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An Approximate Bayesian Method for Simultaneous
Localisation and Mapping

Somajyoti Majumder, Hugh Durrant-Whyte, Sebastian Thrun and Marc de Battista

Abstract—This paper describes a Bayesian formulation of
the Simultaneous Localisation and Mapping (SLAM) prob-
lem. Previously, the SLAM problem could only be solved in
real time through the use of the Kalman Filter. This gener-
ally restricts the application of SLAM methods to domains
with straight-forward (analytic) environment and sensor
models. In this paper the Sum-of-Gaussian (SOG) method
is used to approximate more general (arbitrary) probability
distributions. This representation permits the generaliza-
tions made possible by Monte-Carlo methods, while inher-
iting the real-time computational advantages of the Kalman
filter. The method is demonstrated by its application to
sub-sea field data. The sub-sea data consists of both sonar
and visual information of near-field landmarks. This is a
particularly challenging problem incorporating diverse sens-
ing modalities, amorphous environment features, and poorly
known vehicle dynamics; none of which can be easily han-
dled by Kalman filter-based SLAM algorithms.

I. Introduction

Simultaneous Localisation and Mapping (SLAM) is a
process by which a mobile platform can build a map of
an environment and at the same time use this map to de-
duce it’s location. In SLAM both the trajectory of the
platform and the location of all landmarks are estimated
on-line without the need for any a priori knowledge of loca-
tion. SLAM is the subject of considerable current research
activity [4], [5], [13].

The complexity of the SLAM estimation problem is po-
tentially huge (of the dimension of the number of land-
marks). Further, the structure of the SLAM problem is
characterised by monotonically increasing correlations be-
tween landmark estimates. Thus the state space can not
be trivially decoupled. For these reasons, there has been a
significant drive to find computationally effective SLAM al-
gorithms. This has been achieved through the development
and use of the Kalman and extended Kalman filter as the
estimation algorithms of choice in SLAM algorithms. In
these developments, simplification in the time update step
and locality in the observation update step have resulted
in algorithms that can process thousands of land-marks in
real time on PC level architectures [5], [6].

However, the Kalman filter approach comes with a num-
ber of limitations. Most notably, the inability to represent
complex environment or feature models, the difficulty of
faithfully describing highly skewed or multi-modal vehicle
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error models, and the inherent complexity of the result-
ing data association problem. A more general approach to
vehicle navigation, which overcomes many of these limita-
tions, is to consider navigation as a Bayesian estimation
problem [19]. In this method, vehicle motion and feature
observation are described directly in terms of the under-
lying probability density functions and Bayes theorem is
used to fuse observation and motion information. These
methods have demonstrated considerable success in some
challenging environments [18].

Practically, Bayesian methods have generally been im-
plemented using a combination of grid-based environment
modelling and particle filtering techniques. While such ap-
proaches work well in low-dimensional problems such as
localisation, they scale exponentially in the dimension of
the state space. The underlying state space in SLAM is of
dimension the number of land-marks and can not be triv-
ially decoupled. Thus the application of particle filtering
methods to SLAM is limited.

The work described in this paper was initially motivated
by the session on navigation and subsequent discussions
held at the 1999 International Symposium on Robotics
Research (ISRR’99) [7]. The two alternative methods to
navigation were each presented and following discussions
highlighted both the advantages and disadvantages of each
method as described in the preceding paragraphs. Of
particular interest was an autonomous underwater vehi-
cle (AUV) navigation example. In this case, the ability of
the platform to undertake SLAM is essential as there is no
a priori map, and no access to external reference (such as
GPS) to provide position information for navigation. How-
ever, the AUV navigation problem is also characterised by
very poor vehicle motion models, by highly unstructured
and amorphous environments, and by poor quality sensor
(sonar and visual) observations. Thus, the direct appli-
cation of Kalman filter-based SLAM methods in sub-sea
environments is difficult. Conversely, the substantial rep-
resentational advantages of the Bayesian method in this
application must be weighed against the insurmountable
computational complexity of applying Bayesian estimation
techniques with inefficient representations such as particles
or grids to the sub-sea SLAM problem

The fundamental approach taken in this paper is to agree
that the Bayesian methodology is indeed the correct repre-
sentational form for the sub-sea SLAM problem but then to
seek a functional representation for the underlying proba-
bility distributions which yields a computationally efficient
SLAM algorithm. In this paper, the Sum of Gaussians
(SOG) method of describing general probability distribu-
tions is employed. This is a well known method of dealing
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with non-Gaussian probability distributions in an efficient
manner [1]. The SOG method has substantial computa-
tional advantages in allowing Kalman filter-based methods
to be extended to more general probability distributions
with richer representational abilities.

