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Abstract

We establish necessary conditions, in the form of the positivity of Pick-matrices, for the existence of

a solution to the spectral Nevanlinna-Pick problem:

Let k and n be natural numbers. Choose n distinct points zj in the open unit disc, D, and n matrices

Wj in Mk(C), the space of complex k×k matrices. Does there exist an analytic function φ : D → Mk(C)

such that

φ(zj) = Wj

for j = 1, ...., n and

σ(φ(z)) ⊂ D

for all z ∈ D?

We approach this problem from an operator theoretic perspective. We restate the problem as an

interpolation problem on the symmetrized polydisc Γk,

Γk = {(c1(z), . . . , ck(z)) | z ∈ D} ⊂ Ck

where cj(z) is the jth elementary symmetric polynomial in the components of z. We establish necessary

conditions for a k-tuple of commuting operators to have Γk as a complete spectral set. We then derive

necessary conditions for the existence of a solution φ of the spectral Nevanlinna-Pick problem.

The final chapter of this thesis gives an application of our results to complex geometry. We establish

an upper bound for the Caratheodory distance on int Γk.



Chapter 1

Interpolation Problems

This thesis is concerned with establishing necessary conditions for the existence of a solution to the

spectral Nevanlinna-Pick problem. In the sections of this chapter which follow, we define a number

of interpolation problems beginning with the classical Nevanlinna-Pick problem. After presenting a full

solution to this classical mathematical problem, we give a brief summary of some results in linear systems

theory. These results demonstrate how the classical Nevanlinna-Pick problem arises as a consequence of

robust control theory. We then slightly alter the robust stabilization problem and show that this alteration

gives rise to the spectral Nevanlinna-Pick problem. Chapter 1 is completed with the introduction of a

new interpolation problem which is closely related to both versions of the Nevanlinna-Pick problem.

Although the problems discussed all have relationships with linear systems and control theory, they are

interesting mathematical problems in their own right. The engineering motivation presented in Section

1.2 is not essential to the work which follows but allows the reader a brief insight into the applications

of our results.

Chapter 2 begins by converting function theoretic interpolation problems into problems concerning

the properties of operators on a Hilbert space. Throughout Chapter 2 we are concerned with finding a

particular class of polynomials. Although the exact form of the polynomials is unknown to us, we are

aware of various properties they must possess. We use these properties to help us define a suitable class

of polynomials.

In Chapter 3 we define a class of polynomials based on the results of Chapter 2. We present a

number of technical results which allow us to represent this class of polynomials in various forms. This is

followed, in Chapter 4, by a proof that certain polynomial pencils which arise as part of a representation

in Chapter 3 are non-zero over the polydisc. Although this proof, like the results in the chapter which
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precedes it, is rather detailed, the resultant simplifications in Chapters 5, 6 and 7 are essential.

The proof of our first necessary condition for the existence of a solution to the spectral Nevanlinna-

Pick problem is given in Chapter 5. The actual statement of this necessary condition is presented in

operator theoretic terms, but in keeping with the classical motivation for the problem we also present

the result in the form of a Pick-matrix. Chapter 5 concludes with a simple example demonstrating the

use of the new necessary condition.

Chapter 6 contains the second of our necessary conditions. The results needed to prove this more

refined condition are easy extensions of results in the preceding chapters. The main results of Chapter 5

can all be given as special cases of the results in Chapter 6. Although the results of Chapter 6 do bear

much similarity to those of Chapter 5, they are presented in full for completeness.

The mathematical part of this thesis is concluded with a new result in complex geometry. In Chapter

7 we prove an upper bound for the Caratheodory distance on a certain domain in Ck. This proof

relies heavily on the theory developed in earlier chapters in connection with the necessary conditions for

the existence of a solution to the spectral Nevanlinna-Pick problem. It also serves to demonstrate the

consequences of our results.

The thesis concludes in Chapter 8 with a brief discussion of possible future avenues of research. We

also discuss the connections between our work and other results in the area.

What remains of this chapter is devoted to introducing three interpolation problems. The first of

these, the classical Nevanlinna-Pick problem, is to construct an analytic function on the disc subject to

a number of interpolation conditions and a condition concerning its supremum. The Nevanlinna-Pick

problem is well studied and has an elegant solution (Corollary 1.1.3). We present a full proof of this

solution in Section 1.1.

Although the Nevanlinna-Pick problem resides in the realms of function theory and pure mathematics,

it has far reaching applications. In Section 1.2 we introduce some of the fundamentals of linear systems

theory. The small section of this chapter which is devoted to linear systems is far from a complete study

of even the most basic concepts of that subject. The inclusion of the topic is meant only to act as

motivation and we hope it will help the reader place the Nevalinna-Pick problem in a wider context.

With this aim in mind, we present a simplified demonstration of the importance of the Nevanlinna-Pick

problem to a specific control engineering problem. Section 1.2 concludes by investigating how a change in

the formulation of the control engineering problem gives rise to a variant of the Nevanlinna-Pick problem.

The variant of the Nevanlinna-Pick problem of interest to us is known as the Spectral Nevanlinna-Pick

problem. This is introduced in Section 1.3. As one might suspect from its title, the Spectral Nevanlinna-

Pick problem (which we now refer to as the Main Problem) is very similar to the classic Nevanlinna-Pick

4



problem. Unfortunately, as yet, no solution of it is known. The aim of this work is to find necessary

conditions for the existence of a solution to the Main Problem.

In Section 1.3 we introduce the Γk problem. This is an interpolation problem which is closely related

to the Main Problem. Section 1.3 is concluded with the definition of a polynomial which will be of great

interest to us throughout our work.

1.1 The Nevanlinna-Pick Problem

The Main Problem studied below is a variant of the classical Nevanlinna-Pick problem, which was first

solved by Pick [34] early this century. The classical version of the problem can be stated thus.

Nevanlinna-Pick Problem Pick 2n points {zj}n
1 , {λj}n

1 in D such that the zj are distinct. Does

there exist an analytic function φ : D → C such that φ(zj) = λj for j = 1, . . . , n and |φ(z)| ≤ 1 for all

z ∈ D?

Below we present a solution to this problem in keeping with the methods and philosophies used

throughout this work. We hope that the reader will find this solution both illuminating and motivating.

First, we require some terminology.

Following convention, we shall let H2 denote the Hardy space of analytic functions in D which have

square summable Taylor coefficients. That is,

H2 =

{ ∞∑
n=0

anz
n |

∞∑
n=0

|an|2 <∞

}
.

For a full account of Hardy spaces see [31]. It is well known that H2 has a reproducing kernel, the Szegő

kernel, which is defined by

K(λ, z) =
1

1− λz̄
λ, z ∈ D. (1.1)

Fixing z, we see that this kernel gives rise to a function in H2, namely Kz(·) = K(·, z). When the zj are

distinct, the functions Kzj
are linearly independent (see, for example, [33]). The kernel is referred to as

‘reproducing’ because the function Kz has the following property. For all h ∈ H2 and all z ∈ D we have

〈h,Kz〉H2 = h(z).

For any z1, . . . , zn ∈ D and λ1, . . . , λn ∈ C we define the corresponding space M and model operator

TKz1 ,...,Kzn ;λ1,...,λn
: M→M as follows:

M = Span{Kz1 , . . . ,Kzn
} and TKz1 ,...,Kzn ;λ1,...,λn

Kzj
= λ̄jKzj

. (1.2)
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Thus TKz1 ,...,Kzn ;λ1,...,λn
is the operator with matrix

λ̄1 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 λ̄n


with respect to the basis Kz1 , . . . ,Kzn

of M. Clearly, two such operators commute.

Definition 1 The backward shift operator S∗ on H2 is given by

(S∗f)(z) =
1
z
(f(z)− f(0))

for all z ∈ D.

Lemma 1.1.1 Let zi ∈ D for i = 1, . . . , n. Define Kzi and M by (1.2). Then M is invariant under the

action of S∗. Furthermore, S∗|M commutes with TKz1 ,...,Kzn ;λ1,...,λn
.

Proof. Consider Kz, a basis element of M. We have, for all λ ∈ D,

S∗Kz(λ) =
1
λ

(Kz(λ)−Kz(0)) =
1
λ

(
1

1− λz̄
− 1
)

=
λz̄

λ

(
1

1− λz̄

)
= z̄Kz(λ).

It follows that S∗|M = TKz1 ,...,Kzn ;z1,...,zn . The result then holds.
�

The properties of S∗ and its relationship to M described above allow us to prove the following theorem.

Definition 2 For φ ∈ H∞ define the multiplication operator Mφ on H2 by

Mφh(λ) = φ(λ)h(λ)

for all h ∈ H2 and all λ ∈ D.

Theorem 1.1.2 Let zj ∈ D and λj ∈ C for j = 1, . . . , n. There exists a bounded function φ : D → C such

that ‖φ‖∞ ≤ 1 and φ(zj) = λj for j = 1, . . . , n if and only if the model operator T = TKz1 ,...,Kzn ;λ1,...,λn

is a contraction.

Proof. For h ∈ H2 and φ ∈ H∞ consider the inner product

〈Mφ
∗Kz, h〉 = 〈Kz,Mφh〉 = 〈Kz, φh〉 = (φh)(z)

= φ(z)h(z) = φ(z)〈Kz, h〉 = 〈φ(z)Kz, h〉. (1.3)
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That is

Mφ
∗Kz = φ(z)Kz (1.4)

for all z ∈ D.

Suppose a function φ : D → C exists such that ‖φ‖ ≤ 1 and φ(zj) = λj for j = 1, . . . , k. Choose a

basis element Kzj of M and consider the operator M∗
φ , which has norm at most one. It follows from (1.4)

that M∗
φKzj

is equal to λjKzj
, which in turn is equal to TKzj

by definition. Thus, T and M∗
φ coincide

on every basis element of M and are therefore equal on the whole of M ⊂ H2. That is, T = M∗
φ |M

where ‖M∗
φ‖ ≤ 1, and hence ‖T‖ ≤ 1.

Conversely, suppose that T = TKz1 ,...,Kzn ;λ1,...,λn
is a contraction. By Lemma 1.1.1, T commutes

with S∗|M (i.e. the backward shift restricted to M). The minimal co-isometric dilation of S∗|M is S∗

on H2, and by the Commutant Lifting Theorem (see [26]) it follows that T is the restriction to M of

an operator M , which commutes with the backward shift and is a contraction. It is a well known fact

that those operators which commute with the unilateral shift are exactly the multiplication operators

Mφ where φ ∈ H∞ (see, for example, [29]). It follows that M = M∗
φ for some φ ∈ H∞. For j = 1, . . . , k

we have

λjKzj
= TKzj

= (M∗
φ |M)Kzj

. (1.5)

Hence,

λjKzj = (M∗
φ |M)Kzj

= M∗
φKzj

= φ(zj)Kzj

for j = 1, . . . , k. Moreover ‖M‖ ≤ 1, so we have

‖φ‖∞ = ‖Mφ‖ = ‖M∗‖ ≤ 1.

The result follows.
�
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We have now shown that the existence of a solution to the classical Nevanlinna-Pick problem is equivalent

to a certain operator being a contraction. This result is essentially the result of Pick [34], which is

presented in its more familiar form below.

Corollary 1.1.3 Let zj ∈ D and λj ∈ C for j = 1, . . . , n. There exists a bounded function φ : D → C

such that ‖φ‖∞ ≤ 1 and φ(zj) = λj for j = 1, . . . , n if and only if[
1− λiλj

1− zizj

]n

i,j=1

≥ 0

Proof. Theorem 1.1.2 states that the existence of an interpolating function satisfying the conditions

of the result is equivalent to the operator T = TKz1 ,...,Kzn ;λ1,...,λn
being a contraction. Clearly, T is a

contraction if and only if

1− T ∗T ≥ 0.

That is, T is a contraction if and only if

[
〈(1− T ∗T )Kzi

,Kzj
〉
]n
i,j=1

≥ 0,

which is the same as [
〈Kzi ,Kzj 〉 − 〈TKzi , TKzj 〉

]n
i,j=1

≥ 0.

By the reproducing property of Kzi
discussed above, and the definition of T , we see that this holds if

and only if [
Kzi(zj)− λjλiKzi(zj)〉

]n
i,j=1

≥ 0,

or, equivalently, if and only if[
1

1− zjzi
− λjλi

1
1− zjzi

]n

i,j=1

=
[
1− λjλi

1− zjzi

]n

i,j=1

≥ 0.

�

Pick’s Theorem is an elegant, self contained piece of pure mathematics. However, the Nevanlinna-Pick

problem is much more than that. It arises in certain engineering disciplines as an important tool in the

solution of difficult problems. In the next section we present a discussion of one of these applications.

1.2 Linear Systems

In this section we introduce the reader to a small number of simple concepts in linear systems theory.

We demonstrate why control engineers may be interested in the Nevanlinna-Pick problem as a tool to

8



Figure 1.1: A feedback control block diagram

help them solve difficult physical problems. The fields of linear systems theory and control theory are

far too large for us to present any more than a cursory introduction. For a more complete study of the

kind of control problems related to Nevanlinna-Pick, we recommend the easily readable book by Doyle,

Francis and Tannenbaum [23].

Throughout this section, all linear systems are assumed to be finite dimensional. Our attention will

centre on closed loop feedback systems, that is, systems which can be represented as in Figure 1.1. In

Figure 1.1, G represents the plant and C represents a controller. Essentially, we think of the plant as

performing the primary role of the system while the controller ensures that it behaves correctly. From

a mathematical viewpoint, in the linear case, the plant and the controller can be seen as multiplication

operators (via the Laplace transform, see [23]). Normally, no distinction is drawn between the actual

plant/controller and the multiplication operator it induces. In the case where u is a p-dimensional vector

input and y is an r-dimensional vector output, the plant G and the controller C will be r × p and p× r

matrices respectively. Clearly, if u and y are scalar functions, then so are G and C. The case where

everything is scalar is described as SISO (single input, single output).

In the simple block diagram Figure 1.2, we see that the input u and output y satisfy y(s) = G(s)u(s).

Here u, y and G are the Laplace transforms of the input, output and plant, which in turn are functions

of time. Analysis of models of linear systems based on the use of the Laplace transform is described as

frequency domain analysis. The (possibly matricial) multiplication operators induced by the boxes in

the relevant diagram are known as transfer functions.

Definition 3 A system is stable if its transfer function is bounded and analytic in the right half-plane.

Therefore the system given in Figure 1.2 is stable if and only if, for some M ∈ R, we have |G(s)| < M

for all s ∈ C with Re s ≥ 0.

The system in Figure 1.1 is meant to represent a (simple) physical system and because of this we often

ask for it to satisfy more stringent conditions than those of Definition 3. We say a system is internally

stable if the transfer function between each input and each branch of the system is stable. This stronger

notion of stability is necessary because systems which appear to have a stable transfer function can still

have internal instabilities.

Clearly the system in Figure 1.2 is internally stable if and only if it is stable. The system in Figure

1.1 is internally stable if and only if each of the transfer functions

(I +GC)−1, (I +GC)−1G, C(I +GC)−1, C(I +GC)−1G

9



Figure 1.2: A simple block diagram

are stable.

