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ABSTRACT. For n ≥ 3, the natural map Out(Fn)→ Aut(Kn) from the outer
automorphism group of the free group of rank n to the group of simplicial auto-
morphisms of the spine of outer space is an isomorphism.

§1. Introduction

If a field F has no non-trivial automorphisms, then the fundamental theorem of projective
geometry states that the group of incidence-preserving bijections of the projective space
of dimension n over F is precisely PGL(n, F ). In the early nineteen seventies Jacques
Tits proved a far-reaching generalization of this theorem: under suitable hypotheses, the
full group of simplicial automorphisms of the spherical building associated to an algebraic
group is equal to the algebraic group — see [T, p.VIII]. Tits’s theorem implies strong
rigidity results for lattices in higher-rank — see [M].

There is a well-developed analogy between arithmetic groups on the one hand and
mapping class groups and (outer) automorphism groups of free groups on the other. In
this analogy, the role played by the symmetric space in the classical setting is played by the
Teichmüller space in the case of case of mapping class groups and by Culler and Vogtmann’s
outer space in the case of Out(Fn). Royden’s Theorem (see [R] and [EK]) states that the
full isometry group of the Teichmüller space associated to a compact surface of genus at
least two (with the Teichmüller metric) is the mapping class group of the surface. An
elegant proof of Royden’s theorem was given recently by N. Ivanov [Iv]. Ivanov’s proof,
which illuminates the analogy with rigidity results for lattices, proceeds via the appropriate
analogue of Tit’s theorem: for surfaces of genus at least two, the full group of simplicial
automorphisms of the complex of curves [H] is the mapping class group.

One may think of the theorems of Ivanov, Royden and Tits, and indeed the funda-
mental theorem of projective geometry, as saying that the spaces under consideration are
accurate geometric models for the groups being studied — the spaces have the correct
symmetries and no others. Our purpose in this paper is to show that the standard geo-
metric model for Out(Fn) is also accurate in this sense. Thus we shall prove an analogue
of Royden’s theorem for the action of Out(Fn) on the spine of outer space.

Outer space Xn is contractible [CV] and the action of Out(Fn) on it is proper but not
cocompact. The spine of outer space is an equivariant deformation retract Kn ⊂ Xn on
which Out(Fn) acts properly and cocompactly; Kn is a simplicial complex and the action
of Out(Fn) is by simplicial automorphisms. Let Aut(Kn) denote the group of simplicial
automorphisms of Kn.
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Theorem. For n ≥ 3, the natural map Out(Fn)→ Aut(Kn) is an isomorphism.

The corresponding result is clearly false for n = 2; indeed Aut(K2) is uncountable.
Tits’s theorem is a vital ingredient in Mostow’s theorem concerning the finiteness of

outer automorphism groups of lattices in semisimple Lie groups [M], and in the same spirit
one can use Ivanov’s theorem to establish the finiteness of outer automorphism groups of
mapping class groups. Also in the same spirit, although the above theorem does not lead
directly to a proof that Out(Out(Fn)) is finite, we shall show in a subsequent paper that
related ideas can be used to show that in fact this group is trivial (cf. [DF]).

As a direct consequence of our theorem one obtains a fixed point result for actions of
lattices on outer space. Let G be a semisimple Lie group with finite centre and no compact
factors and suppose the real rank of G is at least two. Let Γ be a non-uniform, irreducible
lattice in G. Then every homomorphism from Γ to Out(Fn) has finite image — see [BF].
Every finite subgroup of Out(Fn) has a fixed point in its action on Kn (see [C]). Thus, as
a consequence of the above theorem we get:

Corollary 1.1. Let G be a semisimple Lie group with finite centre and no compact factors
and suppose the real rank of G is at least two. Let Γ be a non-uniform, irreducible lattice
in G. Then every simplicial action of Γ on the spine of outer space has a fixed point.

The analogue of this corollary for actions of lattices on Teichmüller space was proved
by Farb and Masur [FM]. In their result one does not need to assume that the lattice is
non-uniform; in our setting this assumption is probably just an artifact of the proof.

In the remainder of this introduction we shall outline the proof of the above theorem.
It is easy to see that the kernel of Out(Fn) → Aut(Kn) is trivial; the problem is to
show that it is surjective. The complex Kn is the geometric realization of a poset of finite
marked graphs; the maximal elements in the partial ordering are trivalent and the minimal
elements are roses, i.e. graphs with a single vertex. A priori it is not clear that a simplicial
automorphism of Kn must preserve the partial ordering on the vertices. However the
vertices that are neither maximal nor minimal are characterized by the fact that their link
can be expressed as a non-trivial join (5.1).

The link of every vertex in Kn is homotopic to a wedge of (2n − 4) dimensional
spheres. In order to distinguish the maximal vertices (trivalent graphs) from the minimal
ones (roses) we calculate the number of spheres in these wedges (sections 3 and 4). As a
result of these calculations one can see that any simplicial automorphism f of Kn must
preserve the poset structure. Further calculation of the Euler characteristic of links then
shows that f must preserve the homeomorphism type of marked graphs and from this it
follows (after further argument) that if f leaves the star of a rose ρ0 invariant then it
acts on the star in the same manner as some element of the stabilizer of ρ0 in Out(Fn). It
follows that given any f ∈ Aut(Kn), we can compose it with a suitable element of Out(Fn)
and assume that the composition f ′ acts trivially on star(ρ0).

