Science \& Education

($\alpha_{0}-\lambda_{0}$)-Contractive Mapping in Multiplicative Metric Space and Fixed Point Results

Bakht Zada*
Department of Mathematics University of Peshawar, Peshawar 25000, Pakistan
*Corresponding author: Bakhtzada56@gmail.com

Abstract

In this manuscript we introduce new type of contraction mapping in the framework of multiplicative metric space and some fixed point results. Also some example for the support of our constructed results.

Keywords: complete multiplicative metric space, multiplicative contraction mapping, multiplicative ($\alpha_{0}-\lambda_{0}$)-contraction, fixed point
Cite This Article: Bakht Zada, " $\left(\alpha_{0}-\lambda_{0}\right)$-Contractive Mapping in Multiplicative Metric Space and Fixed Point Results." Turkish Journal of Analysis and Number Theory, vol. 4, no. 3 (2016): 67-73. doi: 10.12691/tjant-4-3-3.

1. Introduction and Preliminaries

The Banach-contraction principal was introduced by Banach [1]. It is one of the important results for metric fixed point theory and also vast applicability in mathematical analysis, like used to establish the existence of solution of integral equation. After Banach contraction mapping, a new type of contraction mapping was introduced by Kannan [5,6], which is known as Kannancontraction. Many researcher work on the generalization and fixed point theory of Kannan-contraction mapping like in [4,8,9,11]. Like Kannan, Chatterjea [3] also introduced a similar contractive condition and fixed point theorems in metric space. After that, in 2008, a new concept of multiplicative distance was introduced by Bashirov [2].
Definition 1.1 Let \mathcal{X}_{0} be a non-empty set, then multiplicative metric is a mapping $\mathcal{M}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow \mathbb{R}$ satisfying the following conditions:
(1) $\mathcal{M}\left(x_{0}, y_{0}\right) \geq 1$ for all $x_{0}, y_{0} \in \mathcal{X}_{0}$,
(2) $\mathcal{M}\left(x_{0}, y_{0}\right)=1$ if and only if $x_{0}=y_{0}$,
(3) $\mathcal{M}\left(x_{0}, y_{0}\right)=\mathcal{M}\left(y_{0}, x_{0}\right)$,
(4) $\mathcal{M}\left(x_{0}, z_{0}\right) \leq \mathcal{M}\left(x_{0}, y_{0}\right) \cdot \mathcal{M}\left(y_{0}, z_{0}\right)$ for all $x_{0}, y_{0}, z_{0} \in \mathcal{X}_{0}$.

The pair $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ is known as multiplicative metric space.

Ozavsar and Cevikel [10] studied multiplicative metric space and its topological properties, they also introduce the concepts of Banach-contraction, Kannan-contraction and Chatterjea-contraction mappings in the framework of multiplicative metric space and proved fixed point results on complete multiplicative metric space.
Definition 1.2 [10] Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space then the mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is multiplicative Banach-contraction if

$$
\begin{equation*}
\mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \leq \mathcal{M}\left(x_{0}, y_{0}\right)^{k} \tag{1.1}
\end{equation*}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $k \in[0,1)$.
Definition 1.3 [10] Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space then the mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is multiplicative Kannan-contraction if
$\mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \leq\left[\mathcal{M}\left(T_{0} x_{0}, x_{0}\right) \cdot \mathcal{M}\left(T_{0} y_{0}, y_{0}\right)\right]^{k}$,
for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $k \in\left[0, \frac{1}{2}\right)$.
Definition 1.4 [10] Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space then the mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is multiplicative Chatterjea-contraction if

$$
\mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \leq\left[\mathcal{M}\left(T_{0} x_{0}, y_{0}\right) \cdot \mathcal{M}\left(T_{0} y_{0}, x_{0}\right)\right]^{k}, \text { (1.3) }
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $k \in\left[0, \frac{1}{2}\right)$.
The concept of α_{0}-admissible mapping was introduced by B. Samet, C. Vetro and P. Vetro [7]:
Definition 1.5 Suppose $\mathcal{X}_{0} \neq \varnothing$, and let $\alpha_{0}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow[0, \infty)$ be a mapping. Then $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is said to be α_{0}-admissible mapping if:
for all $x_{0}, y_{0} \in \mathcal{X}_{0}$ for which

$$
\alpha_{o}\left(x_{0}, y_{0}\right) \geq 1 \Rightarrow \alpha_{o}\left(T_{0} x_{0}, T_{0} y_{0}\right) \geq 1
$$

2. Multiplicative (α_{0}, λ_{0})-contraction and Fixed Point Results

Now we will introduce (α_{0}, λ_{0})-contraction mapping in the framework of multiplicative metric space.