This paper begins by stating the full Bayesian formula-
tion of the SLAM problem. Subsequently the SOG method
is introduced and it is demonstrated that this can be used
to effectively model AUV motion, typical sub-sea environ-
ments, and the sensor data returned by both sonar and
vision data. The application of the SOG approximation to
the full-Bayesian SLAM problem is then described. The
results are explained through the use of field data obtained
from an operational AUV. In conclusion, it is argued that
the SOG method provides a computationally tractable im-
plementation of the full Bayes SLAM or map building al-
gorithm while maintaining all the representational advan-
tages of such methods.

II. Bayesian Formulation of the
SLAM problem

A Bayesian formulation of the SLAM problem is intro-
duced. The structure of the problem is briefly described
relative to conventional localisation or map building pro-
cess.

A. Preliminaries

Consider a vehicle moving through an environment tak-
ing relative observations of a number of unknown land-
marks using a sensor located on the vehicle. At a time
instant k, the following quantities are defined:
• xk: The state vector describing the location and orien-
tation of the vehicle.
• uk: The control vector, applied at time k−1 to drive the
vehicle to a state xk at time k.
• mi: A vector describing the location of the ith landmark
whose true location is assumed time invariant.
• zik: An observation taken from the vehicle of the location
of the ith landmark at time k. When there are multiple
landmark observations at any one time or when the specific
landmark is not relevant to the discussion, the observation
will be written simply as zk.
In addition, the following sets are also defined:
• The history of vehicle locations:

Xk = {x0,x1, · · · ,xk} = {Xk−1,xk} (1)

• The history of control inputs:

Uk = {u1,u2, · · · ,uk} = {Uk−1,uk} (2)

• The set of all landmarks:

m = {m1,m2, · · · ,mn} (3)

• The set of all landmark observations:

Zk = {z1, z2, · · · , zk} = {Zk−1, zk} (4)

B. Definition of the SLAM problem

In probabilistic form, the Simultaneous Localisation and
Map Building (SLAM) problem requires that the probabil-
ity distribution

P (xk,m | Zk,Uk,x0) (5)

be computed for all times k. This probability distribution
describes the joint posterior density of the landmark lo-
cations and vehicle state (at time k) given the recorded
observations and control inputs up to and including time
k together with the initial state of the vehicle. It is well
known that that in the SLAM problem, the vehicle location
and all of the landmark locations are highly correlated and
so can not be considered independently [3], [12]. These cor-
relations are fundamental to the structure and convergence
of a SLAM algorithm.

In general, a recursive solution to the SLAM problem is
desirable. Starting with an estimate for the distribution
P (xk−1,m | Zk−1,Uk−1) at time k−1, the joint posterior,
following a control uk and observation zk, is to be com-
puted using Bayes Theorem. This computation requires
that a state transition model and an observation model
are defined describing the effect of the control input and
observation respectively.

The observation model describes the probability of mak-
ing an observation zk when the vehicle location and land-
mark locations are known, and is generally described in the
form

P (zk | xk,m). (6)

It is reasonable to assume that once the vehicle location
and map are defined, observations are conditionally inde-
pendent, and depend only on the map and the current ve-
hicle state so that

P (Zk | Xk,m) =
k∏

i=1

P (zi | Xk,m)

=
k∏

i=1

P (zi | xi,m). (7)

The motion model for the vehicle can be described in
terms of a probability distribution on state transitions in
the form

P (xk | xk−1,uk) (8)

That is, the state transition may reasonably be assumed to
be a Markov process in which the next state xk depends
only on the immediately proceeding state xk−1 and the
applied control uk, and is independent of both the obser-
vations and the map. With these definitions and models,
Bayes Theorem may be employed to define a recursive so-
lution to Equation 5.

C. Formulation of the SLAM Problem

To derive a recursive update rule for the vehicle and map
posterior, the chain rule of conditional probability is em-
ployed to expand the joint distribution of vehicle state, map
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and observation in terms of the vehicle and map

P (xk,m, zk | Zk−1,Uk,x0)
= P (xk,m | zk,Zk−1,Uk,x0)P (zk | Zk−1,Uk,x0)
= P (xk,m | Zk,Uk,x0)P (zk | Zk−1Uk,x0), (9)

and then in terms of the observation

P (xk,m, zk | Zk−1,Uk,x0)
= P (zk | xk,m,Zk−1,Uk,x0)P (xk,m | Zk−1,Uk,x0)
= P (zk | xk,m)P (xk,m | Zk−1,Uk,x0) (10)

where the last equality employs the assumptions estab-
lished for the sensor model in Equation 7.