Any two roses in Kn can be connected by a sequence of roses that are Nielsen adjacent
(see section 2) and we shall prove that because the intersection of the stars of each pair of
Nielsen adjacent roses is large, any simplicial automorphism of Kn that fixes the star of a
rose must also fix the star of all Nielsen adjacent roses (5.7). Kn is the union of the stars
of roses, therefore we will have shown that f ′ is the identity, and hence f ∈ Out(Fn).
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§2. Background

For the convenience of the reader, we briefly outline here the definition and some properties
of the spine Kn of outer space.

The spine Kn is a simplicial complex. We first describe the vertices of Kn, which are
called marked graphs of rank n. Fix a standard graph Rn with one vertex and n edges. A
marked graph of rank n is an equivalence class of pairs (g,Γ), where Γ is a connected graph
all of whose vertices are at least trivalent, and g:Rn → Γ is a homotopy equivalence; pairs
(g,Γ) and (g′,Γ′) are equivalent if there is a homeomorphism h: Γ → Γ′ with h ◦ g ' g′.
We also assume that Γ has no separating edges.

One may picture (g,Γ) as a labelled graph in the following manner (see Figure 1): fix
a basis for Fn ∼= π1Rn; choose a maximal tree T ⊂ Γ and a base-vertex x ∈ T ; each edge
e ⊂ Γ − T determines an element ε ∈ π1(Γ, x), and one labels e with the reduced word
representing g−1

∗ (ε) ∈ Fn. One can recover (g,Γ) from this labelled graph, but there are
many labelled graphs representing the same marked graph: the labelling depends on the
choice of maximal tree and base-vertex as well as the choice of (g,Γ) within its equivalence
class.

a3 
a1 a4 

x a2 

a1 a2a4
−1a3a4a2

−1

x a4a2
−1

a2 

Labelled graphs representing the same marked graph (g, Γ)

Figure 1

A set of edges φ ⊂ Γ is a forest if the corresponding subgraph of Γ contains no cycles.
Given a forest φ ⊂ Γ, we define Γφ to be the graph obtained from Γ by collapsing each
edge of φ to a point. The quotient map qφ: Γ → Γφ is called a forest collapse. Marked
graphs represented by (g,Γ) and (g′,Γ′) are connected by an edge in Kn if there is a forest
φ ⊂ Γ such that (g′,Γ′) is equivalent to the pair (qφ ◦ g,Γφ). Marked graphs γ0, . . . , γk
span a k-simplex of Kn if every pair γi, γj is connected by an edge.

A special role is played by roses, which are marked graphs γ = (g,Γ) such that Γ has
exactly one vertex, and by Nielsen graphs, which are marked graphs (g,Γ) such that Γ has
exactly two vertices, one of which is trivalent with no loops (see Figure 2).

Roses at distance 1 from the same Nielsen graph are called Nielsen adjacent. An edge
path in Kn passing only through roses and Nielsen graphs is called a Nielsen path.

If we identify Fn with π1(Rn), an element α ∈ Out(Fn) is represented by a unique
homotopy class of maps fα:Rn → Rn. The (right) action of Out(Fn) on Kn is given
by (g,Γ) · α = (g ◦ fα,Γ). (If one portrays (g,Γ) as a labelled graph, then the outer
automorphism class of ψ ∈ Aut(Fn) sends (g,Γ) to the isomorphic graph in which each
label w is replaced by ψ−1(w).) Note that Out(Fn) acts transitively on roses.
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rose Nielsen graph

Figure 2

A Nielsen automorphism of Fn is an automorphism given in terms of some basis
A = {u1, . . . , un} for Fn by sending u1 7→ u1u2 and fixing all ui with i > 1. This Nielsen
automorphism takes the rose whose petals are labelled by the basis A to a Nielsen adjacent
rose. Since Nielsen automorphisms together with the stabilizer of a rose generate Out(Fn),
it follows that any two roses can be joined by a Nielsen path.

Since a simplicial automorphism of Kn must take each vertex to another vertex with
an isomorphic link, we study the links of vertices with the aim of characterising Out(Fn)-
orbits of vertices by their links. The link of γ = (g,Γ) is the join lk(γ) = lk−(γ) ∗ lk+(γ),
where lk−(γ) is the full subcomplex spanned by marked graphs which can be obtained
from γ by forest collapse, and lk+(γ) is the full subcomplex spanned by marked graphs
which collapse to γ. The complex Kn is (2n−3)-dimensional, and it was shown in [V] that
Kn is Cohen-Macaulay; in particular the link of every vertex is homotopy equivalent to a
wedge of spheres of dimension 2n− 4. In the first two sections, we estimate the number of
spheres in this wedge if Γ is trivalent (i.e. a maximal element of Kn) and if Γ is a rose (a
minimal element).

§3. The link of a trivalent marked graph
Let γ = (g,Γ) be a maximal vertex of Kn; thus Γ is a connected trivalent graph of rank
n (i.e. Euler characteristic 1 − n), with no separating edges. The link of γ in Kn can be
identified with the geometric realization of the partially ordered set (poset) F (Γ) of all
non-empty forests in Γ.