It would obviously be of great interest to know which controllers C stabilize the system in Figure 1.1

for a given G. Below, we present a parameterization of all such solutions for a wide class of G.

To simplify the problem of parameterizing all controllers which stabilize the system in Figure 1.1, we

shall assume that G is rational and therefore has a co-prime factorization. That is, there exist stable

matrices M,N,X and Y such that X and Y are proper, real rational, and

G = NM−1 and Y N +XM = I.

Youla proved the following result, a full proof of which can be found in [27, Chapter 4]. A simpler proof

in the scalar case can be found in [33].

Theorem 1.2.1 Let G be a rational plant with co-prime factorisation G = NM−1 as above. Then C is

a rational controller which internally stabilizes the system given in Figure 1.1 if and only if

C = (Y +MQ)(X −NQ)−1

for some stable, proper, real rational function Q for which (X −NQ)−1 exists.

Thus, in the scalar case, if G = N
M then C produces an internally stable system in Figure 1.1 if and only

if

C =
Y +MQ

X −NQ

for some Q ∈ H∞ with X −NQ 6= 0.

Observe that in the case of an internally stable single-input, single-output (SISO) system we have:

C

1 +GC
=
Y +MQ

X −NQ

1

I +
N

M

Y +MQ

X −NQ

=
Y +MQ

X −NQ

M(X −NQ)
M(X −NQ) +N(Y +MQ)

= (Y +MQ)
M

NY +MX

= M(Y +MQ).

It was mentioned above that the Nevanlinna-Pick problem arises as a consequence of robust stabi-

lization. The problem of robust stabilization asks if it is possible to construct a controller which not only

stabilizes the feedback system of Figure 1.1, but also stabilizes all other such systems whose plants are
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‘close’ to G. We donote the right halfplane by C+, and donote the system in Figure 1.1 by (G,C). The

following result is taken from [33].

Theorem 1.2.2 Let (G,C) be an internally stable SISO feedback system over A(C+) and suppose that∥∥∥∥ C

I +GC

∥∥∥∥
∞

= ε.

Then C stabilizes G+ ∆ for all ∆ ∈ A(C+) with

‖∆‖∞ <
1
ε
.

Suppose we seek a controller C which would stabilize the SISO system (G+ ∆, C) whenever ‖∆‖∞ < 1.

Suppose further that G is a real rational function. Clearly, by Theorem 1.2.2, it will suffice to find Q

such that ∥∥∥∥ C

I +GC

∥∥∥∥
∞

= ‖M(E +MQ)‖∞ = ‖ME +M2Q‖∞
def= ‖T1 − T2Q‖∞ ≤ 1.

By changing variables under the transform z = (1 − s)/(1 + s) we can work with functions over D

rather than C+. Now if φ = T1 − T2Q we have φ − T1 = −T2Q. Thus, φ(z) = T1(z) for all z ∈ D with

T2(z) = 0.

Conversely, if φ does interpolate T1 at each of the zeros of T2 then (T1−φ)/T2 is analytic and bounded

in D and as such defines a suitable candidate for Q.

Therefore, our task is to construct a function φ on D such that ‖φ‖∞ ≤ 1 and φ(zj) = wj for all zj

satisfying T2(zj) = 0 where wj = T1(zj). This is clearly the classical Nevanlinna-Pick problem discussed

above. It follows that the Nevanlinna-Pick problem is exactly the same as the robust stabilization

problem.

Suppose now that we have a slightly different robust stabilization problem. What happens if we know

a little about the perturbation ∆? Doyle [21] was the first to consider such structured robust stabilization

problems. Doyle’s approach is based on the introduction of the structured singular value. The structured

singular value is defined relative to an underlying structure of operators which represent the permissible

forms of the perturbation ∆. The definition of µ given here is taken from [25].

Definition 4 Suppose H is a Hilbert space and R is a subalgebra of L(H) which contains the identity.

For A ∈ L(H) define

µR(A) =
1

inf{‖T‖ | T ∈ R, 1 ∈ σ(TA)}
.

Although µ is defined for operators on infinite dimensional Hilbert space, Doyle only defined it in a finite

setting which is more in keeping with the name structured singular value. We denote the largest singular

value of A by σ̄(A).
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Figure 1.3: A Robust Stabilization Problem

We consider a closed loop feedback system which is to be stablized, and then remain stable after the

addition of a perturbation ∆. Diagramatically, we wish to stabilize the system in Figure 1.3 where G̃

represents the system in Figure 1.1. As before, we shall assume that G is a real rational (matrix) function.

We seek a controller C to stabilize G̃ in such a way that it will remain stable under the perturbation ∆.

A result of Doyle’s [22, Theorem RSS] states that the system in Figure 1.3 is stable for all ∆ of

suitable form R with σ̄(∆) < 1 if and only if

‖G̃‖µ
def= sup

s∈C+

µR(G̃(s)) ≤ 1.

If we take the underlying space of matrices R to be scalar functions (times a suitably sized identity)

then µR(G̃(s)) will equal the spectral radius of ˜G(s) which we denote by r(G̃(s)). It follows (with this

choice of R) that the system in Figure 1.3 is stable if and only if r(G̃(s)) ≤ 1 for all s ∈ C+. We

obviously require G̃ to be stable under a zero perturbation and we can achieve this by using the Youla

parametrization for C. Our task is now to choose the free parameter Q in the Youla parameterization

of C in such a way that r(G̃(s)) ≤ 1 for all s ∈ C+.

Francis [27, Section 4.3, Theorem 1] shows that when C is chosen via the Youla parameterization,

there exist matrices T1, T2 and T3 such that G̃ = T1 − T2QT3. As before, we may choose to work with

D rather than C+. Thus far we have shown that the system in Figure 1.3 is stable if and only if we can

choose a stable, rational, bounded Q such that r(T1(z) − T2(z)Q(z)T3(z)) ≤ 1 for all z ∈ D. Clearly,

G̃ − T1 = −T2QT3. Now if x is a vector with the property T2(z)Q(z)T3(z)x = 0 for some z ∈ D, then

G̃(z)x = T1(z)x. In other words, the system in Figure 1.3 is stable only if we can construct a stable

function G̃ such that supz∈D G̃(s) ≤ 1 and G̃(z)x = T1(z)x for all z and x such that T3(z)x = 0, with

a like condition involving points z and vectors y such that y∗T2(z) = 0. This problem is known as the

tangential spectral Nevanlinna-Pick problem. Clearly, a special case of the tangential spectral Nevanlinna-

Pick problem is the spectral Nevanlinna-Pick problem in which occurs when T2 and T3 happen to be

scalar functions.

The spectral Nevanlinna-Pick problem is the most difficult case of the tangential spectral Nevanlinna-

Pick problem (see [14]). It is also the subject of this work.

12



1.3 The Spectral Nevanlinna-Pick Problem

We shall study the following interpolation problem and derive a necessary condition for the existence of

a solution. Let Mk(C) denote the space of k × k matrices with complex entries.

Main Problem Let k and n be natural numbers. Choose n distinct points zj in D and n matrices Wj

in Mk(C). Does there exist an analytic function φ : D → Mk(C) such that

φ(zj) = Wj

for j = 1, ...., n and

σ(φ(z)) ⊂ D

for all z ∈ D?

To simplify the statement of the problem we shall introduce the following sets. Let Σk denote the set

of complex k× k matrices whose spectra are contained in the closed unit disc. For z = (z1, . . . , zk) ∈ Ck

let ct(z) represent the tth elementary symmetric polynomial in the components of z. That is, for each

z ∈ Ck let

ct(z) =
∑

1≤r1<···<rt≤k

zr1 · · · zrt .

For completeness, define c0(z) = 1 and cr(z) = 0 for r > k.

Let Γk be the region of Ck defined as follows:

Γk = {(c1(z), ...., ck(z)) | z ∈ Dk}.

Define the mapping π : Ck → Ck by

π(z) = (c1(z), . . . , ck(z)).

Notice that if A is a complex k×k matrix with eigenvalues λ1, . . . , λk (repeated according to multiplic-

ity), then A ∈ Σk if and only if (c1(λ1, . . . , λk), . . . , ck(λ1, . . . , λk)) ∈ Γk. Motivated by this observation

we extend the definition of ct to enable it to take matricial arguments.

Definition 5 For a matrix W ∈ Mk(C) we define cj(W ) as the coefficient of (−1)kλk−j in the polyno-

mial det(λIk −W ). Define a(W ) as (c1(W ), . . . , ck(W )).

Observe that cj(W ) is a polynomial in the entries of W and is the jth elementary symmetric polynomial

in the eigenvalues of W . The function a is a polynomial function in the entries of Wj , and as such is

analytic.
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We can now show that each target value in Σk of the Main Problem gives rise to a corresponding

point in Γk. If φ : D → Σk is an analytic function which satisfies the conditions of the Main Problem,

then the function

a ◦ φ : D → Γk

is analytic because it is the composition of two analytic functions, and furthermore maps points in D to

points in Γk. Thus, the existence of a solution to the Main Problem implies the existence of an analytic

Γk-valued function on the disc. In other words, the existence of an analytic interpolating function from

the disc into Γk is a necessary condition for the existence of an interpolating function from the disc

into Σk. In the (generic) case, when W1, . . . ,Wk are non-derogatory (i.e. when their characteristic and

minimal polynomials are the same), the Σk and Γk problems are equivalent (see discussion in Chapter 8).

We therefore seek a necessary condition for the existence of a solution to the following problem, which

in turn will provide a necessary condition for the existence of a solution to the Main Problem.

Γk Problem Given n distinct points zj in D and n points γj in Γk, does there exist an analytic function

φ : D → Γk such that φ(zj) = γj for j = 1, . . . , n?

Throughout this work, the reader may assume k > 1. We show that a necessary condition for the

existence of a solution to the Γk problem can be expressed in terms of the positivity of a particular

operator polynomial. For k ∈ N introduce the polynomial Pk given by

Pk(x0, . . . , xk; y0, . . . , yk) =
k∑

r,s=0

(−1)r+s(k − (r + s))ysxr. (1.6)

Similar polynomials arise throughout this work in subtly different contexts although they can all be

represented in terms of Pk. The following result is simply a matter of re-arranging this polynomial.

Lemma 1.3.1 The following identity holds:

Pk(x0, . . . , xk; y0, . . . , yk) =
1
k

[Ak(y)Ak(x)−Bk(y)Bk(x)]

where

Ak(y) =
k∑

s=0

(−1)s(k − s)ys

and

Bk(y) =
k∑

s=0

(−1)ssys.
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Proof.

Pk(x0, . . . , xk; y0, . . . , yk) =
k∑

r,s=0

(−1)r+s(k − (r + s))xrys

=
k∑

r,s=0

(−1)r+s 1
k

(k2 − (r + s)k)xrys

=
k∑

r,s=0

(−1)r+s 1
k

(k2 − (r + s)k + rs− rs)xrys

=
k∑

r,s=0

(−1)r+s 1
k

((k − r)(k − s)− rs)xrys

=
k∑

r,s=0

(−1)r+s 1
k

(k − r)(k − s)xrys −
k∑

r,s=0

(−1)r+s 1
k
rsxrys

=
1
k

(
k∑

r,s=0

(−1)r+s(k − r)(k − s)xrys −
k∑

r,s=0

(−1)r+srsxrys

)

=
1
k

(
k∑

s=0

(−1)s(k − s)ys

)(
k∑

r=0

(−1)r(k − r)xr

)

− 1
k

(
k∑

s=0

(−1)ssys

)(
k∑

r=0

(−1)rrxr

)

�

Thus, for example,

P2(x0, x1, x2; y0, y1, y2) =
1
2
[(2y0 − y1)(2x0 − x1)− (−y1 + 2y2)(−x1 + 2x2)]

This polynomial, in a number of different guises, will be of great interest to us while we study the Γk

problem for given k ∈ N. Indeed, it is essentially the polynomial which we use to express our necessary

condition for the existence of a solution to the Γk problem.

15



Chapter 2

Hereditary Polynomials

2.1 Model Operators and Complete Spectral Sets

We begin this chapter by recalling some definitions from the Introduction. We then prove a result

which is analogous to Theorem 1.1.2 in the sense that it interprets an interpolation problem in terms

of the properties of a set of operators. In Chapter 1 we demonstrated how such a condition gives

rise to a solution to the classical Nevanlinna-Pick Problem. The derivation of this solution relied on

the hereditary polynomial f(x, y) = 1 − yx. We used the fact that an operator T is a contraction if

and only if f(T, T ∗) = 1 − T ∗T is positive semi-definite. The later part of this chapter contains the

derivation of an hereditary polynomial which will be used in a similar way to f . Namely, we derive an

hereditary polynomial g with the property that a k-tuple of operators T1, . . . , Tk is a Γk-contraction only

if g(T1, . . . , Tk, T
∗
1 , . . . , T

∗
k ) ≥ 0. In the chapters which follow, we show that the polynomial derived here

does indeed possess the desired properties and therefore gives rise to a partial solution to the Γk problem.

As in Chapter 1 we denote by H2 the Hardy space of analytic functions on D which have square

summable Taylor coefficients and by K its reproducing kernel (see equation (1.1)). The reader will recall

that for any (z1, . . . , zn, λ1, . . . , λn) ∈ Dk × Ck with zi 6= zj , we defined the space M and the operator

TKz1 ,...,Kzn ;λ1,...,λn
by

M = Span{Kz1 , . . . ,Kzn
} and TKz1 ,...,Kzn ;λ1,...,λnKzj = λ̄jKzj .

We have seen how operators of this type can be used to provide a full solution to the Main Problem

when k = 1 (Chapter 1). More recently, however, they have been used by Agler and Young [6] to establish

a necessary condition for the existence of a solution to the Main Problem when k = 2. The rest of this

chapter is devoted to showing how the methods of [6] can be extended to give a necessary condition for
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the existence of a solution to the Main Problem for general k. First we require a definition.

Definition 6 For any p× q matricial polynomial h in k variables

h(x1, . . . , xk) =

[ ∑
r1,...,rk

ai,j,r1···rk
x1

r1 · · ·xk
rk

]
i=1,...,p
j=1,...,q

we denote by h∨ the conjugate polynomial

h∨(x1, . . . , xk) =

[ ∑
r1,...,rk

ai,j,r1···rk
x1

r1 · · ·xk
rk

]
i=1,...,p
j=1,...,q

= h(x̄1, . . . , x̄k).

For any function φ analytic in a neighbourhood of each λj , j = 1, . . . , n we define

φ(TKz1 ,...,Kzn ;λ1,...,λn) = TKz1 ,...,Kzn ;φ∨(λ1),...,φ∨(λn).

For j = 1, . . . , n let zj be distinct points in D and define

M = Span{Kz1 , . . . ,Kzn}.

Pick n points (c1(1), . . . , ck
(1)), . . . , (c1(n), . . . , ck

(n)) ∈ Γk and let

Ci = TKz1 ,...,Kzn ;ci
(1),...ci

(n) for i = 1, . . . , k. (2.1)

These operators are diagonal with respect to the basis Kz1 , . . . ,Kzn and thus they commute. Commuta-

tivity can also be proven by considering two such model operators, Cr and Ct, acting on a basis element

of M:

CrCtKzj = Crct(j)Kzj
= cr(j)ct(j)Kzj

= ct(j)cr(j)Kzj
= Ctcr(j)Kzj

= CtCrKzj
.