Let $\Omega_{T_{0}}$ be the class of functions for which $\lambda_{o}\left(T_{0}\left(x_{0}\right)\right) \leq \lambda_{o}\left(x_{0}\right)$ for all $x_{0} \in \mathcal{X}_{0}$, where $\mathcal{X}_{0} \neq \varnothing$, and $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is self-mapping.
Definition 2.1 Suppose $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space and let a mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$, then T_{0} is said to be multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$-Banach-contraction if there exists $\alpha_{o}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow[0, \infty)$ and $\lambda_{o} \in \Omega_{T_{0}}$ such that

$$
\begin{equation*}
\alpha_{o}\left(x_{0}, y_{0}\right) \mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \leq \mathcal{M}\left(x_{0}, y_{0}\right)^{\lambda_{o}\left(x_{0}\right)}, \tag{2.1}
\end{equation*}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $\lambda_{o} \in[0,1)$.
Remark 2.2 When $\alpha_{o}\left(x_{0}, y_{0}\right)=1$ for all $x_{0}, y_{0} \in \mathcal{X}_{0}$ and $\lambda_{o}(x)=k$ for all $x_{0} \in \mathcal{X}_{0}$, where $k \in[0,1)$, then multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$-contraction mapping reduces to multiplicative Banach-contraction mapping.
Example $2.3\left(\mathcal{X}_{0}, \mathcal{M}_{*}\right)$ is multiplicative metric space, where $\mathcal{X}_{0}=[0.1, \infty)$ and $\mathcal{M}_{*}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow \mathbb{R}$ be defined as follows:

$$
\mathcal{M}_{*}\left(x_{0}, y_{0}\right)=\left|\frac{x_{0}}{y_{0}}\right|_{*}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $\|_{*}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ is defined by

$$
|d|_{*}= \begin{cases}d, & d \geq 1 \tag{2.2}\\ \frac{1}{d}, & d<1\end{cases}
$$

we define the mapping $\alpha_{o}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow[0, \infty)$ and $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ as follows:

$$
\alpha_{o}\left(x_{0}, y_{0}\right)= \begin{cases}1, & x_{0}, y_{0} \in[0.1,0.9] \tag{2.3}\\ 0, & \text { otherwise },\end{cases}
$$

and

$$
T_{0} x_{0}= \begin{cases}e^{x_{0}-1-\frac{x_{0}^{3}}{10}}, & x_{0}, y_{0} \in[0.1,0.9] \tag{2.4}\\ \frac{2 x_{0}-1}{3}, & x_{0} \in(0.9, \infty)\end{cases}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $\lambda_{o}: \mathcal{X}_{0} \rightarrow[0,1)$ is defined by $\lambda_{o}\left(x_{0}\right)=0.67 . \quad T_{0}$ is multiplicative $\left(\alpha_{o}, \lambda_{o}\right)$-Banachcontraction mapping.
NOTE. In the above example T_{0} is not multiplicative Banach-contraction mapping: that is, for $x_{0}=3$ and $y_{0}=6$, we have
$\mathcal{M}_{*}\left(T_{0} x_{0}, T_{0} y_{0}\right)=\left|\frac{T_{0} x_{0}}{T_{0} y_{0}}\right|_{*}=\left|\frac{5}{11}\right|_{*}>\left|\frac{3}{6}\right|_{*}=\mathcal{M}_{*}\left(x_{0}, y_{0}\right)$,
for all $\lambda_{o} \in[0,1)$.
So this mapping is said to be extension of multiplicative Banach-contraction mapping.

Now we prove some fixed point results for Multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$-Banach-contraction mapping.
Theorem 2.4 Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a complete multiplicative metric space and assume that $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ be $\left(\alpha_{0}, \lambda_{o}\right)$ -Banach-contraction mapping satisfying the conditions:

1. there exist $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{0}}, T_{0} \hat{x_{0}}\right) \geq 1$;
2. To is α_{o}-admissible;
3. one of the conditions holds;
(a) is continuous;
(b) if a sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0} \quad$ such that $\alpha_{o}\left(\hat{x_{n}}, \hat{x}_{n+1}\right) \geq 1$ for all $n \in \mathcal{N}$ and $\hat{x_{n}} \rightarrow x_{0} \in \mathcal{X}_{0}$ as $n \rightarrow \infty$, then $\alpha_{o}\left(\hat{x_{n}}, x_{0}\right) \geq 1$.
Then T_{0} has a fixed point.
(A1) If $\alpha_{o}(c, d) \geq 1$ for all fixed point $c, d \in \mathcal{X}_{0}$,
(A2) there exist $z_{0} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(x_{0}, z_{0}\right) \geq 1$ and $\alpha_{o}\left(y_{0}, z_{0}\right) \geq 1$ for all $x_{0}, y_{0} \in \mathcal{X}_{0}$,
then T_{0} has a unique fixed point.
Proof. Assume $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{0}}, \hat{T_{0}} \hat{x_{0}}\right) \geq 1$.
Define the sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0}$ such that for all $n \in \mathcal{N}$

$$
\begin{equation*}
\hat{x_{n}}=T_{0} \hat{x}_{n-1} \tag{2.5}
\end{equation*}
$$