The functions e(Γ), v(Γ), τ(Γ), t(Γ).
For any graph Γ and edge e of Γ, let Γ − e denote the graph obtained from Γ by

removing e, and let Γ/e denote the graph obtained by collapsing the edge e to a point. Let
v(Γ) denote the number of vertices of Γ, and e(Γ) the number of edges. Following [SV], we
define τ(Γ) =

∑
φ(−1)e(φ), where the sum is over all forests φ in Γ, including the empty

forest. Thus τ(Γ) = 1 if Γ is a rose, and τ(Γ) = 1 − k if Γ has two vertices with k edges
between them. Recall from [SV] the following elementary properties of τ :

(1) For any edge e of Γ which is not a loop, τ(Γ) = τ(Γ− e)− τ(Γ/e).
(2) If Γ is the disjoint union of Γ1 and Γ2, then τ(Γ) = τ(Γ1)τ(Γ2).
(3) If Γ has a separating edge, then τ(Γ) = 0.
(4) τ(Γ) = χ(|F (Γ)|)− 1, where |F (Γ)| is the geometric realization of F (Γ).

Let t(Γ) be the absolute value of τ(Γ). Note that if e is not a loop, then t(Γ) = t(Γ− e) +
t(Γ/e).
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Definition. A CW-complex is d-spherical if it is d-dimensional and (d−1)-connected. The
rank of a d-spherical complex K is the rank of the free abelian group H̃d(K) := H̃d(K;Z).
Note that if L is a d-spherical subcomplex of a d-spherical complex K, then rank(L) ≤
rank(K).

Lemma 3.1. Let Γ be a finite connected graph. The geometric realization |F (Γ)| of the
poset F (Γ) is (v(Γ)− 2)-spherical of rank t(Γ).

Proof. (This is a quantitative version of the proof of Proposition 2.2 in [V].) If e is an edge
which is a loop in Γ, then F (Γ) = F (Γ− e), so we may assume Γ has no loops. If Γ has a
separating edge e, then φ → φ ∪ e → {e} is a poset map giving a deformation retraction
of |F (Γ)| to the point {e}, so the Lemma is true. In particular, if e(Γ) = v(Γ) − 1, the
Lemma is true.

If v(Γ) = 2, then t(Γ) = k−1, where k is the number of edges joining the two vertices,
and |F (Γ)| is a discrete set of k points, hence 0-spherical of rank k − 1.

The proof now proceeds by induction on v(Γ) and e(Γ). Fix an edge e of Γ. If e is
separating, we are done. If not, the poset map φ→ φ−{e} induces a homotopy equivalence
from |F (Γ)−{e}| to |F (Γ−e)|, which is (v(Γ)−2)-spherical of rank t(Γ−e) by induction on
e(Γ). The link of {e} in |F (Γ)| is isomorphic to F (Γ/e) via the isomorphism φ→ φ/e, and
is therefore (v(Γ) − 3)-spherical of rank t(Γ/e), by induction on v(Γ). The Van Kampen
Theorem and Mayer-Vietoris sequence for |F (Γ)| = |F (Γ) − {e}| ∪ st(e) now show that
F (Γ) is (v(Γ)− 2)-spherical of rank t(Γ− e) + t(Γ/e) = t(Γ). tu

We now specialize to the case where Γ is connected and trivalent, and estimate t(Γ)
in terms of n. Note that in this case τ(Γ) = χ(|F (Γ)|)− 1 ≤ 0.

Proposition 3.2. Let Γ be a connected trivalent graph of rank n. Then

t(Γ) ≤ 2n−1Πn
i=2 log2(i).

Proof. The proof is by induction on n. For n = 2 there are two connected trivalent graphs
Γ, one with t(Γ) = 0 and one with t(Γ) = 2, so the proposition is true. Now assume that
t(∆) ≤Mn−1 := 2n−2Πn−1

i=2 log2(i) for all connected trivalent graphs ∆ of rank n− 1.
Let k = k(Γ) be the length of the shortest edge-cycle in Γ. We will show first that

t(Γ) ≤ k ·Mn−1, and then that k ≤ 2 log2(n), giving the result.

Claim 1. t(Γ) ≤ k ·Mn−1

Proof. This is shown by induction on k. If k = 1, then Γ has a separating edge, so
t(Γ) = 0.

If k = 2, let e be one edge in a cycle of length 2. Then some edge of Γ/e is a loop;
after removing this loop and the consequent single bivalent vertex, we obtain a trivalent
graph with rank n − 1. Removing a bivalent vertex simply changes the sign of τ , leaving
t unchanged. The graph Γ− e has two bivalent vertices; after removing these, this graph
too becomes trivalent of rank n− 1. Thus the formula τ(Γ) = τ(Γ− e)− τ(Γ/e) becomes
t(Γ) = t(Γ− e) + t(Γ/e) ≤ 2 ·Mn−1.
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Figure 3

Now suppose k ≥ 3. Let e be an edge of a shortest cycle in Γ. The graph Γ/e is
equal to Γ′/e′ for a unique graph Γ′ whose shortest edge-cycle has length k− 1 (see Figure
3: collapsing e creates an edge-cycle of length k − 1 in Γ/e; we can then expand Γ/e in
exactly one way to a trivalent graph Γ′ without expanding that edge-cycle.)

Note that e′ is separating if and only if removing the closure of e disconnects Γ. If
this is the case, replace e by a1. If removing the closure of a1 also disconnects Γ, then
b is a separating edge of Γ, so that t(Γ) = 0 and the proposition is true. Otherwise,
we have that e′ is non-separating in Γ′. The formulas τ(Γ) = τ(Γ − e) − τ(Γ/e) and
τ(Γ′) = τ(Γ′ − e′)− τ(Γ′/e′) then combine to give

τ(Γ) = τ(Γ− e) + τ(Γ′)− τ(Γ′ − e′).