The initial information in the Γk problem has now been encoded in a k-tuple of commuting operators on

a subspace of H2.

Next we define the joint spectrum of a k-tuple of operators in keeping with the definition in [6]. This

definition is different from that used by Arveson in [9]; it is the simplest of many forms of joint spectrum

(see, for example, [24, Chapter 2]), but is sufficient for our purpose.

Definition 7 Let X1, . . . , Xk be operators on a Hilbert space and let A be the ∗-algebra generated by

these operators. We define σ(X1, . . . , Xk), the joint spectrum of X1, . . . , Xk, by

σ(X1, . . . , Xk) = {λ ∈ Ck | ∃ a proper ideal I ⊂ A with λj −Xj ∈ I for j = 1, . . . , k}.

Definition 8 A set E ⊂ Ck is said to be a complete spectral set for a k-tuple of commuting operators

(X1, . . . , Xk) on a Hilbert space H if

σ(X1, . . . , Xk) ⊂ E
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and if, for any q × p matrix-valued function h of k variables which is analytic on E, we have:

‖h(X1, . . . , Xk)‖L(Hp,Hq) ≤ sup
E
‖h(z)‖. (2.2)

The requirement that h be an analytic function in the above definition can be replaced by a more

managable alternative when E = Γk. Below we show that it is sufficient to consider only polynomial

functions h. To prove this result we need the following definition and a classical result.

Definition 9 Let Sk represent the group of permutations on the symbols 1, . . . , k and let Stk(1) be the

subgroup of Sk comprising those permutations which leave the symbol 1 unaltered. Let Stk(1)2 denote the

set of elements of Stk(1) which have order 2. Suppose σ ∈ Sk. For λ ∈ Dk write λ = (λ1, . . . , λk) and

define λσ as

λσ = (λσ(1), . . . , λσ(k)).

Thus, for example, if k = 3 and (12) denotes the element of S3 which interchanges the first and second

symbols, then (λ1, λ2, λ3)(12) = (λ2, λ1, λ3). A proof of the following classical Lemma may be found in

[37].

Lemma 2.1.1 Let f be a symmetric polynomial in indeterminates x1, . . . , xk. Then there exists a poly-

nomial p such that

f(x1, . . . , xk) = p(c1(x1, . . . , xk), . . . , ck(x1, . . . , xk)).

With this result we may prove the following Lemma which allows us to replace the analytic matrix

functions in (2.2) with polynomial matricial functions.

Lemma 2.1.2 The space of polynomial functions on Γk is dense in the space of analytic functions on

Γk.

Proof. If f is an analytic function on Γk then f ◦ π is an analytic function on Dk
. The set Dk is a

Reinhardt domain (see [28]) and so f ◦ π can be uniformly approximated by a polynomial function on

the closed polydisc. Let ε > 0. Choose a polynomial function p on the polydisc such that

sup
z∈Dk

|f(π(z))− p(z)| < ε.

For z ∈ Dk let

q(z) =
1
k!

∑
σ∈Sk

p(zσ).
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Then, for all z ∈ Dk we have,

k!|f(π(z))− q(z)| =

∣∣∣∣∣k!f(π(z))−
∑

σ∈Sk

p(zσ)

∣∣∣∣∣
=

∣∣∣∣∣∑
σ∈Sk

[f(π(z))− p(zσ)]

∣∣∣∣∣
≤
∑

σ∈Sk

|f(π(z))− p(zσ)|

=
∑

σ∈Sk

|f(π(zσ))− p(zσ)|

< εk!.

It follows that q is a symmetric polynomial function on the polydisc which approximates f ◦ π. By

Lemma 2.1.1 there exists a polynomial m such that

q(z) = m(c1(z), . . . , ck(z)) = m ◦ π(z)

for all z ∈ Dk. Let γ ∈ Γk. By definition of Γk, γ = π(z) for some z in Dk
. Therefore,

|f(γ)−m(γ)| = |f(π(z))−m(π(z))| = |f(π(z))− q(z)| < ε.

Hence, the polynomial function induced by m on Γk uniformly approximates the analytic function f .
�

Theorem 2.1.3 If there exists a function φ : D → Γk which is analytic and has the property that

φ(zj) = (c1(j), . . . , ck
(j)) for j = 1, . . . , n, then Γk is a complete spectral set for the commuting k-tuple

of operators (C1, . . . , Ck) defined by (2.1).

Proof. Lemma 2.1.2 states that it will suffice to consider only matricial polynomial functions h on Γk.

Consider the scalar polynomial case. Let h be a polynomial in k variables given by

h(x1, . . . , xk) =
∑

r1,...,rk

ai,j,r1···rk
x1

r1 · · ·xk
rk .

Observe that, for 1 ≤ j ≤ n, we have

h(C1, . . . , Ck)Kzj
=

∑
r1,...,rk

ar1···rk
C1

r1 · · ·Ck
rkKzj

=
∑

r1,...,rk

ar1···rk
c1(j)

r1 · · · ck(j)
rk

Kzj

= h∨ ◦ φ(zj)Kzj

= h◦φ∨(TKz1 ,...,Kzn ;z1,...,zn
)Kzj

.
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Hence, if h = [hij ] is a p× q matrix polynomial and z ∈ {z1, . . . , zn} then

h(C1, . . . , Ck)


0
...
Kz
...
0

 =

h1j(C1, . . . , Ck)Kz
...

hpj(C1, . . . , Ck)Kz

 =

h1j ◦ φ∨(TKz1 ,...,Kzn ;z1,...,zn)Kz

...
hpj ◦ φ∨(TKz1 ,...,Kzn ;z1,...,zn

)Kz



= h ◦ φ∨(TKz1 ,...,Kzn ;z1,...,zn
)


0
...
Kz
...
0

 .
Thus

h(C1, . . . , Ck) = h ◦ φ∨(TKz1 ,...,Kzn ;z1,...,zn
).

By von Neumann’s inequality [36, Proposition 8.3], since TKz1 ,...,Kzn ;z1,...,zn
is the contraction S∗|M,

‖h(C1, . . . , Ck)‖ = ‖h ◦ φ∨(TKz1 ,...,Kzn ;z1,...,zn
)‖

≤ sup
D
‖h ◦ φ∨(z)‖

= sup
Γk

‖h(γ)‖.

That is, Γk is a complete spectral set for (C1, . . . , Ck) as required.
�

The model operators introduced in (2.1) have now provided a necessary condition for the existence

of a solution to the Γk problem. Namely, in the notation of that problem, if an interpolating function

exists which maps the zj to the γj , then Γk is a complete spectral set for the model operators associated

with zj and γj . This naturally raises the question as to which k-tuples of commuting operators have Γk

as a complete spectral set. This is the topic of the next three sections.

2.2 Properties of Polynomials

We shall consider a class of polynomials in 2k arguments known as hereditary polynomials. They will

play a major role in establishing a necessary condition for k-tuples of commuting contractions to have

Γk as a complete spectral set. First some definitions.

Definition 10 Polynomial functions on Ck × Ck of the form

g(λ, z) =
∑

r1,...,r2k

ar1···r2k
zr1
1 · · · zk

rkλ
rk+1
1 · · ·λr2k

k ,

where λ = (λ1, . . . , λk), z = (z1, . . . , zk) ∈ Ck, are said to be hereditary polynomials.
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If g(λ, z) is such a polynomial, then we may define g(T1, . . . , Tk, T1
∗, . . . , Tk

∗) for a k-tuple of com-

muting operators on a Hilbert space H as

g(T1, . . . , Tk, T1
∗, . . . , Tk

∗) =
∑

r1,...,r2k

ar1···r2k
T1
∗r1 · · ·Tk

∗rkT1
rk+1 · · ·Tk

r2k .

For convenience, we shall abbreviate the operator polynomial g(T1, . . . , Tk, T1
∗, . . . , Tk

∗) to g(T1, . . . , Tk)

and g(x1, . . . , xk, x̄1, . . . , x̄k) to g(x1, . . . , xk) whenever suitable.

Note that although the Tj commute with one another, T ∗j need not commute with Ti. The polynomials

are said to be hereditary because if g(T1, . . . Tk, T1
∗, . . . Tk

∗) ≥ 0 on a Hilbert space H, and T̃j is the

compression of Tj to an invariant subspace of H then g(T̃1, . . . T̃k, T̃1
∗
, . . . T̃k

∗
) ≥ 0. Next we consider

some properties of general polynomials.

Definition 11 An hereditary polynomial g is said to be weakly symmetric if

g(λ, z) = g(λσ, zσ)

for all σ ∈ Sk, λ, z ∈ Ck and doubly symmetric if

g(λ, z) = g(λσ, z) = g(λ, zσ)

for all σ ∈ Sk, λ, z ∈ Ck.

Note that all doubly symmetric polynomials are weakly symmetric.

Definition 12 Let X be a set. A function g : X ×X → C is said to be positive semi-definite if, for any

n ∈ N and x1, . . . xn ∈ X, we have

[g(xi, xj)]
n
i,j=1 ≥ 0.

2.3 Hereditary Polynomial Representations

Take h to be a scalar-valued polynomial on Ck such that ‖(h ◦ π)(T1, . . . , Tk)‖ ≤ 1 for all k-tuples of

commuting contractions (T1, . . . , Tk). We may define an hereditary polynomial g : Dk × Dk → C which

is positive on all k-tuples of commuting contractions by

g(λ, z̄) = 1− h ◦ π(z)h ◦ π(λ). (2.3)

It is easy to observe that g is doubly symmetric.

Recall a version of a theorem by Agler [1], which we will refine for our own use.
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Theorem 2.3.1 Let f be a polynomial function defined on Dk × Dk. Then

f(T1, . . . , Tk, T1
∗, . . . , Tk

∗) ≥ 0 for all k-tuples of commuting contractions (T1, . . . , Tk) if and only if there

exist k Hilbert spaces H1, . . . ,Hk and k holomorphic functions f1, . . . fk such that fr : Dk → Hr and

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)fr(z)∗fr(λ)

for all λ, z ∈ Dk.

This result holds for all holomorphic functions f on Dk × Dk for which f(T1, . . . , Tk) is defined, but the

stated version is sufficient for our purpose. Since the hereditary polynomials of interest, namely those of

the form (2.3), are weakly symmetric, we may extend Agler’s theorem in the following way:

Theorem 2.3.2 Let f be a weakly symmetric hereditary polynomial on Ck ×Ck. Then f is positive on

all k-tuples of commuting contractions if and only if there exists a positive semi-definite function Φ on

Dk × Dk such that

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)Φ(λνr , zνr )

for all λ, z ∈ Dk and for any choice of ν1, . . . , νk ∈ Sk such that νr(1) = r for r = 1, . . . , k.

Proof. (⇒) Let f be positive on k-tuples of commuting contractions. By Theorem 2.3.1, there exist k

Hilbert spaces H1, . . . ,Hk and k Hr-valued functions fr such that

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)fr(z)∗fr(λ)

for all λ, z ∈ Dk. For r = 1, . . . , k let ar be the positive semidefinite function defined on Dk × Dk by

ar(λ, z) = fr(z)∗fr(λ). Then

f(λ, z̄) =
k∑

j=1

(1− λr z̄r)ar(λ, z)

for all λ, z ∈ Dk. For t = 1, . . . , k define bt : Dk × Dk → C by

bt(λ, z) =
∑

σ∈Sk

1
k!
aσ−1(t)(λσ, zσ).

Clearly each bt is positive semi-definite. Pick r ∈ {1, . . . , k} and τ ∈ Sk such that τ(1) = r. Let ν = τσ.

Consider b1(λτ , zτ ):

b1(λτ , zτ ) =
∑

σ∈Sk

1
k!
aσ−1(1)(λτσ, zτσ)

=
∑

σ∈Sk

1
k!
aσ−1τ−1(r)(λτσ, zτσ)

=
∑

ν∈Sk

1
k!
aν−1(r)(λν , zν)

= br(λ, z).
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Let Φ(λ, z) = b1(λ, z), so that br(λ, z) = Φ(λν , zν) whenever ν ∈ Sk satisfies ν(1) = r.

Since f is weakly symmetric,

f(λ, z̄) =
1
k!

∑
σ∈Sk

f(λσ, z̄σ) =
1
k!

∑
σ∈Sk

k∑
j=1

(1− λσ(j)z̄σ(j))aj(λσ, zσ).

Changing variables under the substitution σ(j) = t this can be rewritten as

f(λ, z̄) =
k∑

t=1

(1− λtz̄t)
∑

σ∈Sk

1
k!
aσ−1(t)(λσ, zσ)

=
k∑

t=1

(1− λtz̄t)bt(λ, z).

For any choice of ν1, . . . , νk ∈ Sk such that νj(1) = j, we may substitute Φ defined above to conclude

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)Φ(λνr , zνr )

as required.

(⇐) Suppose there exists a positive semi-definite function Φ such that

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)Φ(λνr , zνr )

for all λ, z̄ ∈ Dk and for any choice of ν1, . . . , νk ∈ Sk such that νr(1) = r for r = 1, . . . , k. For r = 1, . . . , k

define ar(λ, z) = Φ(λνr , zνr ). Since Φ is positive semi-definite, so is ar for r = 1, . . . , k. That is, there

exist k positive semi-definite functions ar such that

f(λ, z̄) =
k∑

r=1

(1− λr z̄r)ar(λ, z)

for all λ, z ∈ Dk. Theorem 2.3.1 then shows that f is positive on k-tuples of commuting contractions.
�

Denote by γ the cycle of order k in Sk which maps k to 1 and t to t+ 1 for t < k, i.e. γ = (123 . . . k).

Then the above result gives:

Corollary 2.3.3 Let f be a weakly symmetric hereditary polynomial on Ck × Ck. If f is positive on

k-tuples of commuting contractions then there exists a positive semi-definite function Φ on Dk×Dk such

that

f(λ, z̄) =
k∑

t=1

(1− λtz̄t)Φ(λγt−1
, zγt−1

)

for all λ, z̄ ∈ Dk.

Proof. It is clear that γt−1(1) = t, and so we may apply Theorem 2.3.2.
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�

Recall a classic theorem of E.H. Moore and N. Aronszajn (for a proof see [7]).

Theorem 2.3.4 If Ψ is a positive semi-definite function on Dk ×Dk then there exists a Hilbert space E

with inner product 〈·, ·〉 and an E-valued function H on Dk such that

Ψ(λ, z̄) = 〈H(λ),H(z̄)〉

for all λ, z̄ ∈ Dk.

Denote by Φ the positive definite function formed by applying Corollary 2.3.3 to the function g defined

in (2.3) so that,

g(λ, z̄) =
k∑

t=1

(1− λtz̄t)Φ(λγt−1
, zγt−1

).

Let C be the Hilbert space with inner product 〈·, ·〉 which is formed by applying Theorem 2.3.4 to Φ and

let F be the corresponding C-valued function. We may now write g as

g(λ, z̄) =
k∑

t=1

(1− λtz̄t)〈F (λγt−1
), F (zγt−1

)〉 (2.4)

for all λ, z̄ ∈ Dk.