Assume that $\hat{x_{n}} \neq \hat{x}_{n-1}$.
Since T_{0} is α_{o}-admissible and $\alpha_{o}\left(\hat{x_{0}}, \hat{x_{1}}\right)$ $=\alpha_{o}\left(\hat{x_{0}}, T_{0} \hat{x_{0}}\right) \geq 1$ and similarly by induction, we get

$$
\alpha_{o}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \geq 1 \text { for all } n \in \mathcal{N}
$$

Applying Inequality (2.1) with $x_{0}=\hat{x_{0}}$ and $y_{0}=\hat{x_{1}}$, we have

$$
\begin{aligned}
\mathcal{M}\left(\hat{x_{1}}, \hat{x_{2}}\right) & =\mathcal{M}\left(\hat{T_{0}} \hat{x_{0}}, T_{0} \hat{x_{1}}\right) \\
& \leq \alpha_{o}\left(\hat{x_{0}}, \hat{x_{1}}\right) \mathcal{M}\left(T_{0} \hat{x_{0}}, T_{0} \hat{x_{1}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)^{\lambda_{0}\left(\hat{x_{0}}\right)} .
\end{aligned}
$$

Again, using inequality (2.1) with $x_{0}=\hat{x_{1}}$ and $y_{0}=\hat{x_{2}}$, we have

$$
\begin{aligned}
\mathcal{M}\left(\hat{x_{2}}, \hat{x_{3}}\right) & =\mathcal{M}\left(\hat{T_{0}} \hat{x_{1}}, \hat{T_{0}} \hat{x_{2}}\right) \\
& \leq \alpha_{o}\left(\hat{x_{1}}, \hat{x_{2}}\right) \mathcal{M}\left(T_{0} \hat{x_{1},}, T_{0} \hat{x_{2}}\right) \\
& =\mathcal{M}\left(\hat{x_{1}}, \hat{x_{2}}\right)^{\lambda_{o}}\left(\hat{x_{1}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{1}}, \hat{x_{2}}\right)^{\lambda_{o}}\left(\hat{T_{0}} \hat{x_{0}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{1}}, \hat{x_{2}}\right)^{\lambda_{o}}\left(\hat{x_{0}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)^{\lambda_{o}}\left(\hat{x_{0}}\right)^{2}
\end{aligned}
$$

By continuing this process, we get

$$
\begin{equation*}
\mathcal{M}\left(\hat{x_{n}}, x_{n-1}\right) \leq \mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)^{\lambda_{o}\left(\hat{x_{0}}\right)^{n}} \tag{2.6}
\end{equation*}
$$

As $\lambda_{o}\left(\hat{x_{0}}\right) \in[0,1)$, we get $\left\{\hat{x}_{n}\right\}$ is multiplicative Cauchy sequence in \mathcal{X}_{0}.

From the completeness of \mathcal{X}_{0}, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x_{n}} \rightarrow x^{*}$ as $n \rightarrow \infty$.

We suppose that T_{0} is continuous from condition(3a), so

$$
x^{*}=\lim _{n \rightarrow \infty} \hat{x}_{n+1}=\lim _{n \rightarrow \infty} T_{0} \hat{x_{n}}=T_{0}\left(\lim _{n \rightarrow \infty} \hat{x_{n}}\right) T_{0} x^{*}
$$

Now, we suppose that condition(3b) holds: As $\left\{\hat{x_{n}}\right\}$ is multiplicative Cauchy sequence. So, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x}_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$.

From condition(3b), we have

$$
\alpha_{o}\left({\hat{x_{n}}}_{n}, x^{*}\right) \geq 1 \text { for all } n \in \mathcal{N}
$$

And

$$
\begin{aligned}
\mathcal{M}\left(T_{0} x^{*}, x^{*}\right) & \leq \mathcal{M}\left(T_{0} x^{*}, \hat{x_{n}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \\
& =\mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \cdot \alpha_{o}\left(\hat{x_{n}}, x^{*}\right) \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right), \\
& \leq \mathcal{M}\left(\hat{x}_{n+1}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{0}\left(\hat{x_{0}}\right)}
\end{aligned}
$$

As $\lambda_{o}\left(\hat{x_{n}}\right) \leq \lambda_{o}\left(\hat{x_{0}}\right)$ for all $n \in \mathcal{N}$. Therefore, we have

$$
\mathcal{M}\left(T_{0} x^{*}, x^{*}\right) \leq \mathcal{M}\left(\hat{x}_{n+1}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{0}\left(\hat{x_{0}}\right)} .
$$

Assume that $n \rightarrow \infty$ in the above inequality, we get $\mathcal{M}\left(T_{0} x^{*}, x^{*}\right)=1$, that is $x^{*}=T_{0} x^{*}$, which shows that x^{*} is fixed point of T_{0}.