After removing the bivalent vertices, Γ′ − e′ is trivalent. Since e′ is non-separating τ(Γ),
τ(Γ−e), τ(Γ′) and τ(Γ′−e′) are all negative, and by induction on k, t(Γ′) ≤ (k−1) ·Mn−1.
Thus the formula above gives

t(Γ) ≤ t(Γ− e) + t(Γ′)
≤Mn−1 + (k − 1) ·Mn−1

= k ·Mn−1.

Claim 2. k ≤ 2 log2(n)

Proof. Since Γ is trivalent and the shortest cycle in Γ has length k, the maximal trivalent
tree Tk−1 of diameter k − 1 embeds in Γ. If k is even, Tk−1 has 2 · 2 k2 − 2 vertices; if k is
odd, Tk−1 has 3 · 2 k−1

2 − 2 = 3√
2
· 2 k2 − 2 vertices. In either case, Γ has at least 2 · 2 k2 − 2

vertices. Since Γ is trivalent, it has 3v(Γ)/2 edges, and since it has Euler characteristic
(1− n) we have hence v(Γ) = (1− n) + 3v(Γ)/2, so Γ has exactly 2n− 2 vertices. Thus

2n− 2 ≥ 2 · 2 k2 − 2,

giving n ≥ 2
k
2 , or 2 log2(n) ≥ k. tu

6



§4. The link of a rose

In this section we shall calculate the homotopy type of the links of roses in Kn. The proof
will be given in the language of partitions and ideal edges. The reader unfamiliar with Kn

is unlikely to see the beautiful geometric picture hidden in this description. We therefore
suggest that such readers may wish to look at the pictures on pages 422–428 of [B], which
show the link of a rose in K3 and its symmetries.

The link of a rose ρ can be identified with a certain partially ordered set of partitions
of the oriented edges of the rose. For the convenience of the reader, we briefly review this
below (for details, see [CV]).

Definition. Let A be a finite set, and α = (X |A−X) a partition of A into two parts (the
parts are unordered, so that (X |A −X) = (A −X |X)). The size of α is the minimum
of the orders of the subsets X and A − X. The partition α is said to be thick if it has
size at least two. Two partitions (X |A−X) and (Y |A− Y ) are compatible if one of the
following intersections is empty:

X ∩ Y, X ∩ (A− Y ), Y ∩ (A−X), (A−X) ∩ (A− Y )

We form a simplicial complex W (A) with vertices the set of thick partitions of A. A
set of k+ 1 partitions forms a k-simplex if each pair of partitions in the set is compatible.

Proposition 4.1. Let A = {p1, . . . , pk} be a set with k elements. Then W = W (A) is
(k − 4)-spherical of rank (k − 2)!.

Proof. The proof is by induction on k. If k = 4, W consists of three mutually incompatible
partitions, so is 0-spherical of rank 2.

Let α be the partition (X |A−X) with X = {p1, p2}, and let W1 be the subcomplex
of W spanned by thick partitions of A which are compatible with α. Then W1 is a cone
with cone point α, so is contractible.

If β is not inW1, then β can be written as (Xβ |A−Xβ), with p1 ∈ Xβ and p2 ∈ A−Xβ .
We add vertices of W to W1 in order of decreasing size of the sets Xβ , as follows:

Let Wi be the subcomplex of W spanned by W1 and {β |β 6∈ W1 and |Xβ | ≥ k − i}.
We have W1 ⊂W2 ⊂ . . . ⊂Wk−3 ⊂Wk−2 = W .

Claim. Wi−1 is a deformation retract of Wi for 1 ≤ i ≤ k − 3.

Proof. If β 6∈W1 and |Xβ | ≥ 3, we can define a new thick partition p(β) = (Xβ − p1 |A−
(Xβ − p1)) by “pushing β off p1”. If β ∈ Wi −Wi−1, the intersection of the link of β
with Wi−1 is a cone on p(β), so is contractible. Since no two vertices of Wi −Wi−1 are
compatible, this shows Wi collapses onto Wi−1.

The only vertices of W not in Wk−3 are the k−2 partitions β of the form Xβ = {p1, pj}
with j ≥ 3. Since p1 and pj are always on the same side of any partition compatible with
β, the map that sends p1 and pj to a single point p̄ gives a natural isomorphism from
the intersection of Wk−3 with the link of β to the complex W ({p̄, p2, . . . , p̂j , . . . , pk}). By
induction, this is (k − 1)-spherical of rank (k − 3)!. Since Wk−3 is contractible, the Van
Kampen and Mayer Vietoris theorems apply to give the result. tu
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Ideal edges.
A rose ρ = (g,R) is determined by a basis B = {a1, . . . , an} of Fn, up to permutation

and inversion of the basis elements. We identify the set of oriented edges of R with the set
B ∪ B−1, which we denote E(ρ). Recall from [CV] that a thick partition (X |E(ρ) −X)
of E(ρ) is called an ideal edge of ρ if the partition separates some ai from its inverse.