2.4 Finding the Polynomial

In this section we utilise the results of the previous section to study the properties of polynomials of the

form (2.3). Our aim is to derive a representation formula for these polynomials.

Lemma 2.4.1 Let g be the polynomial in 2k indeterminates defined in (2.3) and let F : Dk → C be as

in (2.4). For every σ ∈ Stk(1) there exists a corresponding unitary operator Uσ : C → C such that

UσF (λ) = F (λσ)

for all λ ∈ Dk. Furthermore, the mapping σ 7→ Uσ is an anti-representation of Stk(1).

Proof. Theorem 2.3.2 implies that the function Φ has the property that Φ(λσ, zσ) = Φ(λτ , zτ ) whenever

σ(1) = τ(1) and in particular, if σ ∈ Stk(1) we have

〈F (λ), F (z)〉 = Φ(λ, z) = Φ(λσ, zσ) = 〈F (λσ), F (zσ)〉

for all λ, z ∈ Dk. It follows that there exists an isometry Uσ mapping F (λ) to F (λσ) for all λ ∈ Dk.

However, since the linear span of {F (λ) | λ ∈ Dk} may be assumed dense in C, we see that Uσ is a unitary

operator satisfying

UσF (λ) = F (λσ)
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for all λ ∈ Dk. Clearly, every element of Stk(1) gives rise to a unitary operator in this manner. If σ and

τ are elements of Stk(1) then their product στ is also an element of Stk(1). The three unitaries which

are associated with these elements are related as indicated by the following equality:

UστF (λ) = F (λστ ) = UτF (λσ) = UτUσF (λ)

for all λ ∈ Dk. That is Uστ = UτUσ and σ 7→ Uσ is an anti-representation of Stk(1).
�

Lemma 2.4.2 If σ ∈ Stk(1)2 then the corresponding unitary operator Uσ is self-adjoint. Moreover, if C

is one dimensional, then Uσ is the identity operator.

Proof. Suppose σ ∈ Stk(1)2. Then

Uσ
2F (λ) = UσUσF (λ) = UσF (λσ) = F (λσ2

) = F (λ)

for all λ ∈ Dk. It follows that Uσ is self-adjoint. This completes the proof of the first statement.

Suppose the space C corresponding to the hereditary polynomial g is one dimensional. Then Uσ = ±I

for all σ ∈ Stk(1)2. Consider the case where Uσ = −I for some σ in Stk(1)2 and define the diagonal of

Dk by

D = {λ ∈ Dk|λ1 = · · · = λk}.

By assumption, for all λ ∈ Dk, we have

−F (λ) = UσF (λ) = F (λσ).

Therefore F (λ) = 0 for all λ ∈ D. By Equation (2.4),

g(λ, z̄) =
k∑

j=1

(1− λj z̄j)〈F (λγj−1
), F (zγj−1

)〉.

Hence, g(λ, z̄) = 0 whenever λ or z is in D. Fix λ ∈ D. Then, for all z ∈ Dk,

0 = g(λ, z̄) = 1− h ◦ π(z)h ◦ π(λ).

Thus, for any z ∈ Dk,

h ◦ π(z) = (h ◦ π(λ))−1.

Since λ is fixed, the right hand side of this equation is constant, thus h ◦ π(z) is constant on Dk and

h is constant on Γk. This contradicts the choice of h as any scalar valued polynomial on Γk such that

‖h◦π(T1, . . . , Tk)‖ ≤ 1 for all k-tuples of commuting contractions (T1, . . . , Tk). This contradiction implies

Uσ 6= −I.

Thus, whenever C is one dimensional Uσ is the identity for all σ ∈ Stk(1)2.
�

The following corollary extends Lemma 2.4.2. We show that, in the case where C is one dimensional,

Uτ = I for all τ ∈ Stk(1), not just Stk(1)2.
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Corollary 2.4.3 Let g, F, C be as in (2.4) and suppose that C is one dimensional. Then for every

τ ∈ Stk(1), the corresponding unitary Uτ is the identity, and hence,

F (λτ ) = F (λ).

Proof. Let dim C = 1. Lemma 2.4.2 states that Uσ = I whenever σ ∈ Stk(1)2. It is trivial to show that

every element of Stk(1) can be written as a product of elements in Stk(1)2. Pick an element τ ∈ Stk(1)

and suppose that τ = σ1 · · ·σs is a factorisation of τ over Stk(1)2. For every λ ∈ Dk we have:

F (λτ ) = F (λσ1···σs) = Uσs
F (λσ1···σs−1) = · · · = Uσs

· · ·Uσ1F (λ) = IsF (λ) = F (λ).

That is, for every element τ in Stk(1), the associated matrix Uτ is the identity.
�
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Lemma 2.4.4 Let C be one dimensional. Choose t ∈ {1, . . . , k} and pick σ ∈ Sk such that σ(1) = t.

Then

F (λγt−1
) = F (λσ). (2.5)

Proof. Let τ ∈ Stk(1). It was shown in Corollary 2.4.3 that F (λτ ) = F (λ). Replacing λ with λγt−1
in

this equation we have,

F (λγt−1τ ) = F (λγt−1
)

for all λ ∈ Dk and all τ ∈ Stk(1). It is easy to show that

{γt−1τ | τ ∈ Stk(1)} = {σ | σ ∈ Sk, σ(1) = t}

and hence for any λ ∈ Dk we have

F (λγt−1
) = F (λσ)

whenever σ(1) = t.
�

Lemma 2.4.5 Let C be one dimensional. There exists an α ∈ T such that

(1− αλt)F (λγt−1
) = (1− αλt+1)F (λγt

) (2.6)

for all λ ∈ Dk and t = 1, . . . , k − 1. Furthermore the function S : Dk → C defined by

S(λ) = (1− αλ1)F (λ)

is symmetric on Dk under the action of Sk.

Proof. Denote by (12) the element of Sk which exchanges the first two symbols and recall that the

polynomial g, defined in (2.3), is doubly symmetric. By definition of double symmetry we have

g(λ, z̄) = g(λ(12), z̄).

Using (2.4) and (2.5) we can expand this equality to see that

(1− λ1z̄1)〈F (λ), F (z)〉 + (1− λ2z̄2)〈F (λγ), F (zγ)〉

+
k∑

j=3

(1− λj z̄j)〈F (λγj−1
), F (zγj−1

)〉

= (1− λ2z̄1)〈F (λ(12)), F (z)〉 + (1− λ1z̄2)〈F (λ(12)γ), F (zγ)〉

+
k∑

j=3

(1− λj z̄j)〈F (λγj−1
), F (zγj−1

)〉.
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Cancel common terms and apply (2.5) once more to see

(1− λ1z̄1)〈F (λ), F (z)〉+ (1− λ2z̄2)〈F (λγ), F (zγ)〉

= (1− λ2z̄1)〈F (λ(12)), F (z)〉+ (1− λ1z̄2)〈F (λ(12)γ), F (zγ)〉

= (1− λ2z̄1)〈F (λγ), F (z)〉+ (1− λ1z̄2)〈F (λ), F (zγ)〉.

Equate the first and last of these expressions and re-factorize as follows:

〈F (λ)− F (λγ), F (z)− F (zγ)〉 = 〈λ1F (λ)− λ2F (λγ), z1F (z)− z2F (zγ)〉.

Consequently, since dim C = 1, there exists an α ∈ T such that

ᾱ(F (λ)− F (λγ)) = λ1F (λ)− λ2F (λγ)

for all λ ∈ Dk. Equivalently,

(1− αλ1)F (λ) = (1− αλ2)F (λγ)

for all λ ∈ Dk. Replacing λ by λγt−1
gives, for t = 1, . . . , k,

(1− αλt)F (λγt−1
) = (1− αλt+1)F (λγt

)

for all λ ∈ Dk. That is (2.6) holds. This completes the proof of the first part of the result. Let S be as

defined in the statement of the result. Pick any σ ∈ Sk and let t = σ(1). Then, by virtue of (2.5) and

(2.6),

S(λσ) = (1− αλt)F (λσ)

= (1− αλt)F (λγt−1
)

= (1− αλt−1)F (λγt−2
)

...

= (1− αλ1)F (λ)

= S(λ).

Hence S has the required property.
�

Lemma 2.4.6 Let C be one dimensional. For α and S as in Lemma 2.4.5, the hereditary polynomial g

defined in (2.3) can be expressed in the form

g(λ, z̄) = ψ(z)p(λ, z)ψ(λ) (2.7)
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for all λ, z ∈ Dk where

p(λ, z̄) =
k∑

j=1

(1− λj z̄j)
∏
i 6=j

(1− ᾱz̄i)(1− αλi)

 (2.8)

and

ψ(λ) = S(λ)
k∏

i=1

(1− αλi)−1.

Proof. Lemma 2.4.5 allows us to re-write F (λ) in terms of the symmetric function S,

F (λ) =
S(λ)

1− αλ1
.

Substituting this into (2.4) yields

g(λ, z̄) =
k∑

j=1

(1− λj z̄j)
S(λ)S(z)

(1− αλj)(1− ᾱz̄j)

= S(z)

 k∑
j=1

1− λj z̄j

(1− ᾱz̄j)(1− αλj)

S(λ)

= ψ(z)

 k∑
j=1

(1− λj z̄j)
∏
i 6=j

(1− ᾱz̄i)(1− αλi)

ψ(λ)

= ψ(z)p(λ, z̄)ψ(λ).

�
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We have now reached the end of a chain of arguments which will give rise to a necessary condition

for the existence of a solution to the Main Problem described in the introduction. We have shown that

the existence of an interpolating function which satisfies the constraints of the main problem implies

the existence of a solution to the Γk problem. We then went on to show that the existence of such a

function implies that Γk is a complete spectral set for the commuting k-tuple of operators C1, . . . , Ck. In

particular, if h is a polynomial in k indeterminates which is bounded by 1 on Γk then h(C1, . . . , Ck) is a

contraction. We then considered those polynomials, h, which give rise to a contraction for all commuting

k-tuples of contractions and defined the functions g = 1− h ◦ π(z)h ◦ π(λ). These functions are positive

on contractions. The results of this section show that each g which is “atomic” in the sense that the

corresponding Hilbert space C is one dimensional, has a representation of the form (2.7). Finally, if g is

of the form (2.7) and is positive on Γk then the polynomial p defined in (2.8) must also be positive on

Γk.

In Chapter 3 we shall consider a more general class of polynomials. In Chapter 5 we will show that

these more general polynomials give rise to a necessary condition for the existence of a solution to the

interpolation problems described in the introduction.
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Chapter 3

Elementary Symmetric Polynomials

The aim of this chapter is to introduce a class of polynomials motivated by those at the end of Chapter

2. We show that polynomials in this class have a number of possible representations. The results of this

chapter are rather technical but they are essential for the work which follows. Both of the representations

which are proved in this chapter are used in the proof of the main result of Chapter 5, Theorem 5.1.5.

Many of the proofs in Chapters 6 and 7 are also simplified by the results in this chapter.

3.1 Definitions and Preliminaries

In this section we shall generalise the polynomial p, introduced at the end of Chapter 2 (see (2.8)), to

define a wider class of doubly symmetric polynomials. We also introduce a differential operator which

will be used to help simplify the forms of various polynomial representations.

Definition 13 For k ∈ N and α ∈ C we define the polynomial pk,α in 2k variables by

pk,α(λ, z̄) =
k∑

j=1

(1− |α|2λj z̄j)
∏
i 6=j

(1− ᾱz̄i)(1− αλi)

 . (3.1)

When |α| = 1 we see that pk,α coincides with the polynomial p in (2.8) .

Definition 14 For r and s satisfying 1 ≤ r, s ≤ k define the partial differential operator Dr,s as

Dr,s =
∂r+s

∂λ1 · · · ∂λr∂z̄1 · · · ∂z̄s
. (3.2)

The operators D0,s and Dr,0 are defined as the corresponding differential operators where differentiation

is carried out only with respect to the components of either z̄ or λ.
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By a multi-index m we mean a k-tuple of non-negative integers (m1, . . . ,mk) and for such a multi-

index, we define

λm = λ1
m1 . . . λk

mk

for all λ ∈ Ck. We shall refer to a multi-index m as binary if the components of m only take the values

zero and one. We define the following sets:

G = {(m1, . . . ,mk) ∈ Nk | i > j ⇒ mi ≤ mj}

B = {(m1, . . . ,mk) ∈ Nk |mi ∈ {0, 1}, i > j ⇒ mi ≤ mj}

= {(0, . . . , 0), (1, 0, . . . , 0), . . . , (1, . . . , 1)}.

Let θ : {0, 1, . . . , k} → B be the bijection which maps r to the element of B whose first r terms equal

one, and all the rest equal to zero.

Definition 15 Given a polynomial p in n indeterminates,

p(x1, . . . , xn) =
N∑

i=1

cix
ri1
1 · · ·xrin

n ,

define the leading power of p to be

max
i,j

ci 6=0

{rij}.

Recall that cr(λ) represents the rth elementary symmetric polynomial in the k co-ordinates of λ. That

is, cr(λ) is the sum of all monomials which can be formed by multiplying r distinct co-ordinates of λ

together.

Lemma 2.1.1 can be extended to doubly symmetric polynomials in the following way.

Lemma 3.1.1 Every doubly symmetric polynomial in the indeterminates λ and z̄ can be expressed as a

polynomial in the elementary symmetric polynomials of the components of λ and z̄. That is, if q(λ, z̄) is

doubly symmetric then there exists a polynomial p such that

q(λ, z̄) = p(c1(λ), . . . , ck(λ), c1(z̄), . . . , ck(z̄)) (3.3)

Proof. Let q be a doubly symmetric polynomial in the indeterminates λ and z̄. Then

q(λ, z̄) =
∑

m,n∈Nk

cmnλ
nz̄m.

=
∑

m∈Nk

z̄m

∑
n∈Nk

cmnλ
n

 .
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Since q is invariant under any permutation of z̄ it follows that the coefficients of z̄m and z̄mσ

are equal

for all σ ∈ Sk. Note that every m ∈ Nk is of the form wσ for some σ ∈ Sk and some w ∈ G. Thus, terms

may be grouped as follows

q(λ, z̄) =
∑
m∈G

(∑
σ∈Sk

z̄mσ

)∑
n∈Nk

c′mnλ
n


=
∑

n∈Nk

∑
m∈G

c′mn

(∑
σ∈Sk

z̄mσ

)
λn.

The coefficient c′mn may differ from the coefficient cmn since some terms are invariant under the action

of Sk. For example λ(1,1,1) = λ(1,1,1)σ

for all σ ∈ Sk. The polynomial q is symmetric in λ so using the

same argument as above we have

q(λ, z) =
∑

m,n∈G
c′′mn

(∑
σ∈Sk

z̄mσ

)(∑
σ∈Sk

λnσ

)
.

Applying Lemma 2.1.1 to the symmetric polynomials on the right hand side of this expression we infer

that there exist polynomials pm and qn such that

q(λ, z) =
∑

m,n∈G
c′′mnpm(c1(z̄), . . . , ck(z̄))qn(c1(λ), . . . , ck(λ)).