To show uniqueness of x^{*}, let y^{*} is another fixed point of T_{0}, if condition(A1) holds, then the fixed point is unique from (2.1). Now we have to show that condition(A2) holds. From(A2), we have $z_{0} \in \mathcal{X}_{0}$ such that

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, z_{0}\right) \geq 1 . \tag{2.7}
\end{equation*}
$$

As T_{0} is α_{o}-admissible, from (2.7), we have

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, T_{0}^{n} z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, T_{0}^{n} z_{0}\right) \geq 1 \tag{2.8}
\end{equation*}
$$

So

$$
\begin{aligned}
\mathcal{M}\left(x^{*}, T_{0}^{n} z_{0}\right) & =\mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right) \\
& \leq \alpha_{o}\left(x^{*}, T_{0}^{n-1} z_{0}\right) \mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right) \\
& \leq \mathcal{M}\left(x^{*}, T_{0}^{n-1} z_{0}\right)^{\lambda_{o}\left(x^{*}\right)} \\
& \leq \mathcal{M}\left(x^{*}, z_{0}\right)^{\lambda_{0}\left(x^{*}\right)^{n}} \text { for all } n \in \mathcal{N}
\end{aligned}
$$

Taking $\lim _{n \rightarrow \infty}$ in the above inequality, we have

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=x^{*},
$$

and similarly

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=y^{*}
$$

By uniqueness of limit, we have $x^{*}=y^{*}$, which shows the uniqueness of fixed point.
Definition 2.5 Suppose $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space and let a mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$, then T_{0} is said to be multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$-Kannan-contraction if there exists $\alpha_{o}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow[0, \infty)$ and $\lambda_{o} \in \Omega_{T_{0}}$ such that

$$
\begin{align*}
& \alpha_{o}\left(x_{0}, y_{0}\right) \mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \\
& \leq\left[\mathcal{M}\left(T_{0} x_{0}, x_{0}\right) \cdot \mathcal{M}\left(T_{0} y_{0}, y_{0}\right)\right]^{\lambda_{o}\left(x_{0}\right)} \tag{2.9}
\end{align*}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $\lambda_{o} \in\left[0, \frac{1}{2}\right)$.
Definition 2.6 Suppose $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a multiplicative metric space and let a mapping $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$, then T_{0} is said to be multiplicative $\left(\alpha_{o}, \lambda_{0}\right)$-Chatterjea-contraction if there exists $\alpha_{o}: \mathcal{X}_{0} \times \mathcal{X}_{0} \rightarrow[0, \infty)$ and $\lambda_{o} \in \Omega_{T_{0}}$ such that

$$
\begin{align*}
& \alpha_{o}\left(x_{0}, y_{0}\right) \mathcal{M}\left(T_{0} x_{0}, T_{0} y_{0}\right) \\
& \leq\left[\mathcal{M}\left(T_{0} x_{0}, y_{0}\right) \cdot \mathcal{M}\left(T_{0} y_{0}, x_{0}\right)\right]^{\lambda_{o}\left(x_{0}\right)} \tag{2.10}
\end{align*}
$$

for all $x_{0}, y_{0} \in \mathcal{X}_{0}$, where $\lambda_{o} \in\left[0, \frac{1}{2}\right)$.
Theorem 2.7 Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a complete multiplicative metric space and assume that $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$ be (α_{o}, λ_{o}) -Kannan-contraction mapping satisfying the conditions:

1. there exist $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{0}}, \hat{T_{0}} \hat{x_{0}}\right) \geq 1$;
2. T_{0} is α_{o}-admissible;
3. one of the conditions holds;
(a) T_{0} is continuous;
(b) if a sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{n}}, \hat{x_{n+1}}\right) \geq 1$ for all $n \in \mathcal{N}$ and $\hat{x_{n}} \rightarrow x_{0} \in \mathcal{X}_{0}$ as $n \rightarrow \infty$, then $\alpha_{o}\left(\hat{x_{n}}, x_{0}\right) \geq 1$.
Then T_{0} has a fixed point.
(B1) If $\alpha_{o}(c, d) \geq 1$ for all fixed point $c, d \in \mathcal{X}_{0}$,
(B2) there exist $z_{0} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(x_{0}, z_{0}\right) \geq 1$ and $\alpha_{o}\left(y_{0}, z_{0}\right) \geq 1$ for all $x_{0}, y_{0} \in \mathcal{X}_{0}$,
then T_{0} has a unique fixed point.
Proof. Assume $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{O}\left(\hat{x_{0}}, \widehat{T_{0}} \hat{x_{0}}\right) \geq 1$. Define the sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0}$ such that for all $n \in \mathcal{N}$

$$
\begin{equation*}
\hat{x_{n}}=T_{0} \hat{x_{n-1}} \tag{2.11}
\end{equation*}
$$