Equating Equations 9 and 10 and rearranging gives

P (xk,m | Zk,Uk,x0)

=
P (zk | xk,m)P (xk,m | Zk−1,Uk,x0)

P (zk | Zk−1,Uk)
(11)

The denominator in Equation 11 is independent of either
the map or current vehicle state and can therefore be set to
some normalising constant K. The total probability theo-
rem can be used to rewrite the second term in the numer-
ator in terms of the vehicle model and the joint posterior
from time-step k − 1 as

P (xk,m | Zk−1,Uk,x0)

=
∫

P (xk,xk−1,m | Zk−1,Ukx0)dxk−1

=
∫

P (xk | xk−1,m,Zk−1,Uk,x0)

×P (xk−1,m | Zk−1,Uk,x0)dxk−1

=
∫

P (xk | xk−1,uk)

×P (xk−1,m | Zk−1,Uk−1,x0)dxk−1 (12)

where the last equality follows from the assumed indepen-
dence of vehicle motion from map and observations, and
from the causality of the vehicle control input on vehicle
motion. Equation 12 is then substituted into Equation 11
to yield

P (xk,m | Zk,Uk,x0)

= K · P (zk | xk,m)
∫

P (xk | xk−1,uk)

×P (xk−1,m | Zk−1,Uk−1,x0)dxk−1. (13)

Equation 13 provides a recursive expression for the calcu-
lation of the joint posterior P (xj ,m | Zj ,Uj ,x0) for the
vehicle state xj and map m at a time j based on all obser-
vations Zj and all control inputs Uj up to and including
time j. The recursion is a function of a vehicle model
P (xk | xk−1,uk) and an observation model P (zk | xk,m).
A related problem is to include the complete history of
vehicle states [20] (a smoothed trajectory estimates) as
P (Xk,m | Zk,Uk). However this is not required in the
development below.

This process of time and observation update described
in Equation Equation 13 is shown schematically in Figures
1 and 2. These figures show how the motion and observa-
tion models are captured and then employed in recursive
computation of the posterior.
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Fig. 1. Time update step for the full Bayes filter. At a time k − 1,
knowledge of the state xk−1 is summarised in a probability distribu-
tion P (xk−1). A vehicle model, in the form of a conditional probabil-
ity density P (xk | xk−1), then describes the stochastic transition of
the vehicle from a state xk−1 at a time k − 1 to a state xk at a time
k. Functionally, this state transition may be related to an underlying
kinematic vehicle model in the form xk = f(xk−1,uk). The figure
shows two typical conditional probability distributions P (xk | xk−1)
on the state xk(k) given fixed values of xk−1. The product of this
conditional distribution with the marginal distribution P (xk−1), de-
scribing the prior likelihood of values of xk, gives the joint distri-
bution P (xk,xk−1) shown as the surface in the figure. The total
marginal density P (xk) describes knowledge of xk after state transi-
tion has occurred. The marginal density P (xk) is obtained by inte-
grating (projecting) the joint distribution P (xk,xk−1) over all xk−1.
Equivalently, using the total probability theorem, the marginal den-
sity can be obtained by integrating (summing) all conditional densi-
ties P (xk | xk−1)weighted by the prior probability P (xk−1) of each
xk−1. The process can equally be run in reverse (a retroverse motion
model) to obtain P (xk−1) from P (xk) given a model P (xk−1 | xk).

D. Map Building, Localisation and SLAM

Equation 5 should be compared to two related sub prob-
lems; map building and localisation.

The map building problem may be formulated as
computing the probability distribution P (m | Zk,Uk,x0).
This assumes that the location of the vehicle xk is known
(or at least deterministic) at all times, subject to knowledge
of initial location. A map m is then constructed by fus-
ing observations from different locations. Conversely, the
localisation problem may be formulated as computing the
probability distribution P (xk | Zk,Uk,m). This assumes
that the landmark locations are known with certainty and
the objective is to compute an estimate of vehicle location
with respect to these landmarks.