The link of ρ can be identified with the barycentric subdivision of the subcomplex of
W (E(ρ)) spanned by the ideal edges. To see this, note that a marked graph γ = (g,Γ) is
in the link of ρ if and only if there is a maximal tree T in Γ with the oriented edges of Γ−T
labeled by the elements of E(ρ). To each edge e of T , we associate a partition of E(ρ):
two elements of E(ρ) are in the same subset of the partition if the corresponding oriented
edges of Γ terminate in the same component of T − e. The set of partitions obtained from
edges of T are pairwise compatible. They are thick since Γ has no univalent or bivalent
vertices, and are “ideal” since Γ has no separating edges.

The marked graph (g,Γ) can be reconstructed from the associated set of ideal edges of
E(ρ). For example, the ideal edge α = (X |E(ρ)−X) corresponds to the graph Γ(α) which
has two vertices joined by an unlabelled edge, has oriented edges labelled by elements of X
terminating at one vertex, and oriented edges labelled by elements of E(ρ)−X terminating
at the other vertex (see Figure 4). An ideal edge α has size 2 if and only if the graph Γ(α)
is a Nielsen graph in the link of ρ.

a1 a2 a3 a4

a1
-1 a2

-1 a3
-1 a4

-1

α = ({a1, a1
-1

, a2
 
, a2

-1
, a3

-1}|{a3, a4
 
, a4

-1})  

a1 a2

a3

a4

Γ(α)

Figure 4

Let Γ(α1, . . . , αk) denote the marked graph in the link of ρ determined by a set
{α1, . . . , αk} of pairwise compatible ideal edges of ρ. If αi = (Xi |E(ρ) − Xi), it will be
sometimes convenient to replace the notation Γ(α1, . . . , αk) by Γρ(X1, . . . , Xk). If α and
β are compatible ideal edges, note that Γ(α) and Γ(β) have distance 2 in the link of ρ,
since they are joined by the path Γ(α)→ Γ(α, β)→ Γ(β) (i.e. they have distance 1 in the
complex W (E(ρ)).)

Motivated by the above description of the link of a rose, we now consider finite sets
A where some of the elements are paired. Define a thick partitition α = (X |A−X) to be
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ideal if neither X nor A−X is a union of pairs, and let Wπ(A) be the subcomplex of W (A)
spanned by ideal partitions. By Theorem 3.1 of [V], Wπ(A) is always (|A| − 4)-spherical.
Since lk(ρ) can be identified with the barycentric subdivision of Wπ(E(ρ)), where each
edge in E(ρ) is paired with its inverse, we are particularly interested in sets of the form
A2k = {p1, p

−1
1 , . . . , pk, p

−1
k }, where all elements are paired. To help with the induction,

we also consider sets A2k−1 = {p1, p2, p
−1
2 , . . . , pk, p

−1
k }, where all but one of the elements

are paired.

Proposition 4.2. For n = 2k or n = 2k− 1, Wπ(An) is (n− 4)-spherical of rank at least
(2k − 3) · rank(Wπ(An−1)).

Proof. The fact that Wπ(An) is (n − 4)- spherical is proved in [V]. It remains to prove
the rank statement.

Let α = (X |An −X), with X = {p1, p2}. Exactly as in the proof of Proposition 4.1,
we see that the subcomplex Wn−3 of Wπ(A) spanned by ideal partitions β which are either
compatible with α or “pushable” off p1 is contractible.

Ideal partitions of the form β = (Xβ , An − Xβ) with Xβ = {p1, p
−1
2 } or Xβ =

{p1, p
±1
i }, i ≥ 3 are not in Wn−3. The intersection of the link of any such β with Wn−3 is

(n−5)-spherical by [V], and contains Wπ(An−1) as an (n−5)-spherical subcomplex. There-
fore, for both n = 2k and n = 2k− 1 the subcomplex V of Wπ(An) spanned by Wn−3 and
these 2n−3 vertices β is (n−4)-spherical of rank at least (2k−3) · rank(Wπ(An−1)). Since
Wπ(An) is itself (n− 4)-spherical, we have rank(Wπ(An)) ≥ (2k − 3) · rank(Wπ(An−1)).tu

Corollary 4.3. For n ≥ 2, the link of a rose is (2n − 4)-spherical of rank at least
Πn−1
k=1(2k − 1)2. The inequality is strict for n ≥ 3.

Proof. The link of a rose is the barycentric subdivision of Wπ(E(ρ)) with the natural
pairing of each edge with its inverse. If n = 2, Wπ(E(ρ)) consists of exactly two points, so
has rank 1. The corollary is now immediate from Proposition 4.2. tu

§5. Simplicial automorphisms of Kn

The following proposition shows that a simplicial automorphism cannot take a rose or
trivalent graph to a vertex of Kn of any other type.

We emphasize that in the following discussion, as elsewhere, distance (hence diameter
etc.) is combinatorial distance in the 1-skeleton of the complex under consideration.

Proposition 5.1. Let γ = (g,Γ) be a vertex of Kn. If Γ is not a rose or a trivalent graph,
then lk(γ) has diameter 2. If Γ is a rose or a trivalent graph, lk(γ) has diameter > 2.

Proof. In general, lk(γ) is the join of the “lower link” lk−(γ), consisting of marked graphs
which can be obtained from γ by a forest collapse, and the “upper link” lk+(γ), consisting
of marked graphs which collapse to γ. If Γ is neither trivalent nor a rose, then both lk−(γ)
and lk+(γ) are non-empty, so the join lk−(γ) ∗ lk+(γ) has diameter 2.