Assume that $\hat{x_{n}} \doteq \hat{x_{n-1}}$.
Since $\quad T_{0} \quad$ is α_{0}-admissible and $\alpha_{o}\left(\hat{x_{0}}, \hat{x_{1}}\right)=\alpha_{o}\left(\hat{x_{0}}, T_{0} \hat{x_{0}}\right) \geq 1 \quad$ and similarly \quad by induction, we get

$$
\alpha_{o}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \geq 1 \text { for all } n \in \mathcal{N}
$$

Applying Inequality (2.9) with $x_{0}=\hat{x_{0}}$ and $y_{0}=\hat{x_{1}}$, we have

$$
\begin{aligned}
\mathcal{M}\left(\hat{x_{n}}, \hat{x_{n+1}}\right) & \wedge \mathcal{M}\left(T_{0} \hat{x_{n-1},} \hat{x_{n}}\right) \\
& \leq \alpha_{o}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \mathcal{M}\left(T_{0} \hat{x_{n-1}}, \hat{x_{n}}\right), \\
& \leq\left[\mathcal{M}\left(T_{0} \hat{x_{n-1}}, \hat{x_{n-1}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, \hat{x_{n}}\right)\right]^{\lambda_{0}\left(\hat{x_{n}}\right)}, \\
& \leq\left[\mathcal{M}\left(T_{0} \hat{x_{n-1}}, \hat{x_{n-1}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, \hat{x_{n}}\right)\right]^{\lambda_{0}\left(\hat{x_{0}}\right)}, \\
& \text { for all } n \in \mathcal{N},
\end{aligned}
$$

and so

$$
\mathcal{M}\left(\hat{x_{n}}, \hat{x_{n+1}}\right) \leq \mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n}}\right)^{w\left(\hat{x_{0}}\right)}
$$

$$
\text { where } w\left(\hat{x_{0}}\right)=\frac{\lambda_{o}\left(\hat{x_{0}}\right)}{1-\lambda_{o}\left(\hat{x_{0}}\right)}<1
$$

Suppose $m, n \in \mathcal{N}$ such that $m<n$, we have

$$
\begin{aligned}
& \mathcal{M}\left(\hat{x_{m}}, \hat{x_{n}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{m}}, \hat{x_{m+1}}\right) \cdot \mathcal{M}\left(\hat{x_{m+1}}, \hat{x_{m+2}}\right) \ldots \cdot \mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \\
& \leq\left[\mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)\right]^{w}\left(\hat{x_{0}}\right)^{m}+w\left(\hat{x_{0}}\right)^{m+1}+\ldots+w\left(\hat{x_{0}}\right)^{n-1}
\end{aligned}
$$

$$
\leq\left[\mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)\right]^{w\left(\hat{x_{0}}\right)^{m}} \underset{1-w\left(\hat{x_{0}}\right)}{m}
$$

Taking $\lim _{m, n \rightarrow \infty}$, we get $\left[\mathcal{M}\left(\hat{x_{m}}, \hat{x_{n}}\right)\right] \rightarrow 1$ and $\left\{\hat{x_{n}}\right\}$ is multiplicative Cauchy sequence in \mathcal{X}_{0}.

From the completeness of \mathcal{X}_{0}, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x_{n}} \rightarrow x^{*}$ as $n \rightarrow \infty$.

We suppose that T_{0} is continuous from condition(3a), SO

$$
x^{*}=\lim _{n \rightarrow \infty} \hat{x_{n+1}}=\lim _{n \rightarrow \infty} T_{0} \hat{x_{n}}=T_{0}\left(\lim _{n \rightarrow \infty} \hat{x_{n}}\right)=T_{0} x^{*}
$$

Now, we suppose that condition(3b) holds: As $\left\{\hat{x_{n}}\right\}$ is multiplicative Cauchy sequence. So, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x_{n}} \rightarrow x^{*}$ as $n \rightarrow \infty$.

From condition(3b), we have

$$
\alpha_{o}\left(\hat{x}_{n}, x^{*}\right) \geq 1 \text { for all } n \in \mathcal{N}
$$

And

$$
\begin{aligned}
& \mathcal{M}\left(T_{0} x^{*}, x^{*}\right) \leq \mathcal{M}\left(T_{0} x^{*}, T_{0} \hat{x_{n}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}, x^{*}}\right) \\
& \quad=\mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right) \\
& \quad \leq \mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \cdot \alpha_{o}\left(\hat{x_{n}}, x^{*}\right) \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right), \\
& \\
& \leq \mathcal{M}\left(\hat{x_{n+1}}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{0}\left(\hat{x_{n}}\right)}
\end{aligned}
$$

As $\lambda_{o}\left(\hat{x_{n}}\right) \leq \lambda_{o}\left(\hat{x_{0}}\right)$ for all $n \in \mathcal{N}$. Therefore, we have

$$
\mathcal{M}\left(T_{0} x^{*}, x^{*}\right) \leq \mathcal{M}\left(\hat{x_{n+1}}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{o}\left(\hat{x_{0}}\right)}
$$

Assume that $n \rightarrow \infty$ in the above inequality, we get $\mathcal{M}\left(T_{0} x^{*}, x^{*}\right)=1$, that is $x^{*}=T_{0} x^{*}$, which shows that x^{*} is fixed point of T_{0}.