The essential issue in the combined localisation and map-
building problem is that solving the map building and lo-
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Fig. 2. Observation update for the full Bayes filter. Prior to obser-
vation, an observation model in the form of the conditional density
P (zk | xk) is established. For a fixed value of xk, equal to x1 or x2

for example, a density function P (zk | xk = x1) or P (zk | xk = x2)
is defined describing the likelihood of making the observation zk. To-
gether the density P (zk | xk) is then a function of both zk and xk.
This conditional density then defines the observation model. Now, in
operation, a specific observation zk = z1 is made and the resulting
distribution P (zk = z1 | xk) defines a density function (now termed
the likelihood function) on xk. This density is then multiplied by the

prior density P (x−
k
) and normalised to obtain the posterior distribu-

tion P (xk | zk) describing knowledge in the state after observation.

calisation problems separately is not the same as solving
the full SLAM problem

P (xk,m | Zk,Uk) �= P (m | Zk,Uk)P (xk | Zk,Uk). (14)

The reason for this is that the vehicle location and map
are not conditionally independent. This is clear from the
nature of the observation model P (zk | xk,m) where the
single observation zk depends on both vehicle and land-
mark locations.

III. Solving the SLAM problem

There are a number of possible methods of solving Equa-
tion 13. Here we briefly describe two methods at the ex-
tremes of the solution space: The Extended Kalman Fil-
ter (EKF), and the Particle filter or Monte-Carlo method.
Subsequently, the Sum-of-Gaussian (SOG) method is pro-
posed as an appropriate compromise between these two
methods.

A. The Extended Kalman Filter (EKF)

The basis for the EKF is to describe the vehicle motion
model in terms of a kinematic model subject to zero mean
uncorrelated (Gaussian) errors in the form

P (xk | xk−1,uk) ⇐⇒ xk = f(xk−1,uk) +wk, (15)

where f(·) models vehicle kinematics and wk motion dis-
turbances, and to describe the observation model in terms

of a geometric observation, again subject to zero mean un-
correlated (Gaussian) errors, in the form

P (zk | xk,m) ⇐⇒ z(k) = h(xk,m) + vk, (16)

where h(·) describes the geometry of the observation and
vk models observation error.

The key to the simplicity of the EKF solution is the fact
that a product of Gaussian distributions is Gaussian, and
the convolution of Gaussian distributions is also Gaussian.
Thus, when the vehicle model is assumed Gaussian, the
prediction stage (the integral or convolution in Equation
13) yields a Gaussian, and when the observation model is
Gaussian, the update stage (the product in Equation 13)
also yields a Gaussian. With these Gaussians described by
their respective means and variances, the EKF proceeds to
solve Equation 13 in terms of only an estimated mean and
covariance [

x̂k

m̂

]
= E

[
xk

m
| Zk

]
,

[
Pxx Pxm

PT
xm Pmm

]
k

= E

[(
xk − x̂k

m− m̂

)(
xk − x̂k

m− m̂

)T

| Zk

]

(17)

of the joint distribution P (xk,m | Zk,Uk,x0). While the
computation of these means and variances is still significant
for large numbers of landmarks, computationally efficient
implementations have been developed which permit map
building with many thousands of landmarks to be accom-
plished in real-time [6], [13].

The EKF however comes with many potential problems
and limitations. The usual criticism that the non-linearity
of vehicle motion and landmark observation models yield
distributions that are not truly Gaussian is, in practice,
rarely an issue. A more substantive problem is the difficulty
of modelling natural environment features in a form that is
amenable to use in an EKF. A second formidable problem is
the fragility of the EKF method when faced with incorrect
associations of observations to landmarks.

B. The Particle Filter Method

In contrast to the EKF, Particle filtering or Monte-Carlo
methods aim to provide a complete representation of the
joint posterior density using a large set of sample points,
termed particles. These points provide a faithful approxi-
mation to the true shape of the full distributions employed.
State propagation and observation models are also repre-
sented in the form of a sampled distribution. A number
of related algorithms have been proposed to then fuse and
propagate estimates in the general form of Equation 13. Of
note is the sampling importance resampling (SIR) or boot
strap filter algorithm for computation of the update stage
in Particle filters [16]. A number of similar algorithms have
been proposed; the Monte-Carlo filter [11] and the conden-
sation algorithm [8] are good examples.
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Of particular relevance to this paper is the work de-
scribed in [20], [19], [18], where particle filtering algorithms
have been developed and applied with great success to in-
door mobile robot navigation problems. In the case of lo-
calisation, a grid-based environment model is constructed
to represent probabilistic landmark information. The ve-
hicle motion is also then described in probabilistic form.
Successive observations are then used to compute a loca-
tion posterior for the vehicle in terms of a set of samples
or particles. Most importantly, this method overcomes a
number of key problems with EKF localisation methods;
data association (and the kidnapped robot problem) and
severe non-linearities in vehicle motion.