If Γ is a rose we have seen that lk(γ) = lk+(γ) can be identified with the geometric
realization of the poset of sets of pairwise-compatible ideal edges in γ. If α is an ideal edge
of γ, the graphs at distance 1 from Γ(α) are all of the form Γ(α1, . . . , αk), with α1 = α
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and αi compatible with α for i > 1. Therefore, if α and β are ideal edges of γ which are
not compatible, the graphs Γ(α) and Γ(β) have distance greater than 2 in the link.

If Γ is trivalent, we have seen that lk(γ) = lk−(γ) can be identified with the geometric
realization of the poset of forests in Γ. Let T be a maximal tree in Γ, and e an edge of Γ
which is not a loop and is not in T (such an edge exists because Γ has no separating edges).
Then d(e, T ) > 2, since there is no forest which is both contained in T and contains e.

tu

Corollary 5.2. Every simplicial automorphism of Kn takes roses to roses.

Proof. By Proposition 5.1, a rose must be sent either to another rose or to a trivalent
graph. By Propositions 3.2 and 4.3, the link of a rose is not homotopy equivalent to the
link of any trivalent graph for all n ≥ 4, since (2n− 3)! > 2n−1Πn

k=2 log2(k). The link of a
rose is not isomorphic to the link of any trivalent graph by inspection if n < 4. (For n = 2
this is trivial. For n = 3 one can see, for example, that roses have 72 neighbouring vertices
whereas trivalent graphs have at most 16 neighbours.) tu

Proposition 5.3. Every simplicial automorphism of Kn preserves the poset order on the
0-skeleton. In particular, simplicial automorphisms preserve the number of vertices in a
marked graph.

Proof. There is one rose in the star of γ = (g,Γ) for each maximal tree in Γ. Suppose
γ is obtained from γ′ = (Γ′, g′) by collapsing an edge e. Then the roses in the link of γ
correspond to maximal trees of Γ′ which contain e. Since e is not separating, there is a
maximal tree of Γ′ which does not contain e; this corresponds to a rose in the link of γ′

that is not in the link of γ. This shows that for any γ < η, the link of η contains more
roses than the link of γ; since a simplicial automorphism sends roses to roses by Corollary
5.2, it must therefore preserve the partial ordering. The fact that the number of vertices in
Γ is preserved follows since a maximal chain must be sent to a maximal chain, and every
marked graph can be put in a maximal chain. tu

Proposition 5.4. Every simplicial automorphism of Kn preserves the homeomorphism
type of two-vertex graphs.

Proof. Let γ = (g,Γ) have two vertices v and w with r edges between them, s loops at v
and t = n − r − s + 1 loops at w. Then there are r roses in the link of γ, so a simplicial
automorphism must take γ to another marked graph with the same value of r. We now fix
r and count the number of three-vertex graphs in the link of γ. We do this by choosing a
rose ρ in the link of γ and writing γ = Γ(α) for an ideal edge α = (X |E(ρ)−X); we then
count the number of ideal edges compatible with α. Any ideal edge compatible with α can
be written (Y |E(ρ) − Y ), with either Y ⊂ X or Y ⊂ E(ρ) − X. Interchanging X and
E(ρ)−X if necessary, we may assume X has 2s+ r − 1 elements. We count the number
of subsets Y of X which give ideal edges to get

[22s+r−1 − 2− (2s+ r − 1)]− (2s − 1)

10



ideal edges. Adding the number of allowable subsets Y of E(ρ)−X gives

h(r, s, t) = 22s+r−1 + 22t+r−1 − 2s − 2t − 2r +−2s+−2t− 4

= 2r−1(22s + 22t)− (2s + 2t)− 2n− 2.

Since r is fixed, s+ t = n+1−r is constant, so 2n+r−1 = 2s2t = C is constant. Set u = 2s,
so 2t = C/u. Writing h as a function of u, we get

h(u) = 2r−1(u2 + (C/u)2)− (u+ C/u)− 2n− 2.

The function h(u) has a local minimum at u = 2
n+r−1

2 and no other positive real critical
points. Since 2s is positive for all s, this shows that h is monotone decreasing as a function
of s, for s ≤ n+r−1

2 . In particular, different values of s give different values of h, for
s ≤ n+r−1

2 , so that non-homeomorphic graphs with a fixed value for r contain different
numbers of trivalent graphs in their links. tu

Stabilizers.
In the proofs that follow we shall need to understand the stabilizers in Out(Fn) of

certain marked graphs (g,Γ) ∈ Kn. In each case the description that we shall give is an
easy consequence of the fact that this stabilizer is precisely the full automorphism group
of the graph Γ. (This follows easily from [C] and the description of the action that we gave
in section 1.)

Lemma 5.5. If a simplicial automorphism f of the link of a rose ρ fixes all Nielsen graphs
in the link, then f fixes the entire link.

Proof. Any ideal edge α of ρ is determined by the set of size two ideal edges of ρ with
which it is compatible, i.e. the set of Nielsen graphs at distance two from Γ(α) in lk(ρ). If
all Nielsen graphs are fixed by f , then Γ(α) must also be fixed by f . An arbitrary graph
Γ(α1, . . . , αk) in the link of ρ is the unique graph at distance 1 from all Γ(αi), so must also
be fixed by f . tu

Proposition 5.6. If a simplicial automorphism f of Kn fixes a rose ρ, then the compo-
sition of f with some element of stab(ρ) ⊂ Out(Fn) fixes the entire star of ρ.