To show uniqueness of x^{*}, let y^{*} is another fixed point of T_{0}, if condition(B1) holds, then the fixed point is unique from (2.9). Now we have to show that condition(B2) holds. From(B2), we have $z_{0} \in \mathcal{X}_{0}$ such that

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, z_{0}\right) \geq 1 \tag{2.12}
\end{equation*}
$$

As T_{0} is α_{o}-admissible, from (2.12), we have

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, T_{0}^{n} z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, T_{0}^{n} z_{0}\right) \geq 1 \tag{2.13}
\end{equation*}
$$

So

$$
\begin{aligned}
\mathcal{M}\left(x^{*}, T_{0}^{n} z_{0}\right) & =\mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right) \\
& \leq \alpha_{o}\left(x^{*}, T_{0}^{n-1} z_{0}\right) \mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right) \\
& \leq \mathcal{M}\left(x^{*}, T_{0}^{n-1} z_{0}\right)^{\lambda_{o}\left(x^{*}\right)} \\
& \leq \mathcal{M}\left(x^{*}, z_{0}\right)^{\lambda_{o}\left(x^{*}\right)^{n}} \text { for all } n \in \mathcal{N} .
\end{aligned}
$$

Taking $\lim _{n \rightarrow \infty}$ in the above inequality, we have

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=x^{*}
$$

and similarly

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=y^{*}
$$

By uniqueness of limit, we have $x^{*}=y^{*}$, which shows the uniqueness of fixed point.
Theorem 2.8 Let $\left(\mathcal{X}_{0}, \mathcal{M}\right)$ be a complete multiplicative metric space and as-sume that $T_{0}: \mathcal{X}_{0} \rightarrow \mathcal{X}_{0}$, be $\left(\alpha_{0}, \lambda_{0}\right)$-Chatterjea-contraction mapping satisfying the conditions:

1. there exist $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{0}}, T_{0} \hat{x_{0}}\right) \geq 1$;
2. T_{0} is α_{o}-admissible;
3. one of the conditions holds;
(a) T_{0} is continuous;
(b) if a sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{n}}, \hat{x_{n+1}}\right) \geq 1$ for all $n \in \mathcal{N}$ and $\hat{x_{n}} \rightarrow x_{0} \in \mathcal{X}_{0}$ as $n \rightarrow \infty$, then $\alpha_{o}\left(\hat{x_{n}}, x_{0}\right) \geq 1$.
Then T_{0} has a fixed point.
(C1) If $\alpha_{o}(c, d) \geq 1$ for all fixed point $c, d \in \mathcal{X}_{0}$,
(C2) there exist $z_{0} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(x_{0}, z_{0}\right) \geq 1$ and $\alpha_{o}\left(y_{0}, z_{0}\right) \geq 1$ for all $\left(x_{0}, x_{0}\right) \in \mathcal{X}_{0}$,
then T_{0} has a unique fixed point.
Proof. Assume $\hat{x_{0}} \in \mathcal{X}_{0}$ such that $\alpha_{o}\left(\hat{x_{0}}, \hat{T_{0}}, \hat{x_{0}}\right) \geq 1$. Define the sequence $\left\{\hat{x_{n}}\right\} \in \mathcal{X}_{0}$ such that for all $n \in \mathcal{N}$

$$
\begin{equation*}
\hat{x_{n}}=T_{0} \hat{x_{n-1}} \tag{2.14}
\end{equation*}
$$

Assume that $\hat{x_{n}} \neq \hat{x_{n-1}}$.
Since T_{0} is α_{o}-admissible and $\alpha_{O}\left(\hat{x_{0}}, \hat{x_{1}}\right)$ $=\alpha_{O}\left(\hat{x_{0}}, T_{0} \hat{x_{0}}\right) \geq 1$ and similarly by induction, we get

$$
\alpha_{o}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \geq 1 \text { for all } n \in \mathcal{N}
$$

