
Automated Synthesis of Reactive Controllers for
Software-Defined Networks

Anduo Wang Salar Moarref Boon Thau Loo
Department of Computer and Information Science

University of Pennsylvania
{anduo,moarref,boonloo}@seas.upenn.edu

Ufuk Topcu
Department of Electrical
and Systems Engineering

University of Pennsylvania
utopcu@seas.upenn.edu

Andre Scedrov
Department of Mathematics
University of Pennsylvania

scedrov@math.upenn.edu

Abstract—With the tremendous growth of the Internet and the

emerging software-defined networks, there is an increasing need

for rigorous and scalable network management methods and tool

support. This paper proposes a synthesis approach for managing

software-defined networks. We formulate the construction of

network control logic as a reactive synthesis problem which is

solvable with existing synthesis tools. The key idea is to synthesize

a strategy that manages control logic in response to network

changes while satisfying some network-wide specification. Finally,

we investigate network abstractions for scalability. For large

networks, instead of synthesizing control logic directly, we use

its abstraction—a smaller network that simulates its behavior—

for synthesis, and then implement the synthesized control on the

original network while preserving the correctness. By using the

so-called simulation relations, we also prove the soundness of this

abstraction-based synthesis approach.

I. INTRODUCTION

The past two decades witnessed tremendous growth in
networking systems such as the Internet, and rapid expan-
sion in applications domains such as clouds, datacenters; and
yet ever-increasing demands for more reliable and affordable
networking services. On the other hand, the programmable
router paradigm and the flourishing software-defined network
(SDN) platform [2] have made network management even less
tractable.

However the practice of network management has remains
a primitive low-level process, forcing the network operators to
reason at switch level, worrying about large amount of details
[7], [8]. Existing management techniques are largely restricted
to management friendly protocols and data-plane primitives,
such as specific mechanism for routing, signaling, QoS and
virtualization. Moreover, the low-level reasoning is made even
less applicable with the sheer size of the networks, thanks
to the rapid expanding of new applications such as cloud
networks and datacenters [6].

This primitive state of management practice and insuffi-
cient tool support have become an increasing larger source for
network problems such as misconfigurations and performance
degradation [1], [3]. There has been an increasing need for
rigorous and scalable management techniques. This paper pro-
poses an abstraction-based reactive synthesis approach towards
automatic, provably correct, and scalable network management
for software-defined networks.

To achieve scalable and rigorous management automation,
we need to solve two separate problems. (1) How can we
automatically enforce or realize a control logic over a complex
data-plane; and (2) How can we automatically construct the
right control logic, given a network-wide request (property).
Most network management primitives in current platforms
concern the first problem, enabling network operators to realize
a given control logic in various forms [9]. The second problem
of “control logic construction” , however, has attracted less
attention, and is the problem addressed in this paper.

To address the construction of control logic in a network
that is contently changing, we propose a synthesis approach,
which seeks to find a strategy that manages the control logic
in response to network requests. By utilizing state of the
art synthesis tools and model checking researches in man-
aging autonomous systems [19], [18], [12]. We are able
to automatically construct control logic management strategy.
In addition to automation, added benefit is that, by formal
synthesis, we always produce a provably correct management
solution. Therefore, unlike existing empirical or heuristic-
based management techniques, our approach does not require
the evaluation step, this has additional practical value due to the
lack of evaluation benchmark in current network management
research [3].

Finally, to scale up provably correct automation, we inves-
tigate abstraction technique. Intuitively, a network’s abstraction
is a smaller network that simulates its behavior and preserves
its properties. In abstraction-based synthesis, a large control
construction problem is decomposed into a smaller problem
on the abstract network, and the implementation of the syn-
thesized control in the original network. With simulation, we
also proved that the abstraction-based synthesis is sound: the
network property of the synthesized controller in the abstract
network is guaranteed to hold for the original network.

II. CONTROL LOGIC CONSTRUCTION

In this section, we describe the control logic construction
problem, and present a working example, which will be used
in the rest of the paper.

A software-defined network is a graph of connected
switches installed with operational rules (flow tables). The
flow tables constitute the network’s data plane. A network
operator controls the network by managing the flow tables.
In the control logic construction problem, given a set of978-1-4799-1270-4/13/$31.00 c�2013 IEEE

requests and invariants, the goal is to construct a flow table
that achieves the requests while preserving the invariants. The
network request specifies the intended network behavior and
network state change, e.g. what flows can transit the network
and when a switch leaves or joins the network; The network
invariant specifies the constraints imposed by the network, e.g.
the bandwidth constraints and switch capacities. We further
assume that, over the time, the network is presented with a
series of independent requests, but the invariant constraint stays
relatively stable.

