sparse than CGG method
and has fewer non-zeros.

Figure 9(a) and Figure 9(b) are the denoising and interpola-
tion results after mutting in the Radon transform and apply-
ing adjoint of HRT. From these two figures, we can see that
multiples have been suppressed more completely using DGAN
method. However, we should note that some events have been
smoothed by these processes as sparse constraint is equivalent
to smoothness along trajectories defined by RT operator.

CONCLUSION

With the help of different transformation, most signals, includ-
ing seismic wave, can be expressed in a sparse form, which im-
plies that sparsity is a very important prior information in many
applications. Dual gradient ascent, which was recently devel-
oped in compressive sensing, is introduced into Radon trans-
form in this abstract. We incorporate Nesterov’s acceleration
scheme to the fixed stepsize dual gradient ascent method and
obtain a faster algorithm namely DGAN. Compared to CGG
method, DGAN outperforms it in the following aspects:

• The sparsity level of the solution is higher;

• Reconstruction results have much less coherent noise;

• More accurate solution can be obtained with a few it-
erations.

However, there are still lots of challenges in this field, such as
how to choose an appropriate sparse representation of seismic
wave. More work needs to do in order to apply this method in
seismic imaging and velocity analysis.
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