Extending particle filter methods from localisation to
map building is, however, complicated by the fact that the
state space for the map is much larger than the state space
for the vehicle alone. Sampling methods scale exponen-
tially with state dimension and thus full posterior estima-
tion, using particle filters for map building, is generally
intractable.

A solution to this is to use the expectation-maximisation
(EM) technique [2], [22]. This method computes a se-
quence of maps with successively increasing likelihood. It
operates in two alternate steps. The expectation step
(E−step) computes a joint likelihood function for the data
and vehicle location conditioned on the current map and
data. In the M-step, the most likely map is computed given
the pose estimates from the E-step. The EM method is
demonstrably robust [20]. However, the M-step in partic-
ular, which computes the most likely map over all possible
locations, is computationally intensive and is not yet prac-
tical for real-time implementations.

C. The Sum of Gaussian (SOG) Method

One approach to reducing the computational complexity
of Particle filter methods is to find a functional represen-
tation for probability distributions in the full Bayesian al-
gorithm. That is, the probability distributions describing
vehicle motion and sensor observations would be described
as a series of functions approximating the underlying true
density functions. The Sum of Gaussian (SOG) method
provides such a representation. It is appropriate to note
that the SOG method can approximate any distribution to
an arbitrary (in probability) accuracy [15]. Further, SOG
approximated Bayesian estimators achieve convergent op-
timality with respect to full Bayes estimators [1], [9].

A general Gaussian is described in the form

P (x) = G(x;x, Σ)

=
exp

(
− 1

2 (x− x)T Σ−1 (x− x)
)

(2π)n/2| Σ |1/2

(18)

where x is the state of interest, and x and Σ are the mean
and variance characterizing the distribution. A Sum of
Gaussians (SOG) or Gaussian mixture is described in the

form

P (x) =
n∑

i=1

αiGi(x;xi,Σi)

=
n∑

i=1

αiexp
(
− 1

2 (x− xi)
T Σ−1

i (x− xi)
)

(2π)n/2| Σi |1/2
(19)

where αi are a series of weights normally summing to 1.
An example of a one-dimensional Gaussian sum is shown in
Figure 3(a). The great advantage of using a SOG model is
that the computations involved are straight-forward modi-
fications of the standard EKF equations. This is clear from
the properties of Gaussians and SOGs:
1. The product of two Gaussian distributions is Gaussian.
2. The product of two SOG distributions is a SOG distri-
bution.
3. The convolution of two Gaussian distributions is Gaus-
sian
4. The convolution of two SOG distributions is a SOG dis-
tribution.
1. is the well-known conjugate distribution property of a
Gaussian. 2. Follows as multiplication distributes over
addition. 3. Follows because the Fourier transform of a
Gaussian is Gaussian and because convolution is multipli-
cation in the frequency domain. 4. follows from the fact
that convolution is a linear operator.

There are two significant computational issues with SOG
models. First, the product (or convolution) of two mixtures
with (say) N1 and N2 Gaussians, results in a new mixture
with N1 × N2 Gaussians. Thus, the number of Gaussians
used to model the density increases at each iteration of the
estimation algorithm (Equation 13). Consequently, this
requires re-sampling of the distribution as shown in Fig-
ure 3(b). The second significant problem is that in a Gaus-
sian mixture the component functions are not orthogonal
to each other (the SOG model does not form a basis for
the density function).

D. Implementation of the SOG Method

Practically, the SOG method is implemented by first
defining a SOG model for sensor observations and for ve-
hicle motion. The motion model is defined in the form

P (xk | xk−1,uk) =
Mk∑
i=1

αv
i Gi(xk;xv

k,i,Qk,i) (20)

where the means xv
k,i = xv

k,i(xk−1,uk) and variances
Qk,i=Qk,i(uk) are functions of the previous state xk−1 and
applied control input uk computed from Equation 15 or
from a small sample approximation such as the Distribu-
tion Approximation Filter [10].

The observation model is defined in the form

P (zk | xk,m) =
Nk∑
i=1

αz
i Gi(xk,m; {xz

k,i,m
z
k,i},Rk,i) (21)
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Fig. 3. Construction of SOG elements: (a) Example of a one-
dimensional Gaussian Sum; (b) Example of re-sampling a SOG model
to provide fewer sum elements. Generally, re-sampling aims to min-
imise some norm of the error e(x) shown.

where the likelihood means xz
k,i = xz

k,i(zk), mz
k,i =

mz
k,i(zk) and variances Rk,i = Rk,i(zk) are functions of

the observation made. As with the motion model, the ob-
servation model can be computed from either Equation 16
or from a small sample approximation.