Informally, we view the construction of control logic a
reactive synthesis problem: find a strategy that dynamically
manages (e.g. updates) a network’s control plane in response
to any network request while satisfying the network invariant.

Consider the software-defined network shown in Figure 1
(left) that consists of three switches I, F1, F2. There are
four types of flows (groups of network traffic): faculty (F),
student (S), untrusted (U), and guest (G) flows. The opera-
tional rules (flow tables) are depicted alongside each switch.
Each flow table rule is of the form of Type: Action. The
actions includes forwarding (Forwardto⇤) and access-control
(Monitor,Deny,Allow). All flows enter the network by I ,
and are then forwarded to F1,2 based on the international
devices (omitted in the graph) they are destined for. The
network requests are routing path re-allocation (e.g. for traffic
balancing reasons), given by the forwarding rule (rules with
forwarding actions) changes. The invariant is a security policy
that denies untrusted flows while allowing others.

Fig. 1. Example control logic construction: When routing path changes,
update the access-control rules.

The control logic construction problem is to find a strategy
for updating access-control rules in the flow tables in response
to the forwarding rule changes while maintaining the security
policy. For example, in Figure 1 (right), when routing path for
U flow changes from path 1 to 2, given by the highlighted
forwarding rule changes, the strategy shall tell how to update
the access-control rules accordingly (question marks).

In Section III, we present an automatic construction of a
strategy on this small example through formal synthesis. To
scale up this approach, we will discuss abstraction techniques
in Section IV.

III. PROBLEM FORMULATION

In this section we introduce the necessary background and
terminology and formalize the problem.

A. Problem Statement

Definition 1 (Software-defined network): A network sys-
tem includes a set of switches N . Each switch n 2 N is
associated with a set R

n

of rules of the form type : action.

The set R
n

represents the flow table for node n, meaning
that for a flow matching type, n applies action. The installed
operational rules for the network Net is defined by R =S

n2N

R
n

. Let TYPE = {t1, t2, ..., tk} be the set of all possible
flow types in the network. We denote the action corresponding
to the switch n and flow type t

i

with ai
n

. These actions form
the set of system variables. (more on type of actions, like deny
and forwarding)

Definition 2 (Network state): A system consists of a set V
of variables. The domain of V , denoted by dom(V) is the
set of valuations of V . A state of the system is an element
v 2 dom(V).

For a switch n, the action corresponding to a flow type t
i

may or may not be controllable. Therefore, we partition the
variables into two subsets E and R, representing uncontrollable
(environment) and controllable variables respectively. We write
V = (E ,R). The R variables are the controllable parts of the
system through which network management is implemented.
We call E “uncontrollable” variables because they are not part
of the control logic we are synthesizing. Note that, though
called “uncontrollable”, the E variables may encode network
states that change either unexpected or as planned by some
logic not handled by a SDN controller.

Definition 3 (Network transition system): The transition
system for a network is a tuple (V0,V, T), V0 ✓ V is the
initial state of the network, T ✓ V ⇥ V is the transition
relation.

A network execution (or trace) is a sequences of states � =

v0v1 · · · where v0 2 V0, for any i > 0, v
i

2 V, (v
i

, v
i+1 2 T).

Definition 4 (Network property): A network wide property
is a linear temporal logic (LTL) statement on the network
transition system.

This paper uses linear temporal logic (LTL) as the spec-
ification language for its expressiveness power and existing
game solvers. A LTL statement is either a proposition (pred-
icate) p over network state v, denoted p(v); or a composite
statement built from LTL connectives: logic connectives such
as negation¬, conjunction ^; and temporal modal connectives
such as next (�), eventually (}), always (⇤).

A network property (LTL formula) is interpreted over a
sequence of network states. For example, given a network
execution (trace) � = v0v1v2 · · · and a property ', �' holds
for v

i

in �, if ' holds for all v
i+1; ⇤' holds for v

i

if it holds
for all v

j

, j > i; and }' holds for v
i

, if there exists a v
j

, j > i,
' holds for v

j

.

The examples presented here are sufficient for the rest
of the paper. For a complete description of LTL semantics,
interesting readers are referred to [14].