Proof. Let G0 be the stabilizer of ρ under the action of Out(Fn), and let E(ρ) =
{a1, a

−1
1 , . . . , an, a

−1
n }. Then G0

∼= (Z/2)noSn is a wreath product: (Z/2)n is gener-
ated by the n “flips” interchanging ai and a−1

i , and the symmetric group Sn permutes
these flips.

The group G0 acts transitively on Nielsen graphs in the link of ρ, so we may assume
f fixes Γρ({a1, a2}). (Here we use the alternate notation Γρ({a1, a2}) = Γ(α) for α =
({a1, a2}|{E(ρ)− {a1, a2})).

The graph Γ′ = Γρ({a1, a2}, {a−1
1 , a−1

2 }) (see Figure 5) is the only 3-vertex graph in
the link of ρ which is at distance 1 from Γρ({a1, a2}), connects Γρ({a1, a2}) to another
Nielsen graph in the link of ρ, and has only five roses in its link. (The marked graphs of
the form Γρ({a1, a2}, {a±1

i , a−1
2 }) or Γρ({a1, a2}, {a−1

1 , a±1
j }) have six roses in their link,

11



a1 a2a1 a2

a1

a2

Γρ({a1,a2}) Γρ({a1
-1,a2

-1})
Γ '=Γρ({a1,a2},{a1

-1,a2
-1})

a1

a2

a1

a2 ai

aj

ai

Γρ({a1,a2},{ai,a2
-1})

Γρ({a1,a2},{ai,aj})

Figure 5

while those of the form Γρ({a1, a2}, {a±1
i , a±1

j }) have eight.) Therefore Γ′ must be fixed
by f , which implies in turn that Γρ({a−1

1 , a−1
2 }) must be fixed by f , because it is the only

Nielsen graph in st(ρ) other than Γρ({a1, a2}) that is adjacent to Γ′.
The graphs Γρ({a1, a

−1
2 }) and Γρ({a−1

1 , a2}) are the only Nielsen graphs in the link
of ρ which are at distance more than 2 from both Γρ({a1, a2}) and Γρ({a−1

1 , a−1
2 }), since

distance 2 is equivalent to compatibility of the corresponding ideal edges. The automor-
phism interchanging a1 and a2 fixes ρ, Γρ({a1, a2}) (and Γρ({a−1

1 , a−1
2 })), and interchanges

Γρ({a1, a
−1
2 }) and Γρ({a−1

1 , a2}); so we may assume f fixes both of these last two vertices.

Let G1 be the intersection of G0 with the stabilizers of Γρ({a1, a2}) and Γρ({a1, a
−1
2 }).

Then G1
∼= (Z2)n−2

oSn−2 is a wreath product: (Z2)n−2 is generated by the (n−2) “flips”
interchanging ai and a−1

i , where i = 3, . . . , n, and the symmetric group permutes these
flips. Note that G1 acts transitively on graphs of the form Γρ({a2, a

±1
j }), with j ≥ 3.

Therefore we may assume f fixes Γρ({a2, a3}), and hence Γρ({a−1
2 , a−1

3 }).
The graph Γρ({a2, a

−1
3 }) is the only Nielsen graph in the star of ρ which is at distance

more than 2 from Γρ({a1, a2}), Γρ({a−1
1 , a2}) and Γρ({a−1

2 , a−1
3 }), so must be fixed by f ;

consequently, Γρ({a−1
2 , a3}) must also be fixed by f .

Continuing in this manner, we may assume f fixes Γρ({a±1
i , a±1

i+1}) for all 1 ≤ i ≤ n−1.
Now for any a = a±1

i and b = a±1
j with i < j, Γρ({a, b}) is the only graph at distance

more than 2 from all of Γρ({a, ai+1}), Γρ({a, a−1
i+1}), Γρ({aj−1, b}) and Γρ({a−1

j−1, b}), so
must be fixed by f . Thus we may assume that f fixes all Nielsen graphs in the link of ρ.
By Lemma 5.5, this implies that f fixes the entire star of ρ. tu
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Proposition 5.7. Let f be a simplicial automorphism of Kn which fixes the star of a
rose ρ. Then f is the identity on Kn.

Proof. Since Kn is the union of the stars of roses, and every rose is connected to ρ by
a Nielsen path, it suffices to show that f fixes the star of any rose ρ′ which is Nielsen
adjacent to ρ.

Let ρ′ be Nielsen adjacent to ρ, and let γ be the Nielsen graph at distance 1 from both
ρ and ρ′. The link of γ contains exactly three roses, ρ, ρ′ and ρ′′ , so a simplicial automor-
phism fixing ρ must either fix ρ′ and ρ′′ or interchange them. If E(ρ) = {a, ā, b, b̄, X}, with
γ = Γρ({a, b}), then E(ρ′) = {a, ā, ab̄, bā,X} and E(ρ′′) = {b, b̄, ab̄, bā,X} (see Figure 6).

a b

a b

a

bba-1

ba-1

a

ba-1

ρ '

ρ

ρ "γ 

a

b

a

b 

γ 2 

γ 1 

Figure 6

The graph Γ1 = Γρ({a, b}, {a, ā, b}) in the star of ρ has only two graphs in its link
homeomorphic to Γρ({a, ā, b}); since Γρ({a, ā, b}) is fixed by f , the other one, which is
Γ2 = Γρ′({a, ā, bā}), must also be fixed by f . The graph Γ2 is in the link of ρ′ but is not
in the link of ρ′′, showing that f cannot interchange ρ′ and ρ′′.