The SOG algorithm now proceeds to recursively solve
Equations 12 and 13 in the following manner. The joint
posterior of vehicle and map at a time k − 1 is assumed
known in the form

P (xk−1,m | Zk−1,Uk−1,x0)

=
Lk−1∑
i=1

αx
i Gi{xk−1m;

[
x+

k−1,i,m
+
k−1,i

]
[
P+

k−1,i,Σ
+
k−1,i,S

+
k−1,i

]
} (22)

where

S+
k−1,i = E

[
(xk−1 − xk−1,i) (m−mk−1,i)

T | Zk
]

(23)

is the cross-covariance between vehicle location and map
estimate, and

[
x+

k−1,i,m
+
k−1,i

]
and

[
P+

k−1,i,Σ
+
k−1,i,S

+
k−1,i

]
are the means and covariances of the joint distribution of
map and vehicle. The + superscript indicates that these
are posterior (updated) values.

The time update step is computed by substituting Equa-
tion 20 and 22 into Equation 12 as

P (xk,m | Zk−1,Uk−1,x0)

=
∫

P (xk | xk−1,uk)P (xk−1,m | Zk−1,Uk−1,x0)dxk−1

=
∫ Mk∑

i=1

αv
i Gi{xk;xv

k,i,Qk,i}
Lk−1∑

j

αx
jGj{xk−1,m;

[
x+

k−1,j ,m
+
k−1,j

]
,
[
P+

k−1,j ,Σ
+
k−1,j ,S

+
k−1,j

]
}dxk−1

=
Mk∑
i=1

Lk−1∑
j=1

∫
αv

i αx
jGi{xk;xv

k,i,Qk,i}Gj{xk−1,m;

[
x+

k−1,j ,m
+
k−1,j

]
,
[
P+

k−1,j ,Σ
+
k−1,j ,S

+
k−1,j

]
}dxk−1

=
Mk,Lk−1∑
i=1,j=1

αijGij{xk,m;{x−
k,ij ,m

−
k,ij},P−

k,ij} (24)

The last step in Equation 24 is obtained by recognizing
that the convolution of two Gaussian is a Gaussian with[

x−
k,ij

m−
k,ij

]
=

[
xv

k,i + x+
k−1,i

m+
k−1,i

]
P−

k,ij = Qk,i +P+
k−1,j .

This is essentially identical to the prediction step of the
Kalman filter for each mean and variance pairing. Note
that the motion or state-transition model is captured in
Equation 20 and does not form part of the update step.

The observation update step is computed by substituting
Equation 21 and 24 in to Equation 13

P (xk,m | Zk,Uk,x0)

= KP (zk | xk,m)
∫

P (xk | xk−1,uk)

×P (xk−1,m | Zk−1,Uk−1,x0)dxk−1

= K

Nk∑
l=1

αz
l Gl{xk,m;

{
xz

k,l,m
z
k,l

}
,Rk,l}

×
Mk,Lk−1∑
i=1,j=1

αijGij{xk,m;{x−
k,ij ,m

−
k,ij},P−

k,ij}

= K

Nk,Mk,Lk−1∑
l=1,i=1,j=1

βlijGlij{xk,m;
{
x+

k,lij ,m
+
k,lij

}
,P+

k,lij}

(25)

where

[
x+

k,lij

m+
k,lij

]
= P+

k,lij


 (Rk,l)

−1xz
k,l +

(
P−

k,ij

)−1

x−
k,ij

(Rk,l)
−1mz

k,l +
(
P−

k,ij

)−1

m−
k,ij




P+
k,lij =

[(
R−

k,l

)−1

+ (Pk,ij)
−1

]−1
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and βlij are new mixture weights. This is again identical
to the observation update step of the Kalman filter for
each mean and variance pairing. Note that the observation
model is captured in Equation 21 and does not, directly,
form part of the update step. The new mixture weights αij

and βlij are computed as the product of component weights
normalised by requiring each Gaussian in the mixture to
integrate to 1 (as in Equation 18).

Equations 24 and 25 describe a recursive algorithm for
computation of the full joint posterior as a sum of Gaus-
sians. The initial conditions are obtained assuming initial
vehicle location is captured in the distribution P (x0), and
the initial knowledge of the map is given by the first mea-
surement set.