A two-player deterministic game graph is a tuple G =

(Q,Q0, E) where Q can be partitioned into two disjoint sets
Q1 and Q2. Q1 and Q2 are the sets of states of player 1 and
2, respectively. Q0 is the set of initial states. E = Q ⇥ Q is

Fig. 2. An example of a game graph and a winning strategy for player 2
(red edges)

the set of edges. Players take turn to play the game. At each
step, if the current state belongs to Q1, player 1 chooses the
next state. Otherwise player 2 makes a move. A play of the
game graph G is an infinite sequence � = q0q1q2... of states
such that q0 2 Q0, and (q

i

, q
i+1) 2 E for all i � 0. We denote

the set of all plays by ⇧. A strategy for player i 2 {1, 2} is a
function ↵

i

: Q⇤.Q
i

! Q that chooses the next state given a
finite sequence of states which ends at a player i state. Given
strategies ↵1 and ↵2 for players and a state q 2 Q, the outcome
is the play starting at q, and evolved according to ↵1 and ↵2.
Formally, outcome(q,↵1,↵2) = q0q1q2... where q0 = q, and
for all i � 0 we have q

i+1 = ↵1(q0q1...qi) if q
i

2 Q1 and
q
i+1 = ↵2(q0q1...qi) if q

i

2 Q2. An objective for a player is
a set � ✓ ⇧ of winning plays. A strategy ↵1 for player 1 is
winning for some state q if for every strategy ↵2 of player 2,
we have outcome(q,↵1,↵2) 2 �.

The realizability problem for LTL formulas is known to
be 2EXPTIME-complete [16]. However, recently, Piterman
et al. show that the realizability and synthesis problems for a
fragment of LTL known as Generalized Reactivity(1) (GR(1))
[13] can be solved efficiently in polynomial time.

Figure 2 shows an example of a game graph. Circle (box)
nodes represents player 1 (2) states, respectively. The game
starts at state q0 and depending on the transition chosen by
player 1, the next state is either q1 or q2 which are player 2
states. Assume that the objective for player 2 is to prevent the
game from reaching the Fail state. A winning strategy for
player 2 is to choose the transition to q0 from both q1 and q2
states (green edges). It is easy to see that using this strategy the
game never reaches the state Fail, regardless of how player 1
plays.

B. Example synthesis

We now describe the synthesis of control logic for Figure 1,
using TuLiP tool [18], a specification tool that interfaces
existing game solver. Figure 1 can be viewed as a game
between route forwarding and access-control. The forwarding-
rule player represents network requirement for newly selected
route, and manipulates the uncontrollable variables E that
denotes forwarding rule actions. In response, the system player
represents access-control rules, and need to adjusts the system
variables R, i.e., updating access-control rule. The task is then
to find a winning strategy for access-control to pick the right
updates for access control such that security policy is never
violated. More specifically:

• Environment variables E = {aU
IF
} denote the for-

warding rule for untrusted flows (U) at switch I . The

domain dom(E) = {I, F1, F2} denotes the forwarding
action of sending flows through next hop switches
I, F1, F2 respectively.

• System variables R = {aU
Iac

, aU
F1ac

, aU
F2ac

} denote the
access control for untrusted flows at switch I, F1 and
F2. The domain dom(R) = {deny, allow} denotes
the two access control actions of deny or allow.

For simplicity, we only consider untrusted flows here, and
omit variables (rules) for the other flows. Without confusion,
we use a⇤ for aU⇤ . Using these variables, we can specify the
initial network state v0, transition relation T , and the network
invariant '

s

, as follows.

In the initial state v0, we have a
If = 1, a

Iac , aF1ac , aF2ac =

deny, that is, the flows will take route through path 1, and
all access controls are set to deny. The transition relation T
specifies the evolution of the variables by one move of either
environment or system player. For system player, a move is
given by the concurrent transitions for the three variables
a
Iac , aF1ac , aF2ac . For example, transition for a

f1ac are
{(deny, deny), (deny, allow), (allow, allow), (allow, deny)},
that is, at each move, the controller may either flip the access
control or keep it unchanged. Similarly, we have transition
relations for a

Iac , aF2ac . For environment player, the transition
is given by all possible moves of a

IF . We write the transition
of each move by (vo, v0o0) where v = a

IF aIacaF1acaF2ac and
o = a

reach

a new output variable denoting the reachability
of untrusted flows. One possible transition is of the form
(a

IF aIacaF1ac · · · , · · · 0) meaning that if access control rules
are all set to deny as long the path of the flow, the flow
will not be reachable. Using output variable, we define the
network invariant '

s

of security policy as ⇤a
reach

= 0, that
is, untrusted flows are not reachable.