Let Λ = (c1(λ), . . . , ck(λ)) and Z = (c1(z̄), . . . ck(z̄)). Then the required polynomial p can be taken to be

p(Λ, Z) =
∑

m,n∈G
c′′mnpm(Z)qn(Λ).

�

The polynomial defined in (3.1) is doubly symmetric in λ and z̄ so we may write it as a polynomial in

the elementary symmetric polynomials of λ and z̄. However, pk,α is such that it may be expressed in two

simpler forms. A number of results are required to prove this fact.

3.2 Doubly Symmetric Polynomials

We shall say that an hereditary polynomial h contains z̄mλn if

h(λ, z̄) =
∑

i,j∈Nk

cjiz̄
jλi

and cmn 6= 0.
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Lemma 3.2.1 Fix k ∈ N. Let m and n be elements of B and let λ and z̄ be k-tuples of indeterminates.

Then a (not unique) doubly symmetric polynomial of elementary symmetric polynomials with fewest terms

which contains λnz̄m is cθ−1(n)(λ)cθ−1(m)(z̄).

Proof. Let θ−1(n) = r and θ−1(m) = s. Then λnz̄m is the product of r coefficients of λ with s

coefficients of z̄. The elementary symmetric polynomial cr(λ) has
(
k
r

)
terms, so the product cr(λ)cs(z̄)

has
(
k
r

)(
k
s

)
terms. Clearly, this polynomial contains λnz̄m since it contains all products of r coefficients

of λ with s coefficients of z̄.

Now, every doubly symmetric polynomial which contains λnz̄m also contains every term of the form

λnσ

z̄mτ

where σ, τ ∈ Sk. In other words it must contain every product of r coefficients of λ with s

coefficients of z̄. Since there are
(
k
r

)
ways of choosing r coefficients of λ and

(
k
s

)
ways of choosing s

coefficients of z̄, it follows that there are
(
k
r

)(
k
s

)
such products. Thus any polynomial which is doubly

symmetric and contains the term λnz̄m must have at least
(
k
r

)(
k
s

)
terms. Since cr(λ)cs(z̄) has this many

terms, it is clearly a doubly symmetric polynomial containing λnz̄m with the fewest possible terms.
�

Lemma 3.2.2 Let q be a doubly symmetric polynomial with leading power at most 1. Then q can be

written in the following form:

q(λ, z̄) =
k∑

r,s=0

brscr(λ)cs(z̄). (3.4)

Furthermore the coefficients brs can be evaluated as follows:

brs = Dr,sq(λ, z̄)|λ=z̄=0. (3.5)

Proof. If the leading power of q is zero, then the result is trivial. More generally the polynomial q is of

the form

q(λ, z̄) =
∑

n,m∈Nk

anmλ
nz̄m

for all λ, z̄ ∈ Ck. Pick any two multi-indices m and n in Nk and consider the coefficient of the monomial

λnz̄m in q(λ, z̄). Since q(λ, z̄) is doubly symmetric, the coefficient of λnz̄m is equal to that of λnσ

z̄mτ

for

every σ and τ in Sk. That is anm = anσmτ for all n and m in Nk and all σ and τ in Sk. It is obvious

that every m in Nk is the image of an element of G under an element of Sk. Now rewrite the formula for

q(λ, z̄) grouping terms with equal coefficients together, and possibly altering the coeffiecient anm to a′nm

to take into account terms whose multiindices are invariant under certain elements of Sk:

q(λ, z̄) =
∑

n,m∈G
a′nm

 ∑
σ,τ∈Sk

λnσ

z̄mτ

 .
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Clearly, the polynomial ∑
σ,τ∈Sk

λnσ

z̄mτ

is doubly symmetric— indeed it is a doubly symmetric polynomial with the fewest possible terms which

contains the term λnz̄m. Thus we may apply Lemma 3.1.1 and write it in the form given in (3.3). We

have

q(λ, z̄) =
∑

n,m∈G
a′nmpnm(c1(λ), . . . , ck(λ), c1(z̄), . . . ck(z̄)).

Thus, the coefficient of any monomial λnz̄m in q(λ, z̄) is equal to that of the polynomial pnm— a

polynomial of the elementary symmetric polynomials in λ and z̄ with the fewest terms which contains

λnz̄m.

Now, since q has leading power no greater than one, it follows that the coefficient of λnz̄m is zero

unless both n and m are binary. Therefore,

q(λ, z̄) =
∑

n,m∈B
a′nmpnm(c1(λ), . . . , ck(λ), c1(z̄), . . . ck(z̄)).

By virtue of Lemma 3.2.1, whenever n,m ∈ B we have

pnm = cθ−1(n)(λ)cθ−1(m)(z̄)

so we may make the substitutions n = θ(r) and m = θ(s) which give

q(λ, z̄) =
k∑

r,s=0

a′θ(r)θ(s)cr(λ)cs(z̄).

Finally we may relabel the constants aθ(r)θ(s) as brs to see that the first part of the result holds. Further-

more, we know that the coefficient of λ1 · · ·λr z̄1 · · · z̄s in q(λ, z) is equal to the coefficient of cr(λ)cs(z̄)

since this is a doubly symmetric polynomial with the fewest possible terms which contains the given

term. That is, brs is equal to the coefficient of λ1 · · ·λr z̄1 · · · z̄s in q(λ, z). Clearly, this is given by

Dr,sq(λ, z̄)|λ=z̄=0

and hence the result holds.
�
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The simplification of the polynomial pk,α defined in (3.1) requires another lemma.

Lemma 3.2.3 Let r and s be integers such that 0 ≤ r, s ≤ k. Then

Dr,s

k∏
i=1

(1− αλi)
k∏

l=1

(1− ᾱz̄l) = (−1)r+sαrᾱs
k∏

i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l).

Proof. Pick r and s such that 0 ≤ r, s ≤ k, then

Dr,s

k∏
i=1

(1− αλi)
k∏

l=1

(1− ᾱz̄l)

=
∂r+s

∂λ1 · · · ∂λr∂z̄1 · · · ∂z̄s

k∏
i=1

(1− αλi)
k∏

l=1

(1− ᾱz̄l)

=
r∏

i=1

∂

∂λi
(1− αλi)

s∏
l=1

∂

∂z̄l
(1− ᾱz̄i)

k∏
i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)

=
r∏

i=1

(−α)
s∏

l=1

(−ᾱ)
k∏

i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)

=(−α)r(−ᾱ)s
k∏

i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)

=(−1)r+sαrᾱs
k∏

i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l).

�

3.3 Two Representations of the Polynomial pk,α

In this Section we represent the polynomial pk,α defined in (3.1) in two simple forms. The first repre-

sentation depends on the results of the previous Section and a heavy dose of basic differentiation. The

second representation of pk,α follows from Lemma 1.3.1 and the similarity of the first representation to

the polynomial Pk, which was defined in (1.6).

Theorem 3.3.1 Let pk,α be defined as in (3.1) Then

pk,α(λ, z̄) =
k∑

r,s=1

(−1)r+sαrᾱs(k − (r + s))cr(λ)cs(z̄).

Proof. Since the leading power of pk,α(λ, z̄) is one, we may apply Lemma 3.2.2 and write pk,α as

pk,α(λ, z) =
k∑

r,s=0

brscr(λ)cs(z̄).
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The same result shows that it will suffice to prove

Dr,spk,α(λ, z̄)|λ=z̄=0 = (−1)r+sαrᾱs(k − (r + s))

for all r, s ∈ {0, . . . , k}. Without loss of generality we may assume that r < s.

Consider Dr,spk,α(λ, z̄),

Dr,spk,α(λ, z̄) = Dr,s

k∑
j=1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)



= Dr,s

r∑
j=1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)



+Dr,s

s∑
j=r+1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)



+Dr,s

k∑
j=s+1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)

 .

We now calculate the second component of this expression,

Dr,s

s∑
j=r+1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)



=
s∑

j=r+1

 ∂

∂z̄j
(1− |α|2λj z̄j)

∂r+s−1

∂λ1 · · · ∂λr∂z̄1 · · · ∂z̄j−1∂z̄j+1 · · · ∂z̄s

k∏
i=1
i 6=j

(1− ᾱz̄i)(1− αλi)


By virtue of Lemma 3.2.3,

Dr,s

s∑
j=r+1

(1− |α|2λj z̄j)
k∏

i=1
i 6=j

(1− ᾱz̄i)(1− αλi)



=
s∑

j=r+1

−αλjᾱ(−1)r+s−1αrᾱs−1
k∏

i=r+1
i 6=j

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)



=
s∑

j=r+1

λj(−1)r+sαr+1ᾱs
k∏

i=r+1
i 6=j

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)

 .
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Using an identical method on each of the remaining components of the sum, we have

Dr,spk,α(λ, z̄) =
r∑

j=1

(
−(−1)r+sαrᾱs

k∏
i=r+1

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)

)

+
s∑

j=r+1

λj(−1)r+sαr+1ᾱs
k∏

i=r+1
i 6=j

(1− αλi)
k∏

l=s+1

(1− ᾱz̄l)



+
k∑

j=s+1

(1− |α|2λj z̄j)(−1)r+sαrᾱs
k∏

i=r+1
i 6=j

(1− αλi)
k∏

l=s+1
l 6=j

(1− ᾱz̄l)

 .

Therefore,

Dr,spk,α(λ, z̄)|λ=z̄=0 = −r(−1)r+sαrᾱs + 0 + (k − s)(−1)r+sαrᾱs

= (−1)r+s(k − (r + s))αrᾱs.

Hence the result holds.
�

The simplification of pk,α may be carried a little further by virtue of the observation

αrcr(λ) = cr(αλ).

Corollary 3.3.2 Let pk,α be defined as in (3.1). Then

pk,α(λ, z̄) =
k∑

r,s=0

(−1)r+s(k − (r + s))cr(αλ)cs(ᾱz̄).

This completes our initial aim of finding an alternative representation of pk,α. Notice, in terms of the

polynomial Pk defined in (1.6) we have shown,

pk,α(λ, z̄) = Pk(c0(αλ), . . . , ck(αλ); c0(ᾱz̄), . . . , ck(ᾱz̄)). (3.6)

We now establish a second representation for pk,α using Lemma 1.3.1.

Theorem 3.3.3 The polynomial pk,α(λ, z̄) can be expressed as

pk,α(λ, z̄) =
1
k

[
Ak,α(z)Ak,α(λ)−Bk,α(z)Bk,α(λ)

]
for all λ, z̄ ∈ Ck where

Ak,α(λ) =
k∑

r=0

(−1)r(k − r)cr(αλ)
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and

Bk,α(λ) =
k∑

r=0

(−1)rrcr(αλ).

Proof. By Corollary 3.3.2, equation (3.6) and Lemma 1.3.1 we have,

pk,α(λ, z̄) =
k∑

r,s=0

(−1)r+s(k − (r + s))cr(αλ)cs(αz)

= Pk(c0(αλ), . . . , ck(αλ); c0(ᾱz̄), . . . , ck(ᾱz̄))

=
1
k

[Ak(c0(ᾱz̄), . . . , ck(ᾱz̄))Ak(c0(αλ), . . . , ck(αλ))]

−Bk(c0(ᾱz̄), . . . , ck(ᾱz̄))Bk(c0(αλ), . . . , ck(αλ))

=
1
k

[
Ak,α(z)Ak,α(λ)−Bk,α(z)Bk,α(λ)

]

�

The polynomials Ak,α and Bk,α play a vital role in Chapters 5 and 6. In Chapter 4 we study the

properties of Ak,α.
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Chapter 4

Ak,α has no Zeros in the Polydisc

In Theorem 3.3.3 we introduced two one-parameter pencils of polynomials of degree k in k variables.

These polynomials were denoted by Ak,α and Bk,α, where the parameter α ranges over D. We are

particularly interested in the behaviour of these pencils on the k-dimensional polydisc. This chapter

contains the proof of the most important of their characteristics, namely that Ak,α has no zeros in the

polydisc. Formally, we show that for k ∈ N, α ∈ D we have Ak,α(λ) 6= 0 for all λ ∈ Dk.

The cases k = 1 and k = 2 are trivial (see Theorem 4.1.1) and although the case k = 3 is more

complicated (Theorem 4.1.2), it fails to contain all the germs of generality. One must wait until k = 4

(Theorem 4.1.6) before the whole picture unfolds and for this reason the proofs of these special cases are

presented as a prelude to the full result (Theorem 4.2.2).

The difficult calculations of this chapter are essential to the proofs of the main results in Chapters

5, 6 and 7. A key step in the proofs of the main results of Chapters 5 and 6 will be to show that if a

certain hereditary polynomial is applied to a specific k-tuple of commuting operators and the resulting

operator is positive semi-definite then the same hereditary polynomial applied to certain compressions

of the k-tuple of operators will also yield a positive semi-definite operator. In general this is not true

and it only holds because the operators and hereditary polynomial in question are of a special form.

The results proved here will enable us to show that the polynomial under investigation is indeed of that

special form. We do this by showing that Ak,α has no zeros in the polydisc; this will allow us to show

that Ak,α(T ) is invertible for a certain k-tuple of commuting operators T .
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4.1 Special Cases

Theorem 4.1.1 Let α ∈ D. Then

A1,α(z) 6= 0 and A2,α(λ) 6= 0

for all z ∈ D and all λ ∈ D2.

Proof. The polynomial A1,α is identically 1. For k = 2 pick λ = (λ1, λ2) ∈ D2. We have

A2,α(λ) =
2∑

r=0

(−1)r(2− r)cr(αλ)

= 2− c1(αλ)

= 2− α(λ1 + λ2)

6= 0

since |α(λ1 + λ2)| ≤ |αλ1|+ |αλ2| < 2.
�

The next result demonstrates the increasing complexity as k increases and provides the first indications

of the method for a general proof.

Theorem 4.1.2 Let α ∈ D. Then

A3,α(z) 6= 0

for all z ∈ D3.

Proof. We shall argue by contradiction. Suppose there exists α ∈ D and z = (z1, z2, z3) ∈ D3 such that

A3,α(z) = 0. Let λ = (λ1, λ2, λ3) = (αz1, αz2, αz3) ∈ D3. Then

0 = 3− 2(λ1 + λ2 + λ3) + (λ1λ2 + λ2λ3 + λ3λ1)

= 3− 2(λ1 + λ2) + λ1λ2 − λ3(2− (λ1 + λ2)).

Therefore

λ3 =
3− 2(λ1 + λ2) + λ1λ2

2− (λ1 + λ2)
. (4.1)

Define F3 : D → C by

F3(z) =
3− 2λ1 − z(2− λ1)

2− λ1 − z
.

Theorem 4.1.1 shows that F3 is analytic on D. By (4.1) we have λ3 = F3(λ2). We shall derive a

contradiction by showing F3(D) ∩ D = Ø. Clearly F3 is a linear fractional transformation and as such
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will map the disc to some other disc in C. Call the centre of this new disc c. The pre-image of a point γ

under F3 will be denoted F−1
3 (γ). By inspection we have

F−1
3 (∞) = 2− λ1.