The SOG method first computes the time update (a con-
volution) for each combination of Gaussian in the state
motion model and prior distributions. This then yields a
further SOG mixture which is subsequently multiplied by
the SOG observation distribution to yield a posterior dis-
tribution which is also a SOG mixture. the convolution
and multiplication steps in the SOG method are directly
equivalent to the time and observation update equations in
the EKF, and indeed can be implemented simply as mul-
tiple instances of the conventional EKF algorithm. How-
ever, as is clear from the three-fold indices in Equation 25,
the resulting posterior must then generally be re-sampled
to produce a lower complexity mixture. Re-sampling is a
weakness of this method as the SOG representation does
not form an orthogonal basis, and consequently there is
no unique re-sampling strategy. Practically, for the results
presented here, a method of successive approximation and
least-squares fitting is employed. This is described in more
detail in [14].

A very important point to note is that the algorithmic
flow is separate from the issue of sensor or platform mod-
elling. The SOG method focuses on the algorithmic flow of
convolution followed by multiplication described in Equa-
tion 25. This flow does not require any knowledge of how
the models in Equations 22 and 24 are obtained. Indeed,
these models could be obtained using any of Monte-Carlo,
small sample or linearisation methods. Thus arguments
about modelling approximations are not relevant to the
applicability of SOG methods.

IV. Implementation of the SOG
Method in Sub-Sea SLAM

AUV navigation is a particularly appropriate applica-
tion of the SOG method. The underwater environment is
very unstructured; landmark features consist of rocks and
other objects on the sea-bed. Motion models for vehicles
are poorly understood, and the quality of sub-sea sensing
is generally very low. Together this makes it notably diffi-
cult to apply conventional EKF methods to the navigation
problem. However, real-time SLAM is essential in AUV
applications. There is generally no map of a sub-sea do-

main, and there are generally no widely available position-
ing systems such as GPS to locate a vehicle (leaving aside
expensive and difficult to deploy short and long base-line
sonar transponder networks). Thus deployment of a real-
time sub-sea SLAM algorithm is one of the only methods
of providing vehicle navigation and guidance information.

A. AUV, Sensors and Sensor Modeling

Oberon, the AUV employed in this implementation, is
shown in Figure 4(a) [21]. Oberon is equipped with three
main sensors a 585 kHz or 1210 kHz (user selectable)
pencil-beam sonar, a 675 kHz fan beam sonar, and a spe-
cially constructed underwater color camera. The fan-beam
simply provides altitude information. The pencil-beam
sonar and the camera are co-registered to provide terrain
data for the AUV navigation system (Figure 4(b)). To-
gether the sensors provide terrain data in the form of range
and bearing, as well as other properties such as texture and
colour. The pencil-beam sonar has a beam-width of 1.80

and is mechanically scanned in azimuth at a maximum rate
of 180 degrees/second. A typical scan, registered to the
ground plane is shown in Figure 4(c). At each selected po-
sition, the sonar pings and a complete amplitude wave-form
is returned. In this work, a Sum of Gaussian (SOG) model
is fitted to the amplitude return of this ping to provide a
model of the return observation. The ping and two SOG
models of differing resolution are shown in Figure 4(d).

B. Processing and Analysis of Field Data

The operational environment for this work is a reef in-
let on the Pacific shoreline near Sydney with a maximum
depth of 5m. During the trials described here, the AUV fol-
lowed a course parallel to the shoreline of the inlet, followed
by a similar course in the opposite direction. An approxi-
mate vehicle path is shown in Figure 5(a). The length of
each run is approximately 20-25metres. The experimental
data consists of time stamped sonar data and co-located
camera data, along with other navigation data including
altitude, depth, yaw rate, compass heading and propeller
control input.

The sensor model for the sonar data is a SOG in the
form of Equation 21, an example of which is depicted in
Figure 4(d). The motion model for the vehicle is taken
to be a SOG derived from heading and thrust data in the
form of Equation 20. This is a relatively weak model, but
in this instant suffices at the typical speed and update rate
of the AUV. After each sonar scan (approximately every
two seconds), a local SOG terrain map is obtained from
data such as that shown in Figure 4(c). This map data
is propagated through Equation 13 using the AUV motion
model. When new data is obtained, it is first converted
into SOG form and multiplied by the propagated data to
yield a posterior SOG. This SOG is then re-sampled before
the next iteration of the algorithm.