Given the specification of (E ,R), T ,'
s

, TuLiP generates
a winning strategy for E that always satisfies '

s

, as shown by
the automaton in Figure 3.

Fig. 3. Example control logic construction: A strategy that updates access-
control rules when forwarding changes

In the automaton, each state transition corresponds to a
move (v, v0), i.e. ((e, r), (e0, r0)) initiated by forwarding rule
change (e, e0), followed by the move of access-control rule
(r, r0). For example, from state 1 to 2 says, when forwarding
rule changes from a

IF = F1 to a
IF = F2, the access-control

player picks the action that sets a
F2ac = deny. Thus, by simply

reading the automaton, we can set the missing access-control
rules in Figure 1.

Finally, given a strategy and the forwarding rule change
(e, e0), to install the corresponding access control update
(r, r0), we need to implement r0 over the network configured
with r. The difficulty is that r0 may differ from r in multiple
nodes, while the rule is inserted at one node at a time. Thus
it may take multiple steps to enforce (r, r0), and it is critical
to ensure '

s

during all the transient network steps. A possible
approach is to find a invariant-preserving ordering of the
update steps. Such an ordering can be synthesized by solving
a reachability problem using model checker. It is actually a
special case of the two-player temporal logic game. Alternative
approaches such as heuristics and additional mechanism to
enforce invariants are discussed in previous works [5], [15].

IV. SCALING BY ABSTRACTION

In networking community, network abstractions have long
been investigated for scalability [10], [9], [11], [4]. In control
logic synthesis, we also face the state-explosion problem.
When network size increases, the system state rapidly grows
and the resulting strategy to be synthesized quickly becoming
impractical. To mitigate this problem, we propose to use
network abstractions. Instead of synthesizing a large strategy
directly, we introduce an abstract network, and construct the
strategy for this smaller representation instead. The abstract
solution is then mapped back to the original network for
implementation.

This section first uses an example to introduce network
abstraction-based synthesis. Then we formally define network
abstraction through simulation. Simulation allows us to transfer
the network property to the abstract network.

A. Abstraction example

Consider the software-defined network in Figure 4 (left)
consists of 12 switches, where the possible network flows
are depicted by the directed arrows. Consider access-control
updates problem when the forwarding rule changes. The net-
work invariant is to prevent untrusted flows from traversing
the network.

This example is relatively straightforward and constructed
for the presentation of the main ideas behind abstraction-based
synthesis procedure. Note that it presents a larger but same
control logic construction problem as in Figure 1. For example,
when the forwarding rule changes and causes flows to route
from path 1 to 2, we want to update the access-control rules
in the rest of the network accordingly. On the other hand, the
network state is larger. The system state of Figure 1 involves
5 (1 forwarding rule, 3 access-control rules, 1 dependent)
variables, whereas here, we need 14((1 + 12 + 1)) variables.

An abstraction for Figure 4 (left) is shown in Figure 4
(middle), where the nodes are grouped into 3 abstract nodes.
The control update problem on the smaller abstract repre-
sentation is solved exactly as in Figure 1. The solution is
then implemented on the the original network, as shown in
Figure 4 (right). The idea of “implementation” is as follows:
when routing path changes from 1 to 2, shown in Figure 4,
the strategy synthesized on the abstract network gives us the

Fig. 4. Abstraction scales up synthesis: synthesize on abstraction represen-
tation (middle), implement abstract solution on original network (right)

action to be applied to the access-control rule, that is, the
new access-control rules. These “abstract” access-control rule
values, shown in the middle, are then mapped back to the
original network. For example, the Deny access-control rule
for F2 (middle) is mapped to four separate access-control rules
whose joint effect is deny (right).

B. Network abstraction

We have constructed an “abstract network” for Figure 4
(left), by grouping nodes for synthesis purpose. We now
develop the concept of “abstract network” as a network system
that simulates the original network and preserves the property
for synthesis. To this end, we introduce a few relevant con-
cepts.

A transition system with observation (V0,V, T ,O, H)

extends the transition system (V0,V, T) (Definition 3) by
including a output function H : V ! O that maps the
system states into observable output O. The output variable O
specifies the network behaviors relevant in synthesis, that is,
network property is temporal property defined over O. As seen
later, it plays a key role in constructing abstractions, different
O on the same network can lead to different abstractions.

Fig. 5. An abstract network (right) simulates the original network (left).