Since f fixes the star of ρ, it must fix st+(γ) = st(ρ) ∩ st(ρ′).
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Note that Γρ({a, b}) = Γρ′({ā, bā}). If an ideal edge β = (Xβ |E(ρ′)−Xβ) of E(ρ′) is
compatible with ({ā, bā}|E(ρ′)−{ā, bā}), then f fixes ρ′, Γρ′({ā, bā}) and Γρ′({ā, bā}, Xβ) ∈
st+(γ), so must fix Γρ′(Xβ), since that is the only other 2-vertex graph in lk(ρ′) adjacent
to Γρ′({ā, bā}, Xβ). The graphs Γρ′({a, bā}) and Γρ′({ā, ab̄}) are the only graphs which
are at distance more than 2 in lk(ρ′) from both Γρ′({ā, bā}) and Γρ′({a, ab̄}), so f must
either fix or interchange them. But Γρ′({a, bā}) has distance 2 from Γ2 = Γρ′({a, ā, bā}),
which is fixed by f , as we saw above, while Γρ′({ā, ab̄}) has distance greater than 2 from
Γ2. Therefore Γρ′({a, bā}) and Γρ′({ā, ab̄}) must both be fixed by f . We now proceed as
in the proof of Proposition 5.6 to conclude that every Nielsen graph Γρ′(X) is fixed by f ,
and therefore by Lemma 5.5, the entire star of ρ′ is fixed by f . tu

Theorem 5.8. Every simplicial automorphism f of Kn is given by the action of an ele-
ment of Out(Fn).

Proof. By Corollary 5.2, f sends the standard rose ρ0 to another rose ρ. There is an
outer automorphism φ0 of Fn taking ρ back to ρ0, so that φ0 ◦ f fixes ρ0. By Proposition
5.6, we can choose φ1 in the stabilizer of ρ0 so that φ1 ◦φ0 ◦ f fixes st(ρ0). By Proposition
5.7, φ1 ◦ φ0 ◦ f is the identity on Kn, i.e. f = φ−1

0 ◦ φ−1
1 . tu

REFERENCES

[B] M.R. Bridson, Geodesics and curvature in metric simplicial complexes, Group
Theory From a Geometrical Viewpoint (E. Ghys, A. Haefliger, A. Verjovsky, ed.), World
Scientific, Singapore, 1991, 373–463.

[BF] M.R. Bridson and B. Farb, A remark about actions of lattices on free groups, J.
Topol. Appl., to appear.

[C] M. Culler, Finite groups of automorphisms of free groups, in Contributions to
Group Theory, Contemp. Math., 33 (1984), 197–207. Amer. Math. Soc., Providence RI.

[CV] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups,
Invent. Math. 84 (1986), 91–119

[DF] J. Dyer and E. Formanek, The automorphism group of a free group is complete,
J. London Math. Soc. 11 (1975), 181–190.

[EK] C. Earle and I. Kra, On isometries between Teichmüller spaces, Duke Math. J.,
41 (1974), 583–591.

[FM] B. Farb and H. Masur, Superrigidity and mapping class groups, Topology, to
appear

[H] W.J. Harvey, Geometric structure of surface mapping class groups, in “Homological
methods in group theory” (C.T.C. Wall, ed.), LMS Lecture Notes, vol. 36, pp. 255– 269,
Camb. Univ. Press, 1979.

[Iv] Ivanov, N. V., Automorphisms of complexes of curves and of Teichmüller spaces,
Internat. Math. Res. Notices 1997, no. 14, pp 651–666.

[K] K. Korkmaz, Complexes of curves and mapping class groups, Ph.D. Thesis, Michi-
gan State U., 1996

14



[M] G.D. Mostow, Strong rigidity of locally symmetric spaces, Annals of math. studies,
vol. 78, Princeton Univ. Press, Princeton NJ, 1973.

[R] H.L. Royden, Automorphisms and isometries of Teichmüller spaces, in “Advances
in the theory of Riemann surfaces” (L. Ahlfors, L. Bers, H. Farkas, R. Gunning, I. Kra,
H. Rauch, eds.), Annals of math. studies, vol. 66, Princeton Univ. Press, Princeton NJ,
1971.

[SV] J. Smillie and K. Vogtmann, A generating function for the Euler characteristic of
Out(Fn), Proceedings of the Northwestern conference on cohomology of groups (Evanston,
Ill., 1985). J. Pure Appl. Algebra 44 (1987), no. 1-3, 329–348.

[T] J. Tits, Buildings of spherical type and finite BN- pairs, Lecture notes in math.,
vol. 386, Springer-Verlag, Berlin- Heidelberg- New York, 1974.

[V] K. Vogtmann, Local structure of some Out(Fn)-complexes, Proc. Edinburgh Math.
Soc. (2) 33 (1990), no. 3, 367–379.

MRB: Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, bridson@maths.ox.ac.uk

KV: Mathematics Department, 555 Malott Hall, Cornell University, Ithaca, NY 14850,
vogtmann@math.cornell.edu

15