Since conjugacy is preserved by linear fractional transformations we have

F−1
3 (c) =

1
2− λ1

.

Therefore c, the centre of the image of D under F3 equals

F3

(
1

2− λ1

)
=

3− 2λ1 −
(

1
2−λ1

)
(2− λ1)

2− λ1 − 1
2−λ1

=
(3− 2λ1)(2− λ1)− (2− λ1)

|2− λ1|2 − 1

=
[(1− λ1) + (2− λ1)](2− λ1)− (2− λ1)

|2− λ1|2 − 1

=
|2− λ1|2 + (1− λ1)(2− λ1)− 1− (1− λ1)

|2− λ1|2 − 1

=
|2− λ1|2 + (1− λ1)(2− λ1 − 1)− 1

|2− λ1|2 − 1

=
|2− λ1|2 + |1− λ1|2 − 1

|2− λ1|2 − 1

= 1 +
|1− λ1|2

|2− λ1|2 − 1
.

We may therefore conclude that F3(D) is a circle centred at a c ∈ R such that c > 1. Notice also that

F3(1) = 1 so the point 1 lies on the boundary of F3(D). It follows that F3(D)∩D = Ø which contradicts

(4.1).
�

For a proof of the next special case, and indeed the general result, it is convenient to extend the definition

of elementary symmetric polynomials given in Chapter 1.

Definition 16 Define σn
r , the rth partial elementary symmetric polynomial on k indeterminates by

σn
r (λ1, . . . , λk) =

{
cr(λ1, . . . , λn) if k ≥ n ≥ r ≥ 0
0 otherwise.

When no ambiguity can arise, we omit the argument and write σn
r .

Notice that σn
r (λ1, . . . λk) = σn

r (λ1, . . . , λl) whenever k, l ≥ n ≥ r. For example

σ4
3(λ1, λ2, λ3, λ4, λ5, λ6) = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4 = σ4

3(λ1, λ2, λ3, λ4).

Also σk
r (λ1, . . . λk) = cr(λ1, . . . λk). With this definition, we can state a recursive formula for partial

elementary symmetric polynomials.
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Lemma 4.1.3 Let k, n, r be integers such that k ≥ n ≥ r. Then

σn
r (λ1, . . . , λk) = σn−1

r (λ1, . . . , λk) + λnσ
n−1
r−1 (λ1, . . . , λk). (4.2)

Proof. The result is trivial unless k ≥ n ≥ r > 0 so we shall consider only this case. The poly-

nomial σn−1
r (λ1, . . . , λk) contains every product of r indeterminates from (λ1, . . . , λn−1). That is, it

contains every possible product of r terms from (λ1, . . . , λn) which does not contain λn. Similarly,

σn−1
r−1 (λ1, . . . , λk) is the sum of every possible product of r−1 indetermines from (λ1, . . . , λn−1) which im-

plies that λnσ
n−1
r−1 (λ1, . . . , λk) is the sum of every possible product of r of the indeterminates (λ1, . . . , λn)

which contains λn. The RHS of (4.2) is therefore the sum of all possible products of r indeterminates

from (λ1, . . . , λn) which either contain, or do not contain the term λn. Therefore, it is the sum of all

possible products of r of the indetermintes (λ1, . . . , λn) which by definition is equal to σn
r (λ1, . . . , λk).

�

We also need to extend the definition of the polynomial Ak,α.

Definition 17 Let k, n ∈ N and α ∈ D. Define

An
k,α(λ) =

k∑
r=0

(−1)r(k − r)σn
r (αλ).

Notice that Ak,α(λ) = Ak
k,α(λ).

Lemma 4.1.4 The following identity holds

An
k,α(λ) = An−1

k,α (λ)− αλnA
n−1
k−1,α(λ).

Proof. Using Lemma 4.1.3 we have

An
k,α(λ) =

k∑
r=0

(−1)r(k − r)σn
r (αλ)

=
k∑

r=0

(−1)r(k − r)(σn−1
r (αλ) + αλnσ

n−1
r−1 (αλ))

= An−1
k,α (λ)− αλn

k∑
r=0

(−1)r−1(k − 1− (r − 1))σn−1
r−1 (αλ)

= An−1
k,α (λ)− αλn

k−1∑
s=0

(−1)s(k − 1− s))σn−1
s (αλ)

= An−1
k,α (λ)− αλnA

n−1
k−1,α(λ).
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Lemma 4.1.5 Let α ∈ D, k ∈ N. The following are equivalent:

(a) Ak,α(λ) 6= 0 for all λ ∈ Dk,

(b) Ak−1
k,α (λ)− zAk−1

k−1,α(λ) 6= 0 for all z ∈ D, λ ∈ Dk−1,

(c)

∣∣∣∣∣ A
k−1
k,α (λ)

Ak−1
k−1,α(λ)

∣∣∣∣∣ ≥ 1 for all λ ∈ Dk−1,

(d) |Ak−1
k,α (λ)|2 − |Ak−1

k−1,α(λ)|2 ≥ 0 for all λ ∈ Dk−1.

Proof. (a) ⇔ (b) follows trivially from Lemma 4.1.4 once we observe that An−1
k−1,α(λ) is independent of

λn.

(b) ⇔ (c) Suppose (b) does not hold, then there exists a z ∈ D and a λ ∈ Dk−1 such that

Ak−1
k,α (λ)− zAk−1

k−1,α(λ) = 0.

Equivalently, z ∈ D may be expressed as

z =
Ak−1

k,α (λ)

Ak−1
k−1,α(λ)

.

It follows, since |z| < 1 that (c) is false if and only if (b) is false. This completes the proof of (b) ⇔ (c).

(c) ⇔ (d) Suppose (c) holds, then for all λ ∈ Dk−1,∣∣∣∣∣ A
k−1
k,α (λ)

Ak−1
k−1,α(λ)

∣∣∣∣∣ ≥ 1

which is equivalent to,

|Ak−1
k,α (λ)| ≥ |Ak−1

k−1,α(λ)|

or alternatively,

|Ak−1
k,α (λ)|2 ≥ |Ak−1

k−1,α(λ)|2.

�

We may now prove the final special case of the main result of this section. The proof relies heavily on

previous results.

Theorem 4.1.6 For all α ∈ D, z ∈ D4 we have

A4,α(z) 6= 0.
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Proof. We shall argue by contradiction. Suppose there exists α ∈ D and z ∈ D4 such that 0 = A4,α(z).

Let λ = αz. Then

0 = A4,α(z)

= 4− 3σ4
1(λ) + 2σ4

2(λ)− σ4
3(λ),

and so, by Lemma 4.1.3,

0 = 4− 3(σ3
1 + λ4σ

3
0) + 2(c32 + λ4σ

3
1)− (σ3

3 + λ4σ
3
2)

= 4− 3σ3
1 + 2c32 − σ3

3 − λ4(3− 2σ3
1 + σ3

2).

Therefore,

λ4 =
4− 3σ3

1 + 2c32 − σ3
3

3− 2σ3
1 + σ3

2

(4.3)

=
4− 3(σ2

1 + λ3) + 2(σ2
2 + λ3σ

2
1)− σ2

2

3− 2(σ2
1 + λ3) + (σ2

2 + λ3σ3
1)

=
4− 3σ2

1 + 2σ2
2 − λ3(3− 2σ2

1 + σ2
2)

3− 2σ2
1 + σ2

2 − λ3(2− σ2
1)

= F4(λ3) (4.4)

where F : D → C is defined by

F4(x) =
4− 3σ2

1 + 2σ2
2 − x(3− 2σ2

1 + σ2
2)

3− 2σ2
1 + σ2

2 − x(2− σ2
1)

.

The denominator of this linear fractional transformation can be written as

A2
3,α(z)− xA2

2,α(z)

which is non-zero by Theorem 4.1.2 and Lemma 4.1.5. Thus, F4 is an analytic linear fractional transfor-

mation on the disc, and F4(D) is a disc. Let c represent the centre of F4(D) and write the pre-image of

γ under F4 as F−1
4 (γ). By inspection,

F−1
4 (∞) =

3− 2σ2
1 + σ2

2

2− σ2
1

.

Therefore, since conjugacy is preserved,

F−1
4 (c) =

2− σ2
1

3− 2σ2
1 + σ2

2

.
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The centre of F4(D) is equal to

F4

(
2− σ2

1

3− 2σ2
1 + σ2

2

)

=
4− 3σ2

1 + 2σ2
2 −

(
2−σ2

1

3−2σ2
1+σ2

2

)
(3− 2σ2

1 + σ2
2)

3− 2σ2
1 + σ2

2 −
(

2−σ2
1

3−2σ2
1+σ2

2

)
(2− σ2

1)

=
(4− 3σ2

1 + 2σ2
2)(3− 2σ2

1 + σ2
2)− (2− σ2

1)(3− 2σ2
1 + σ2

2)
|3− 2σ2

1 + σ2
2 |2 − |2− σ2

1 |2

=
[(3− 2σ2

1 + σ2
2) + (1− σ2

1 + σ2
2)](3− 2σ2

1 + σ2
2)− (2− σ2

1)(3− 2σ2
1 + σ2

2)
|3− 2σ2

1 + σ2
2 |2 − |2− σ2

1 |2

=
|3− 2σ2

1 + σ2
2 |2 + (1− σ2

1 + σ2
2)(3− 2σ2

1 + σ2
2)− (2− σ2

1)(3− 2σ2
1 + σ2

2)
|3− 2σ2

1 + σ2
2 |2 − |2− σ2

1 |2

=
|3− 2σ2

1 + σ2
2 |2 + (1− σ2

1 + σ2
2)[(1− σ2

1 + σ2
2) + (2− σ2

1)]− (2− σ2
1)(3− 2σ2

1 + σ2
2)

|3− 2σ2
1 + σ2

2 |2 − |2− σ2
1 |2

=
|3− 2σ2

1 + σ2
2 |2 + |1− σ2

1 + σ2
2 |2 + (1− σ2

1 + σ2
2)(2− σ2

1)− (2− σ2
1)(3− 2σ2

1 + σ2
2)

|3− 2σ2
1 + σ2

2 |2 − |2− σ2
1 |2

=
|3− 2σ2

1 + σ2
2 |2 + |1− σ2

1 + σ2
2 |2 − (2− σ2

1)(2− σ2
1)

|3− 2σ2
1 + σ2

2 |2 − |2− σ2
1 |2

=
|3− 2σ2

1 + σ2
2 |2 + |1− σ2

1 + σ2
2 |2 − |2− σ2

1 |2

|3− 2σ2
1 + σ2

2 |2 − |2− σ2
1 |2

= 1 +
|1− σ2

1 + σ2
2 |2

|3− 2σ2
1 + σ2

2 |2 − |2− σ2
1 |2

= 1 +
|1− σ2

1 + σ2
2 |2

|A2
3,α(λ)|2 − |A2

2,α(λ)|2
.

But |A2
3,α(λ)|2 − |A2

2,α(λ)|2 ≥ 0 by Theorem 4.1.2 and Lemma 4.1.5. Thus, c ∈ R and c ≥ 1.

Notice also that

F4(1) =
4− 3σ2

1 + 2σ2
2 − 3 + 2σ2

1 − σ2
2

3− 2σ2
1 + σ2

2 − 2 + σ2
1

=
1− σ2

1 + σ2
2

1− σ2
1 + σ2

2

= 1.

It follows that 1 lies on the boundary of F4(D) and therefore that D∩F4(D) = Ø. This contradicts (4.3)

and the result follows.
�
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4.2 The General Case

A recurring technique in the simplification of the expressions in the above proofs has been the subtraction

or addition of various alternating polynomials, namely polynomials of the form 1 − σ2
1 + σ2

2 . This

observation plays a key role in the general result and gives rise to the following definition and Lemma.

Definition 18 For n ≤ k define,

ηn
α(λ1, . . . , λk) =

n∏
i=1

(1− αλi) =
k∑

r=0

(−1)rσn
r (αλ1, . . . αλk).

Polynomials of this type will be described as alternating.

Lemma 4.2.1 For α ∈ D, k > n, and λ ∈ Dk,

An
k,α(λ) = ηn

α(λ) +An
k−1,α(λ).

Proof. By definition we have

An
k,α(λ) =

k∑
r=0

(−1)r(k − r)σn
r (αλ)

=
k∑

r=0

(−1)r(k − 1− r)σn
r (αλ) +

k∑
r=0

(−1)rσn
r (αλ)

=
k−1∑
r=0

(−1)r(k − 1− r)σn
r (αλ) +

k∑
r=0

(−1)rσn
r (αλ)

= An
k−1,α(λ) + ηn

α(λ).

�

We may now prove the main result of this section.

Theorem 4.2.2 For k ∈ N, α ∈ D,

Ak,α(λ) 6= 0 (4.5)

for all λ ∈ Dk.

Proof. We shall argue by induction. Theorems 4.1.1, 4.1.2 and 4.1.6 show that the result holds when

k = 1, 2, 3, 4. Assume the result holds for k − 1, namely

Ak−1,α(λ) 6= 0. (4.6)
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By Lemma 4.1.5, this induction hypothesis is equivalent to each of the following.

Ak−2
k−1,α(λ)− zAk−2

k−2,α(λ) 6= 0 for all z ∈ D, λ ∈ Dk−2, (4.7)

|Ak−2
k−1,α(λ)|2 − |Ak−2

k−2,α(λ)|2 ≥ 0 for all λ ∈ Dk−2. (4.8)

We shall prove

Ak,α(λ) 6= 0 (4.9)

by assuming the contrary and arriving at a contradiction.

Accordingly, assume there exists α ∈ D and z ∈ Dk such that

Ak,α(z) = 0.

Then, by Lemma 4.1.4,

0 = Ak−1
k,α (z)− αzkA

k−1
k−1,α(z).

Therefore, since Ak−1
k−1,α(z) 6= 0 by (4.6),

αzk =
Ak−1

k,α (z)

Ak−1
k−1,α(z)

which implies ∣∣∣∣∣ A
k−1
k,α (z)

Ak−1
k−1,α(z)

∣∣∣∣∣ < 1. (4.10)

Define Fk : D → C by

Fk(x) =
Ak−2

k,α (z)− xAk−2
k−1,α(z)

Ak−2
k−1,α(z)− xAk−2

k−2,α(z)
.

Then

Fk(αzk−1) =
Ak−2

k,α (z)− αzk−1A
k−2
k−1,α(z)

Ak−2
k−1,α(z)− αzk−1A

k−2
k−2,α(z)

by Lemma 4.1.4,

=
Ak−1

k,α (z)

Ak−1
k−1,α(z)

.

The inequality (4.10) is therefore equivalent to |Fk(αzk−1)| < 1. We shall show this is impossible by

proving Fk(D) ∩ D = Ø. The linear fractional transformation Fk is analytic on D by the induction

hypothesis (4.7), thus Fk(D) is a disc. Let c represent the centre of ths disc and recall that linear

fractional transformations preserve conjugacy. We denote the pre-image of γ under Fk by F−1
k (γ). By

inspection,

F−1
k (∞) =

Ak−2
k−1,α(z)

Ak−2
k−2,α(z)
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and so

F−1
k (c) =

(
Ak−2

k−2,α(z)

Ak−2
k−1,α(z)

)−
.