For example, Figure 5 (left) depicts a transition system
with observation for a network of three switches a1,a2, and
a3. In the network, we are only interested in the access-control
rules, so the system state consists of just three bits, denoted
as a1a2a3, encoding the access-control rule (0 for deny, 1 for
allow). The output variables are r2,3, encoding the reachability
property of flows for a2,3 respectively. We write a1a2a3r2r2

to denote the state, and in the graphical representation, we
separate a1, a2, a3 and r1, r2 by a bar. For example, in the
state marked with 00100, a1, a2 are set to deny and a3 allow,
as a result, neither r2 nor r3 can be reached, so they are both
0. Finally, the transition relation says, for any (v, v0) 2 T . The
states v, v0 differ by only one bit. That is, we only consider
state transition with exactly one access-control rule change. In
the rest of the paper, we will simply call such transition system
with observation “system”.

Definition 5 (Simulation relation): Let S
a

=

(V
a0,Va

, T
a

,O
a

, H
a

) and S
b

= (V
b0,Vb

, T
b

,O
b

, H
b

) be two
systems. A relation R ✓ V

a

⇥V
b

is a simulation relation from
V
a

to V
b

if

• for every v
ao

2 V
ao

there exists a v
b0 2 V

bo

,

• for every (v
a

, v
b

) 2 R, H
a

(v
a

) = H
b

(v
b

), and

• for every (v
a

, v0
a

) 2 T
a

, (v
a

, v
b

) 2 R, there exists
some v0

b

satisfying (v
b

, v0
b

) 2 T
b

and (v0
a

, v0
b

) 2 R.

If there exists such a simulation relation, we say S
b

simulates S
a

. It is not hard to check that in Figure 5, the right
transition system for a network of switches b1, b2 simulates
the left transition system of switches a1, a2, a3. Under relation
R, states maps to the same one are depicted with the same
color. For example, all nodes in black (left) are mapped to
state with variables 01 and output variables 00. Note that R
on the transition system corresponds to the mapping of a1, a2
to b1 and a3 to b2 on the network. We call the network of b1, b2
an abstraction of the network of a1, a2, a3, since it simulates
the observable behavior in terms of output variables.

To better illustrate how the output variables affect network
abstractions, Figure 6 depicts more examples. On the left,
given the observable variable r3, denoting reachability for
switch a3, there exists an abstraction by grouping nodes a1
and a2. To prove this to be a valid abstraction, we only need
to check the two transition systems accordingly to Definition 5.
Similarly, we can prove that the network in the middle has an
abstraction by just grouping a2 and a3. Note that, even though
the network is the same as in Figure 5 (left), the abstraction
is different due to the difference in observable variables.

Fig. 6. More abstraction examples: The network properties determine the
abstract network (left, middle); A network that has no abstraction (right).

On the other hand, Figure 6 (right) gives an network that
has no abstraction, that is, there does not exist an network of
few nodes that simulates its behavior. Note that the transition
system has a state with output variables 01 meaning that while
r3 is reachable r2 is not. However, such output variables never
occurs in a two-nodes network’s transition system. That is,
there does not exist a network of fewer than 3 nodes that
simulate its behavior. Hence the network has no abstraction.

C. Synthesis through abstraction

The purpose of network abstraction is to reduce to the
control synthesis problem of a large network to that of an
abstract smaller network. We now prove that this approach
is sound. By sound, we mean the property synthesized for
the abstract network also holds for the original network. To
achieve soundness, We utilize a key property of simulation,
proved in [17], as follows.

Proposition 1: Let S
a

= (V
a0,Va

, T
a

,O
a

, H
a

) and S
b

=

(V
b0,Vb

, T
b

,O
b

, H
b

) be two systems, S
a

is simulated by S
b

.
Let ' be a LTL property over the output variables O

a

. Then,
we have S

b

satisfies ' implies S
a

satisfies '.

As illustrated in Figure 7, for a large physical network,
instead of synthesizing control logic directly on it. We perform
synthesis on its smaller network abstraction, which simulates
the physical network. Proposition 1 ensures the network prop-
erty ' synthesized on the abstract network also holds for the
original larger one. Hence, our abstraction-based synthesis is
sound, and network abstraction enables us to scale up control
logic construction for large networks.

Fig. 7. Synthesis through abstraction: perform formal synthesis on the abstract
network; implement the synthesized solution on the physical network

For examples, in Figure 4, the property synthesized on the
abstraction (middle) is that the security policy (always block
untrusted flows) is always enforced. Proposition 1 guarantees
that the winning strategy we computed and implemented on the
original network (right) conforms to the same security policy.