Applying Inequality (2.10) with $x_{0}=\hat{x_{0}}$ and $y_{0}=\hat{x_{1}}$, we have

$$
\begin{aligned}
& \mathcal{M}\left(\hat{x_{n}}, \hat{x_{n+1}}\right)=\mathcal{M}\left(T_{0} \hat{x_{n-1}}, T_{0} \hat{x_{n}}\right), \\
& \leq \alpha_{0}\left(\hat{x_{n-1}} \hat{,} \hat{x_{n}}\right) \mathcal{M}\left(T_{0} \hat{x_{n-1}}, T_{0} \hat{x_{n}}\right), \\
& \leq\left[\mathcal{M}\left(T_{0} \hat{x_{n-1}}, \hat{x_{n}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{0}}, \hat{x_{n-1}}\right)\right]^{\lambda_{o}\left(\hat{x_{n}}\right)} \text {, } \\
& =\mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n+1}}\right)^{\lambda_{o}\left(\hat{x_{0}}\right)} \\
& \leq\left[\mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n}}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, \hat{x_{n-1}}\right)\right]^{\lambda_{O}\left(\hat{x_{0}}\right)} \text {, } \\
& \text { for all } n \in \mathcal{N} \text {. }
\end{aligned}
$$

and so

$$
\begin{aligned}
& \mathcal{M}\left(\hat{x_{n}}, \hat{x_{n+1}}\right) \leq \mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n}}\right)^{w\left(\hat{x_{0}}\right)} \\
& \text { where } w\left(\hat{x_{0}}\right)=\frac{\lambda_{o}\left(\hat{x_{0}}\right)}{1-\lambda_{o}\left(\hat{x_{0}}\right)} \leq 1 .
\end{aligned}
$$

Suppose $m, n \in \mathcal{N}$ such that $m<n$, we have

$$
\begin{aligned}
& \mathcal{M}\left(\hat{x_{m}}, \hat{x_{n}}\right) \\
& \leq \mathcal{M}\left(\hat{x_{m}}, \hat{x_{m+1}}\right) \cdot \mathcal{M}\left(\hat{x_{m+1}}, \hat{x_{m+2}}\right) \ldots \mathcal{M}\left(\hat{x_{n-1}}, \hat{x_{n}}\right), \\
& \leq\left[\mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)\right]^{w\left(\hat{x_{0}}\right)^{m}+w\left(\hat{x_{0}}\right)^{m+1}+\ldots+w\left(\hat{x_{0}}\right)^{n-1}} \\
& \leq\left[\mathcal{M}\left(\hat{x_{0}}, \hat{x_{1}}\right)\right]^{w\left(\hat{x_{0}}\right)^{m}} \underset{1-w\left(\hat{x_{0}}\right)}{m}
\end{aligned}
$$

Taking $\lim _{m, n \rightarrow \infty}$, we get $\left[\mathcal{M}\left(\hat{x_{m}}, \hat{x_{n}}\right)\right] \rightarrow 1$ and $\left\{\hat{x_{n}}\right\}$ is multiplicative cauchy sequence in \mathcal{X}_{0}.

From the completeness of \mathcal{X}_{0}, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x_{n}} \rightarrow x^{*}$ as $n \rightarrow \infty$.

We suppose that T_{0} is continuous from condition(3a), so

$$
x^{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} T_{0} \hat{x_{n}}=T_{0}\left(\lim _{n \rightarrow \infty} \hat{x_{n}}\right)=T_{0} x^{*}
$$

Now, we suppose that condition(3b) holds: As $\left\{\hat{x_{n}}\right\}$ is multiplicative Cauchy sequence. So, there exist $x^{*} \in \mathcal{X}_{0}$ such that $\hat{x_{n}} \rightarrow x^{*}$ as $n \rightarrow \infty$.

From condition(3b), we have

$$
\alpha_{o}\left(\hat{x}_{n}, x^{*}\right) \geq 1 \text { for all } n \in \mathcal{N} .
$$

And

$$
\begin{aligned}
& \mathcal{M}\left(T_{0} x^{*}, x^{*}\right) \leq \mathcal{M}\left(T_{0} x^{*}, T_{0} \hat{x_{n}}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right), \\
& =\mathcal{M}\left(T_{0} \hat{x}_{n}, x^{*}\right) \cdot \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right) \text {, } \\
& \leq \mathcal{M}\left(T_{0} \hat{x_{n}}, x^{*}\right) \cdot \alpha_{o}\left(\hat{x_{n}}, x^{*}\right) \mathcal{M}\left(T_{0} \hat{x_{n}}, T_{0} x^{*}\right), \\
& \leq \mathcal{M}\left(\hat{x}_{n+1}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{o}\left(\hat{x_{n}}\right)} \text {. } \\
& \text { As } \lambda_{o}\left(\hat{x_{n}}\right) \leq \lambda_{o}\left(\hat{x_{0}}\right) \text { for all } n \in \mathcal{N} \text {. Therefore, we }
\end{aligned}
$$ have

$$
\mathcal{M}\left(T_{0} x^{*}, x^{*}\right) \leq \mathcal{M}\left(x_{n+1}, x^{*}\right) \cdot \mathcal{M}\left(\hat{x_{n}}, x^{*}\right)^{\lambda_{0}\left(\hat{x_{0}}\right)}
$$

Assume that $n \rightarrow \infty$ in the above inequality, we get $\mathcal{M}\left(T_{0} x^{*}, x^{*}\right)=1$, that is $x^{*}=T_{0} x^{*}$, which shows that x^{*} is fixed point of T_{0}.