Repeated use of Lemma 4.2.1 shows the centre of the disc Fk(D) is equal to

Fk

(
Ak−2

k−2,ᾱ(z̄)

Ak−2
k−1,ᾱ(z̄)

)

=
Ak−2

k,α (z)−
(

Ak−2
k−2,ᾱ(z̄)

Ak−2
k−1,ᾱ(z̄)

)
Ak−2

k−1,α(z)

Ak−2
k−1,α(z)−

(
Ak−2

k−2,ᾱ(z̄)

Ak−2
k−1,ᾱ(z̄)

)
Ak−2

k−2,α(z)

=
Ak−2

k,α (z)Ak−2
k−1,ᾱ(z̄)−Ak−2

k−2,ᾱ(z̄)Ak−2
k−1,α(z)

Ak−2
k−1,α(z)Ak−2

k−1,ᾱ(z̄)−Ak−2
k−2,ᾱ(z̄)Ak−2

k−2,α(z)

=
[Ak−2

k−1,α(z) + ηk−2
α (z)]Ak−2

k−1,ᾱ(z̄)−Ak−2
k−2,ᾱ(z̄)Ak−2

k−1,α(z)

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

=
|Ak−2

k−1,α(z)|2 + ηk−2
α (z)Ak−2

k−1,ᾱ(z̄)−Ak−2
k−2,ᾱ(z̄)Ak−2

k−1,α(z)

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

=
|Ak−2

k−1,α(z)|2 + ηk−2
α (z)[ηk−2

ᾱ (z̄) +Ak−2
k−2,ᾱ(z̄)]−Ak−2

k−2,ᾱ(z̄)Ak−2
k−1,α(z)

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

=
|Ak−2

k−1,α(z)|2 + |ηk−2
α (z)|2 +Ak−2

k−2,ᾱ(z̄)[ηk−2
α (z)−Ak−2

k−1,α(z)]

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

=
|Ak−2

k−1,α(z)|2 + |ηk−2
α (z)|2 − |Ak−2

k−2,α(z)|2

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

= 1 +
|ηk−2

α (z)|2

|Ak−2
k−1,α(z)|2 − |Ak−2

k−2,α(z)|2

≥ 1

by (4.8).

Since Fk preserves conjugacy, Fk(1) will lie on the boundary of Fk(D). Now,

Fk(1) =
Ak−2

k,α (z)−Ak−2
k−1,α(z)

Ak−2
k−1,α(z)−Ak−2

k−2,α(z)

=
ηk−2

α (z)
ηk−2

α (z)

=
ηk−2

α (z)
ηk−2

α (z)

= 1.

It follows that F (D) ∩ D = Ø which contradicts (4.10); therefore (4.9) holds. The result follows by the

principle of induction.
�
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Corollary 4.2.3 Let k ∈ N. If α ∈ D and λ ∈ Dk
or α ∈ D and λ ∈ Dk then

Ak,α(λ) 6= 0.

Proof. If α and λ satisfy either of the conditions in the statement of the result, then there exists β ∈ D

and ζ ∈ Dk such that αλ = βζ. The result then follows by Theorem 4.2.2.
�

After the completion of this Chapter, Dr. Michael White suggested that the results proved above could be

demonstrated more simply by noticing that Ak,α is similar to a derivative with respect to α. He suggests

that one could then employ the Gauss-Lucas Theorem [17, Exercise 4.50] to draw the conclusions given

above.
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Chapter 5

A Necessary Condition for Spectral

Interpolation

5.1 Main Theorem

For each natural number k we shall define a polynomial ρk. In terms of this polynomial, we shall give a

necessary condition for the solution of the problem of interpolating into Γk. Recall the definition of Pk

given in (1.6):

Pk(x0, . . . , xk; y0, . . . , yk) =
k∑

r,s=0

(−1)r+s(k − (r + s))ysxr.

Definition 19 Let the hereditary polynomial ρk be defined as follows:

ρk(x1, . . . , xk; y1, . . . , yk) = Pk(1, x1, . . . , xk; 1, y1, . . . , yk) (5.1)

By virtue of (3.6), and the fact that c0(z) = 1, we have

pk,α(λ, λ̄) = Pk(c0(αλ), . . . , ck(αλ); c0(αλ), . . . , ck(αλ)) = ρk(c1(αλ), . . . , ck(αλ)). (5.2)

This observation plays a key role in the proof of our Main Theorem (Theorem 5.1.5).

The proofs of Lemmas 5.1.3 and 5.1.4 are extensions of the proofs in the case k = 2, which was dealt

with by Agler and Young in [6]. The proofs rely heavily on the following well known theorems. The

first theorem is due to Arveson and the second to Stinespring. Proofs of both results can be found in [8]

where they are labelled Theorems 1.1.1 and 1.2.9. The version of Arveson’s result given below relies on

the remarks immediately preceeding Proposition 1.2.11 of [8]. The original proof of Stinespring’s result

is in [35].
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Theorem 5.1.1 (Arveson’s Extension Theorem)

Let C be a C∗-algebra with identity and let A be a linear subspace of C containing the identity. If H is

a Hilbert space and θ : A → L(H) is a completely contractive linear map then there exists a completely

contractive linear map Θ : C → L(H) such that θ = Θ|A.

Theorem 5.1.2 (Stinespring’s Theorem) Let C be a C∗-algebra with identity, H be a Hilbert space,

and assume Θ : C → L(H) is a completely positive linear map. Then there exists a Hilbert space K, a

bounded linear map V : H → K and a representation π : C → L(K) such that Θ(x) = V ∗π(x)V for all

x ∈ C.

Having recalled the above results, we are in a position to extend the results of Agler and Young.

Recall Definition 7, where we defined the joint spectrum of a k-tuple of commuting operators.

Definition 20 Define the distinguished boundary of Γk as

bΓk = {π(z) | z ∈ Tk}.

Definition 21 For X ⊂ Ck, X compact, A(X) denotes the algebra of continuous functions on X which

are analytic on the interior of X.
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Lemma 5.1.3 Let (X1, . . . , Xk) be a commuting k-tuple of operators on a Hilbert space H such that

σ(X1, . . . Xk) ⊂ Γk. If Γk is a complete spectral set for (X1, . . . , Xk) then there exist Hilbert spaces

H−,H+ and a k-tuple of commuting normal operators (X̃1, . . . , X̃k) on K def
= H− ⊕ H ⊕ H+ such that

σ(X̃1, . . . , X̃k) is contained in the distinguished boundary of Γk and each X̃j is expressible by an operator

matrix of the form

X̃j ∼
[∗ ∗ ∗
0 Xj ∗
0 0 ∗

]
(5.3)

with respect to the orthogonal decomposition K = H− ⊕H⊕H+.

Proof. Suppose that Γk is a complete spectral set for a commuting k-tuple of operators (X1, . . . , Xk).

That is

‖h(X1, . . . , Xk)‖L(H) ≤ sup
z∈Γk

‖h(z)‖ (5.4)

for all analytic matrix valued functions h.

Let θ : Pk → L(H) be the unital representation of the algebra Pk of polynomials in k variables defined

by θ(h) = h(X1, . . . , Xk). Inequality (5.4) states that θ is completely contractive and therefore uniformly

continuous. Hence θ has a completely contractive extension to A(Γk). The space A(Γk) is embedded in

the C∗-algebra C(Tk) of continuous functions on the k-torus by

f ∈ A(Γk) 7→ f ◦ π ∈ C(Tk).

By Theorem 5.1.1, θ extends to a completely contractive unital linear mapping Θ : C(Tk) → L(H). By

Theorem 5.1.2, there exists a Hilbert space K and a unital representation Φ : C(Tk) → L(K) such that

H ⊂ K and

Θ(f) = PHΦ(f)|H

for all f ∈ C(Tk), where PH is the orthogonal projection from K to H. Thus, if f ∈ A(Γk) we have

f(X1, . . . , Xk) = θ(f) = Θ(f) = PHΦ(f ◦ π)|H.

Let fj represent the jth co-ordinate function, i.e. fj(z) = zj , j = 1, . . . , k. Then for j = 1, . . . , k,

fj ◦ π(λ) = cj(λ)

and

Xj = fj(X1, . . . , Xk) = θ(fj) = Θ(fj ◦ π) = Θ(cj(λ)) = PHΦ(cj(λ))|H.

For j = 1, . . . , k, let

X̃j = Φ(cj(λ)).
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Observe that the operators X̃1, . . . , X̃k lie in the commutative *-algebra Φ(C(Tk)). The X̃j are therefore

commuting normal operators with X1, . . . , Xk as their compressions to H. We may suppose that the

smallest subspace of K which contains H and reduces each X̃j is K. The joint spectrum of the k-tuple of

elements (c1(λ), . . . , ck(λ)) in C(Tk) is the range of this k-tuple of functions in Tk. The range of these

functions is exactly the distinguished boundary of Γk. Next we may apply the unital representation Φ

to deduce that σ(X̃1, . . . , X̃k) ⊂ bΓk.

We shall construct spaces H− and N which are invariant for each Xj and satisfy H− ⊂ N ⊂ K and

H = N 	H−. Let

H− = {x ∈ K | f(X̃1, . . . , X̃k)x ⊥ H for every polynomial f}.

Clearly H− is invariant for each Xj , j = 1, . . . , k, and H− ⊥ H. Let N = H− ⊕ H. Then N is also

invariant for each Xj . We can prove this by considering any element x ∈ H and showing that, for each

j ∈ {1, . . . , k},

X̃jx− PHX̃jx ∈ H−.

Suppose f is any polynomial in k variables; then

PH{f(X̃1, . . . , X̃k)(X̃jx− PHX̃jx)} = PHf(X̃1, . . . , X̃k)X̃jx− f(X̃1, . . . , X̃k)PHX̃jx

= f(X1, . . . , Xk)Xjx− f(X1, . . . , Xk)Xjx

= 0.

Thus, X̃jx − PHX̃jx ∈ H− and therefore N is invariant for each Xj as claimed. Clearly, Xj has the

form (5.3) with respect to the decomposition K = H− ⊕H⊕N⊥ so we may take H+ = N⊥ to see that

the result holds.
�

Lemma 5.1.4 which follows is the key tool in the proof of the Main Theorem of this chapter (Theorem

5.1.5). The results of Chapter 4 are crucial to the proof of Lemma 5.1.4. Without the technical results

of that chapter the simplification which Lemma 5.1.4 permits would not be possible and the proof of

Theorem 5.1.5 would be unattainable.

Lemma 5.1.4 Let (X1, . . . , Xk) be a commuting k-tuple of operators on a Hilbert space H such that

σ(X1, . . . Xk) ⊂ Γk. If Γk is a complete spectral set for (X1, . . . , Xk) and

ρk(αc1(λ1, . . . , λk), . . . , αkck(λ1, . . . , λk)) ≥ 0

for |λj | = 1, α ∈ D then

ρk(αX1, . . . , α
kXk) ≥ 0
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for all α ∈ D.

Proof. Define K and X̃j as in Lemma 5.1.3. Since the X̃j are normal and commute it follows that they

generate a commutative C∗-subalgebra A of L(K). The space C(σ(X̃1, . . . , X̃k)) can be identified with

A by the Gelfand transform. By this transform, X̃j can be identified with the jth coordinate function.

An operator is positive semi-definite if and only if its Gelfand transform is non-negative. Thus, since

σ(X̃1, . . . , X̃k) ⊂ bΓk and

ρk(αc1(λ1, . . . , λk), . . . , αkck(λ1, . . . , λk)) ≥ 0

for all (α, (λ1, . . . , λk)) ∈ D× Tk it follows that

ρk(αX̃1, . . . , α
kX̃k) ≥ 0 (5.5)

for all α ∈ D. We wish to show

ρk(αX1, . . . , α
kXk) ≥ 0 (5.6)

for all α ∈ D.

To simplify the following calculations we define

Ã =
k∑

r=0

(−1)r(k − r)αrX̃r,

A =
k∑

r=0

(−1)r(k − r)αrXr,

B̃ =
k∑

r=0

(−1)rrαrX̃r,

B =
k∑

r=0

(−1)rrαrXr.

Note that

Ã ∼
[∗ ∗ ∗
0 A ∗
0 0 ∗

]
, B̃ ∼

[∗ ∗ ∗
0 B ∗
0 0 ∗

]
. (5.7)

with respect to the orthogonal decomposition K = H− ⊕ H ⊕ H+. By Lemma 1.3.1, equation (5.5) is

equivalent to,

kρk(αX̃1, . . . , α
kX̃k) = Ã∗Ã− B̃∗B̃ ≥ 0 (5.8)

for all α ∈ D.
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We next show that Ã is invertible. Recall σ(X̃1, . . . , X̃k) is contained in the distinguished boundary

of Γk. Thus, for all α ∈ D,

σ(Ã) = σ

(
k∑

r=0

(−1)r(k − r)αrX̃r

)

⊂

{
k∑

r=0

(−1)r(k − r)αrcr(λ) | λ ∈ Tk

}

⊂

{
k∑

r=0

(−1)r(k − r)cr(αλ) | λ ∈ Dk

}

=
{
Ak,α(λ) | λ ∈ Dk

}
.

Corollary 4.2.3 states that Ak,α(λ) 6= 0 for all α ∈ D and λ ∈ Dk
. Therefore, for α ∈ D,

0 /∈ σ(Ã)

and Ã is invertible. The inequality in (5.8) is equivalent to

1− Ã∗−1B̃∗B̃Ã−1 ≥ 0.

That is,

‖B̃Ã−1‖ ≤ 1.

In view of (5.7), A must be invertible and

Ã−1 ∼
[∗ ∗ ∗
0 A−1 ∗
0 0 ∗

]
.

Hence

B̃Ã−1 ∼
[∗ ∗ ∗
0 BA−1 ∗
0 0 ∗

]
.

Thus, BA−1 is the compression to H of B̃Ã−1, and so

‖BA−1‖ ≤ 1.

It follows in turn that

1−A∗−1B∗BA−1 ≥ 0,

A∗A−B∗B ≥ 0,

and so

ρk(αX1, . . . , α
kXk) ≥ 0

for α ∈ D and, by continuity, for all α ∈ D. That is, (5.5) implies (5.6).
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�

We may now prove our Main Theorem. It will lead to a necessary condition for a solution to the

Main Problem to exist.

Theorem 5.1.5 Let (X1, . . . , Xk) be a commuting k-tuple of operators on a Hilbert space H such that

σ(X1, . . . Xk) ⊂ Γk. If Γk is a complete spectral set for (X1, . . . , Xk) then

ρk(αX1, . . . , α
kXk) =

k∑
r,s=0

(−1)r+s(k − (r + s))ᾱsαrX∗
rXs ≥ 0

for all α ∈ D.