V. ACKNOWLEDGMENT

This research is partly supported by NSF grants CNS-
0845552, the NSF Expeditions in Computer Augmented Pro-
gram Engineering (ExCAPE) project ITR-1138996, AFOSR
Young Investigator Award FA9550-12-1-0327, and AFOSR
grant FA9550-12-1-0302.

REFERENCES

[1] AL-SHAER, E., GREENBERG, A., KALMANEK, C., MALTZ, D. A.,
NG, T. S. E., AND XIE, G. G. New frontiers in internet network
management. SIGCOMM Comput. Commun. Rev. 39, 5 (Oct. 2009),
37–39.

[2] CASADO, M., FREEDMAN, M. J., PETTIT, J., LUO, J., MCKEOWN,
N., AND SHENKER, S. Ethane: taking control of the enterprise. In
Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications (New York,
NY, USA, 2007), SIGCOMM ’07, ACM, pp. 1–12.

[3] CERF, V., DAVIE, B., GREENBERG, A., LANDAU, S., AND SIN-
COSKIE, D. FIND Observer Panel Report. April 2009.

[4] DRUTSKOY, D., KELLER, E., AND REXFORD, J. Scalable network
virtualization in software-defined networks. IEEE Internet Computing
17, 2 (2013), 20–27.

[5] GHORBANI, S., AND CAESAR, M. Walk the line: consistent network
updates with bandwidth guarantees. In Proceedings of the first workshop
on Hot topics in software defined networks (New York, NY, USA, 2012),
HotSDN ’12, ACM, pp. 67–72.

[6] ISARD, M. Autopilot: Automatic Data Center Management. SIGOPS
Oper. Syst. Rev. 41, 2 (2007), 60–67.

[7] KANG, N., LIU, Z., REXFORD, J., AND WALKER, D. An Efficient
Distributed Implementation of One Big Switch. Open Networking
Summit (ONS), Research Track, 2013.

[8] KELLER, E., AND REXFORD, J. The ”Platform as a service” model for
networking. In Proceedings of the 2010 internet network management
conference on Research on enterprise networking (Berkeley, CA, USA,
2010), INM/WREN’10, USENIX Association, pp. 4–4.

[9] KOPONEN, T., CASADO, M., GUDE, N., STRIBLING, J., POUTIEVSKI,
L., ZHU, M., RAMANATHAN, R., IWATA, Y., INOUE, H., HAMA, T.,
AND SHENKER, S. Onix: a distributed control platform for large-scale
production networks. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[10] MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing Software-Defined Networks. Proc. Networked
Systems Design and Implementation, April 2013.

[11] MUDIGONDA, J., YALAGANDULA, P., MOGUL, J., STIEKES, B., AND
POUFFARY, Y. Netlord: a scalable multi-tenant network architecture
for virtualized datacenters. In Proceedings of the ACM SIGCOMM
2011 conference (New York, NY, USA, 2011), SIGCOMM ’11, ACM,
pp. 62–73.

[12] OZAY, N., TOPCU, U., AND MURRAY, R. Distributed power allocation
for vehicle management systems. In Decision and Control and Euro-
pean Control Conference (CDC-ECC), 2011 50th IEEE Conference on
(2011), pp. 4841 –4848.

[13] PITERMAN, N., PNUELI, A., AND SA’AR, Y. Synthesis of reactive (1)
designs. In Verification, Model Checking, and Abstract Interpretation
(2006), Springer, pp. 364–380.

[14] PNUELI, A. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science (Washington,
DC, USA, 1977), IEEE Computer Society, pp. 46–57.

[15] REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER, C., AND
WALKER, D. Abstractions for network update. In Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 323–334.

[16] ROSNER, R. Modular synthesis of reactive systems. Ann Arbor (1991).
[17] TABUADA, P. Verification and Control of Hybrid Systems: A Symbolic

Approach. Springer, 2009.
[18] WONGPIROMSARN, T., TOPCU, U., OZAY, N., XU, H., AND MURRAY,

R. M. Tulip: a software toolbox for receding horizon temporal logic
planning. In Proceedings of the 14th international conference on Hybrid
systems: computation and control (New York, NY, USA, 2011), HSCC
’11, ACM, pp. 313–314.

[19] XU, H., TOPCU, U., AND MURRAY, R. A case study on reactive pro-
tocols for aircraft electric power distribution. In Decision and Control
(CDC), 2012 IEEE 51st Annual Conference on (2012), pp. 1124–1129.