Figure 5(a) shows the state of the SOG terrain model
after the first 100 seconds of motion. The sides of the in-
let in the neighbourhood of the vehicle are clearly visible.
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Fig. 4. Processing of experimental field data: (a) The experimental AUV, Oberon, showing location of the two sonars and vision system;
(b) A typical data set showing sonar range data registered on camera image; (c) Projection of sonar data on to the ground plane, used for
providing landmark data; (d) Fitting of Sum of Gaussian (SOG) distribution to a sonar ping (two possible resolutions shown)

Also coming into view is the first of a set of man-made
dihedrals. These are placed in the environment to provide
a measure of ground-truth for the SLAM algorithm. Fig-
ure 5(b) shows the SOG model after 300 seconds of mission
duration. Figure 5(c) shows the state of the map at the
furthest excursion of the vehicle along the reef structure.
The “SOG” nature of the terrain model is evident both in
the surrounding reef structure and in the strongly reflective
dihedral near the centre of the terrain image. Figure 5(d)
shows the resulting SOG terrain map at the end of the mis-
sion once the vehicle has returned to near it’s starting posi-
tion. The reconstructed inlet structure should be compared
to the overlay of points shown in Figure 6(a). The string of
dihedrals positioned along the mission trajectory stand out
as highly peaked Gaussians (these too can be compared to
Figure 5(a)). This highlights the fact that for well-behaved

point features, the SOG method reduces to a conventional
EKF with point landmarks. There are approximately 90
Gaussians in the re-sampled terrain. Re-sampling could
be made both more or less stringent depending on the
required application. The computational complexity in-
volved is therefore equivalent to an EKF SLAM formula-
tion with 90 landmarks.

V. Discussion and Conclusion

The terrain maps constructed using the SOG method
appear to provide a quite general and robust representation
of unstructured environments.

At the heart of the proposed method is the idea that
the the posterior density is most efficiently represented as
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(a) (b)

(c) (d)

Fig. 5. Construction of a SOG terrain map from field trial: (a) Constructed SOG terrain map after the first 100s of motion; (b) Constructed
SOG terrain map after 300s of motion;(c) Constructed SOG terrain map after at point of maximum excursion for the vehicle; (d) Constructed
SOG terrain map after return and completion of mission. Note that the large peaks in this image correspond to the large returns in the
registered set (Figure 6(a) below). These are due to the placement of man-made dihedrals at these locations to allow a ground truth path to
be estimated.

a function, rather than as a set of samples or indeed a
grid. Representation as a function allows for a compact
representation and efficient computation of prediction and
update stages. The advantage of describing this function
as a sum of Gaussians is that the computation simply re-
duces to multiple instances of a conventional Kalman filter.
However, sums of Gaussians do not form an orthogonal se-
ries and so re-sampling to change resolutions is not always
straight-forward. Other representations may be more ap-
propriate.

The general Bayesian formulation of the SLAM problem
goes some way to addressing the data association problem.
Note that:
1. Features identified in successive scans combine to form
an overall, multi modal, distribution which describe the

main spatial characteristic of the map.
2. Spatially isolated features, which are observed only oc-
casionally, are not reinforced and remain isolated.
3. A feature which is significant in one scan but which does
not continue over successive scans, decreases in importance
and its contribution to the map is of low significance.
4. Feature maps can be constructed in real-time and can
be stored in a very compact form.
The problem of assigning measurements to landmarks is
usually complex and is often the main source of fragility
in a navigation algorithm. In contrast, the Bayesian (and
specifically SOG) method deals with data association as
simply a process of reinforcement or inhibition of density
functions [14].

There are a large number of questions and issues raised
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(a) (b)
Fig. 6. (a) Data set shown in the form of registered maximum returns together with a best computed vehicle path (Image courtesy Stefan
Williams); (a) SOG estimate of AUV trajectory; (b) visual texture registered on SOG terrain image.

by the implementation of a full Bayes method in SLAM.
Most importantly, is whether the full Bayes algorithm in-
herits the convergence properties of the Kalman filter-based
SLAM methods [4]. This would require the terrain map
to converge in probability monotonically and the platform
location error to be bounded. A second issue is the incor-
poration of non-spatial feature descriptions as part of the
map-building problem. A probability distribution provides
a natural description of complex environment properties
including texture, colour or reflectivity. It seems natural
to extend a density function to higher dimensions than sim-
ply landmark location. Figure 6(b) shows an example of
such a terrain map with texture data derived from vision
overlayed on the SOG terrain map. Another element of
the general density modeling is to use external informa-
tion, such as reports or constraints to provide additional
‘virtual’ sensor data [17].
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