To show uniqueness of x^{*}, let y^{*} is another fixed point of T_{0}, if condition(C1) holds, then the fixed point is unique from (2.9). Now we have to show that condition(C2) holds. From(C2), we have $z_{0} \in \mathcal{X}_{0}$ such that

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, z_{0}\right) \geq 1 . \tag{2.15}
\end{equation*}
$$

As T_{0} is α_{o}-admissible, from (2.15), we have

$$
\begin{equation*}
\alpha_{o}\left(x^{*}, T_{0}^{n} z_{0}\right) \geq 1, \alpha_{o}\left(y^{*}, T_{0}^{n} z_{0}\right) \geq 1 \tag{2.16}
\end{equation*}
$$

So

$$
\begin{aligned}
\mathcal{M}\left(x^{*}, T_{0}^{n} z_{0}\right) & =\mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right) \\
& \leq \alpha_{o}\left(x^{*}, T_{0}^{n-1} z_{0}\right) \mathcal{M}\left(T_{0} x^{*}, T_{0}\left(T_{0}^{n-1} z_{0}\right)\right), \\
& \leq \mathcal{M}\left(x^{*}, T_{0}^{n-1} z_{0}\right)^{\lambda_{o}\left(x^{*}\right)}, \\
& \leq \mathcal{M}\left(x^{*}, z_{0}\right)^{\lambda_{o}\left(x^{*}\right)^{n}} \text { for all } n \in \mathcal{N} .
\end{aligned}
$$

Taking $\lim _{n \rightarrow \infty}$ in the above inequality, we have

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=x^{*}
$$

and similarly

$$
\lim _{n \rightarrow \infty} T_{0}^{n} z_{0}=y^{*}
$$

By uniqueness of limit, we have $x^{*}=y^{*}$, which shows the uniqueness of fixed point.
Remark 2.9 The multiplicative $\left(\alpha_{o}, \lambda_{0}\right)$-Banachcontraction mapping, multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$-Kannancontraction mapping and multiplicative $\left(\alpha_{0}, \lambda_{0}\right)$ -Chatterjea-contraction mapping is the generalization of multiplicative Banach-contraction mapping, multiplicative Kannan-contraction mapping and multiplicative Chatterjea-contraction mapping respectively, i.e by simply putting $\quad \alpha_{o}\left(x_{0}\right)=k \in[0,1)$ in Definition 2.1, $\lambda_{o}\left(x_{0}\right)=k \in\left[0, \frac{1}{2}\right)$ in Definition 2.5 and2.6 with $\alpha_{o}\left(x_{0}, y_{0}\right)=1$ we obtain multiplicative Banachcontraction mapping, multiplicative Kannan-contraction mapping and multiplicative Chatterjea-contraction mapping respectively.

References

[1] Banach, Sur les operations dans les ensembles abstrait et leur application aux equations integrales. Fundam. Math.3, 133-181, (1922).
[2] Bashirov, Kurpunar, Ozyapici, Multiplicative calculus and its applications. Math. Anal. Appl. 337, 36-48, (2008).
[3] Chatterjea, Fixed point theorems. Acad. Bulgare Sci. 25, 727-730, (1972).
[4] Ghosh, A generalization of contraction principle. Int. J. Math. Math. Sci. 4(1), 201-207, (1981).
[5] Kannan, Some results on fixed points. Calcutta Math. Soc. 60, 71-76, (1968).
[6] Kannan, Some results on fixed points. II. Math. Mon. 76, 405-408, (1969).
[7] B. Samet, C. Vetro, and P. Vetro, Fixed point theorems for $\alpha-\psi$-contractive type mappings,. Nonlinear Analysis: Theory, Methods and Applications, vol. 75, no. 4, pp. 2154-2165, (2012).
[8] Shioji, N, Suzuki, T, Takahashi, Contractive mappings, Kannan mappings and metric completeness. Proc. Am. Math.Soc. 126, 3117-3124, (1998).
[9] Subrahmanyam, Completeness and fixed-points. Monatshefte Math. 80, 325-330, (1975).
[10] Ozavsar, Cevikel, Fixed points of multiplicative contraction mappings on multiplicative metric spaces. arXiv:1205.5131v1 [math.GM] (2012).
[11] Zamfirescu, Fixed point theorems in metric spaces. Arch. Math. 23, 292-298, (1972).