Proof. By Lemma 5.1.4 it will suffice to show that

ρk(αc1(λ), . . . , αkck(λ)) ≥ 0

for all α ∈ D and all λ ∈ Tk. However,

ρk(αc1(λ), . . . , αkck(λ)) = ρk(c1(αλ), . . . , ck(αλ)),

so that

ρk(αc1(λ), . . . , αkck(λ)) = pk,α(λ, λ̄)

by (5.2). That is, since λj ∈ T,

ρk(αc1(λ), . . . , αkck(λ)) = (1− |α|2)
k∑

j=1

∏
i 6=j

|1− αλi|2

This is non-negative for all α ∈ D and so the result holds.
�

5.2 Associated Results

The Main Theorem leads directly to a necessary condition for the existence of an interpolating function

from D to Γk.

Corollary 5.2.1 Let n ∈ N. Choose n distinct points zj in D and n points (c(j)1 , . . . , c
(j)
k ) in Γk. If there

exists an analytic function φ : D → Γk such that φ(zj) = (c(j)1 , . . . , c
(j)
k ) then

ρk(αC1, . . . , α
kCk) ≥ 0
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for all α ∈ D, where C1, . . . , Ck are the operators defined by

Ci = diag{c(1)i , . . . , c
(n)
i }

on the Hilbert space

M = Span{Kz1 , . . . ,Kzn}.

Proof. Suppose such a φ exists. Theorem 2.1.3 implies that Γk is a complete spectral set for the

commuting k-tuple of operators (C1, . . . , Ck). If this is the case then the given polynomial is positive

semi-definite by an application of Theorem 5.1.5.
�

This result may be converted to a partial solution to the Main Problem with the necessary condition in

the more familiar form of the positivity of Pick matrices.

Corollary 5.2.2 Let n ∈ N. Choose n distinct points zj in D and n matrices Wj in Mk(C). If there

exists an analytic function φ : D → Mk(C) such that φ(zj) = Wj and σ(φ(z)) ⊂ D for all z ∈ D then, for

every α ∈ D, [∑k
r,s=0(−1)r+s(k − (r + s))cr(αWj)cs(αWi)

1− zizj

]n

i,j=1

≥ 0. (5.9)

Proof. Suppose an analytic function φ : D → Mk(C) is such that φ(zj) = Wj for j = 1, . . . , n. The

composition of the analytic functions φ and a (defined in Definition 5) is also analytic. Let Φ : D → Γk

be defined as

Φ = a ◦ φ.

That is, Φ is an analytic function which maps the point zj in the disk to the point a(Wj) = (c(j)1 , . . . c
(j)
k )

in Γk. It follows from Corollary 5.2.1 that

ρk(αC1, . . . , α
kCk) ≥ 0

for all α ∈ D, where Cj is defined as in (2.1). This is the same as

[
〈ρk(αC1 . . . , α

kCk)Kzi ,Kzj 〉
]n
i,j=1

≥ 0. (5.10)

for all α ∈ D.
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Now,

〈ρk(αC1, . . . , α
kCk)Kzi

,Kzj
〉

=

〈(
k∑

r,s=0

(−1)r+s(k − (r + s))αrᾱsC∗sCr

)
Kzi

,Kzj

〉

=
k∑

r,s=0

(−1)r+s(k − (r + s))αrᾱs〈C∗sCrKzi
,Kzj

〉

=
k∑

r,s=0

(−1)r+s(k − (r + s))αrᾱs〈CrKzi
, CsKzj

〉

=
k∑

r,s=0

(−1)r+s(k − (r + s))αrᾱs〈cr(Wi)Kzi , cs(Wj)Kzj 〉

=
k∑

r,s=0

(−1)r+s(k − (r + s))αrᾱscr(Wi)cs(Wj)〈Kzi ,Kzj 〉

=
k∑

r,s=0

(−1)r+s(k − (r + s))cr(ᾱWi)cs(ᾱWj)Kzi(zj)

= (1− zizj)−1
k∑

r,s=0

(−1)r+s(k − (r + s))cr(ᾱWi)cs(ᾱWj).

Therefore (5.10) holds for all α ∈ D if and only if (5.9) holds for all α ∈ D.
�
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In the next section we illustrate a use of this result in the simplest case not studied elsewhere. We

consider the special case of the Main Problem with 2 interpolation points and 3× 3 target matrices.

5.3 An Illustrative Example

Before we present an example demonstrating the use of the results in the previous section we shall

simplify their statements by introducing some new notation.

Suppose W1 and W2 are 3× 3 complex matrices. Let

sj = c1(Wj), bj = c2(Wj), pj = c3(Wj). (5.11)

Using this notation we will specialise Corollary 5.2.2 to the relevant result for a two point interpolation

problem whose target values are 3× 3 matrices.

Corollary 5.3.1 Let W1 and W2 be 3×3 complex matrices and suppose z1, z2 ∈ D. Define sj , bj , pj , j =

1, 2 as in (5.11). If there exists an analytic function F : D → M3(C) such that F (z1) = W1, F (z2) = W2

and σ(F (D)) ⊂ D then
3[1− |α|6pj p̄i] + 2[α(|α|4pj b̄i − sj) + ᾱ(|α|4bj p̄i − s̄i)]

+[α2(bj − |α|2sj p̄i) + α2(b̄i − |α|2sip̄j) + |α|2(sj s̄i − bj b̄i)]
1− z̄izj


2

i,j=1

≥ 0

for all α ∈ D.

Example 1 Let

W1 =
[0 1 0
0 0 1
0 0 0

]
, W2 =

[0 0 0
1 0 0
0 1 3/4

]
.

Does there exist an analytic function F : D → M3(C) such that

σ(F (D)) ⊂ D (5.12)

and

F (0) = W1, F ( 1
4 ) = W2? (5.13)

The eigenvalues of W1 and W2 are (0, 0, 0) and ( 3
4 , 0, 0) respectively, so that σ(Wj) ⊂ D. In the

notation of (5.11) we have

s1 = b1 = p1 = b2 = p2 = 0, s2 =
3
4
.
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Consider the Pick-type matrix

Mα =


3[1− |α|6pj p̄i] + 2[α(|α|4pj b̄i − sj) + ᾱ(|α|4bj p̄i − s̄i)]

+[α2(bj − |α|2sj p̄i) + α2(b̄i − |α|2sip̄j) + |α|2(sj s̄i − bj b̄i)]
1− z̄izj


2

i,j=1

=

[ 3 3− 2αs2
3− 2αs2

3− 2(αs2 + αs2) + (αs2)(αs2)
1− |z2|2

]

=

 3 3− 3
2 ᾱ

3− 3
2α

16(3− 3 Reα+ 9
16 |α|

2)
15

 .
Now,

detMα =
3× 16

15
(3− 3 Reα+

9
16
|α|2)− (3− 3

2
ᾱ)(3− 3

2
)

=
48
5
− 48

5
Reα+

9
5
|α|2 − 9 + 9 Reα− 9

4
|α|2

=
3
5
− 3

5
Reα− 9

20
|α|2.

Therefore detM1 < 0. It follows that M1 is not a positive semi-definite matrix. Corollary 5.3.1 states

that if there exists an analytic function satisfying (5.12) and (5.13) then Mα ≥ 0 for all α ∈ D. We may

therefore conclude that no such function exists.

Given the results of this chapter, it is natural to wonder whether the necessary conditions established

are also sufficient. Unfortunately a number of the links in the chain of implications which are used to

prove the above results are only ’one-way’. Agler and Young have succeeded in showing that a number

of these are equivalences in the case k = 2. Sadly, from the point of view of this work, whenever k > 2

it is impossible to use the Commutant Lifting Theorem, which was the main tool of Agler and Young in

the proofs of all of their ‘backwards’ implications. A more detailed discussion of sufficiency and related

issues can be found in Chapter 8 along with relevant references to the work of Agler and Young.
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Chapter 6

A Refined Necessary Condition for

Spectral Interpolation

In Chapter 5 we demonstrated how the technical results of the earlier chapters give rise to a concrete

necessary condition for spectral interpolation. In this chapter we show how the same technical results

give rise to another necessary condition which is (potentially) stronger and only slightly more difficult to

implement. Theorem 5.1.5 can be deduced immediately from the work in this chapter.

The results of Chapter 5 rely on the fact that Γk is a complete spectral set for a certain k-tuple

of operators if an interpolating function satisfying the required conditions is to exist. The work which

follows uses a very similar approach. We show that D×Γk must be a complete spectral set for a certain

(k + 1)-tuple of operators if a suitable Γk-valued function is to exist and satisfy certain interpolating

conditions.

As one might expect, just as the motivation for the two necessary conditions is similar, so are the

methods of proof. The reader will notice that all of the proofs in this chapter are extensions of the

corresponding results in Chapter 5. For completeness all proofs are given in full.

If D×Γk is a complete spectral set for a commuting (k+1)-tuple of operators (A,C1, . . . , Ck) then D

is a complete spectral set for A and Γk is a complete spectral set for (C1, . . . , Ck). The converse, however,

does not hold. In [20] Crabb and Davie construct a triple of commuting contractions (T1, T2, T3) and a

symmetric polynomial f bounded by 1 on D3 such that

‖f(T1, T2, T3)‖ > 1.

Since the polynomial f is symmetric, there exists a polynomial g which is bounded by 1 on D× Γ2 such
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that

f(x1, x2, x3) = g(x1, x2 + x3, x2x3).

Then (T2 + T3, T2T3) is a complete Γ2-contraction, but g(T1, T2 + T3, T2T3) is not a contraction and so

(T1, T2 + T3, T2T3) is not a complete D× Γ2-contraction.

6.1 Definitions

For each k ∈ N we introduce a polynomial µk in 2(k + 1) variables. This polynomial will play a similar

role to that of ρk in Chapter 5. Let

µk(x0, . . . , xk; y0, . . . , yk) =
1
k

(
k∑

r=0

(−1)r(k − r)yr
0yr

)(
k∑

r=0

(−1)r(k − r)xr
0xr

)

− 1
k

(
k∑

r=0

(−1)rryr−1
0 yr

)(
k∑

r=0

(−1)rrxr−1
0 xr

)
. (6.1)

Let n, k ∈ N. Suppose we wish to find an analytic function φ : D → Γk such that φ(zj) = (c(j)1 , . . . , c
(j)
k )

for j = 1, . . . , n. Define the Hilbert space M with basis Kz1 , . . . ,Kzn
and the operators C1, . . . , Ck as in

Section 2.1. In addition, define Λ on M such that

Λ ∼ diag{z̄1, . . . , z̄n} (6.2)

with respect to the basis Kz1 , . . . ,Kzn . In Chapter 1 it was shown that the (k + 1)-tuple of operators

Λ, C1, . . . , Ck commute.

6.2 A New Necessary Condition

Theorem 6.2.1 If there exists a function φ : D → Γk which is analytic and has the property that

φ(zj) = (c1(j), . . . , ck
(j)) for j = 1, . . . , n, then D × Γk is a complete spectral set for the commuting

(k + 1)-tuple of operators (Λ, C1, . . . , Ck) as defined in (2.1) and (6.2).

Proof. By Lemma 2.1.2 we need only consider matricial polynomial functions h on D×Γk. Consider the

scalar polynomial case. Let h be a polynomial in k + 1 variables. Observe that, for 1 ≤ j ≤ n, we have

h(Λ, C1, . . . , Ck)Kzj
=

∑
r0,...,rk

ar0···rk
Λr0C1

r1 · · ·Ck
rkKzj

=
∑

r0,...,rk

ar0···rk
zj

r0c1(j)
r1 · · · ck(j)

rk

Kzj

= h∨ ◦ (id× φ)(zj)Kzj .

= h ◦ (id× φ)∨(Λ)Kzj
.
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Hence, if h = [hij ] is a p× q matrix polynomial and z ∈ {z1, . . . , zn} then

h(Λ, C1, . . . , Ck)


0
...
Kz
...
0

 =

h1j(Λ, C1, . . . , Ck)Kz
...

hpj(Λ, C1, . . . , Ck)Kz

 =

h1j ◦ (id× φ)∨(Λ)Kz
...

hpj ◦ (id× φ)∨(Λ)Kz



= h∨ ◦ (id× φ)(Λ)


0
...
Kz
...
0

 .
Thus

h(Λ, C1, . . . , Ck) = h ◦ (id× φ)∨(Λ).

By von Neumann’s inequality, since Λ is a contraction,

‖h(Λ, C1, . . . , Ck)‖ = ‖h∨ ◦ (id× φ)(Λ)‖

≤ sup
D
‖h∨ ◦ (id× φ)(z)‖

≤ sup
D×Γk

‖h∨(z, γ)‖

= sup
D×Γk

‖h(z, γ)‖.

That is, D× Γk is a complete spectral set for (Λ, C1, . . . , Ck).
�

Lemma 6.2.2 Let (X0, . . . , Xk) be a commuting (k + 1)-tuple of operators on a Hilbert space H such

that σ(X0, . . . , Xk) ⊂ D×Γk. If D×Γk is a complete spectral set for (X0, . . . , Xk) then there exist Hilbert

spaces H−,H+ and a (k+ 1)-tuple of commuting normal operators (X̃0, . . . , X̃k) on K def
= H− ⊕H⊕H+

such that σ(X̃0, . . . , X̃k) ⊂ T× bΓk and each X̃j is expressible by an operator matrix of the form

X̃j ∼
[∗ ∗ ∗
0 Xj ∗
0 0 ∗

]
(6.3)

with respect to the orthogonal decomposition K = H− ⊕H⊕H+.

Proof. Suppose that D × Γk is a complete spectral set for a commuting (k + 1)-tuple of operators

(X0, . . . , Xk). That is

‖h(X0, . . . , Xk)‖L(H) ≤ sup
z∈D×Γk

‖h(z)‖. (6.4)

for all analytic matrix valued functions h.

Let θ : Pk+1 → L(H) be the unital representation of the algebra Pk+1 of polynomials in k+1 variables

defined by θ(h) = h(X0, . . . , Xk). Inequality (6.4) states that θ is completely contractive and therefore
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uniformly continuous. It follows that θ has a completely contractive, uniformly continuous extension to

A(D×Γk). The space A(D×Γk) is embedded in the C∗-algebra C(Tk+1) of continuous functions on the

(k + 1)-torus by

f ∈ A(D× Γk) 7→ f ◦ (id× π) ∈ C(Tk+1).

By Theorem 5.1.1, θ extends to a completely contractive unital linear mapping Θ : C(Tk+1) → L(H).

By Theorem 5.1.2, there exists a Hilbert space K and a unital representation Φ : C(Tk+1) → L(K) such

that H ⊂ K and

Θ(f) = PHΦ(f)|H

for all f ∈ C(Tk+1), where PH is the orthogonal projection from K to H. Thus, if f ∈ A(D × Γk) we

have

f(X0, . . . , Xk) = θ(f) = Θ(f) = PHΦ(f ◦ π)|H.

Let fj represent the (j + 1)th co-ordinate function, i.e. fj(z0, . . . , zk) = zj , j = 0, . . . , k. Then for

(α, λ1, . . . , λk) ∈ D× Dk,

fj ◦ (id× π)(α, λ1, . . . , λk) =
{
α if j = 0
cj(λ) if j = 1, . . . , k .

For j = 1, . . . , k, let

X̃j = Φ(cj(λ)).

Set X̃0 = Φ(id). Then

Xj = fj(X0, . . . , Xk) = θ(fj) = Θ(fj ◦ (id× π)) = PHX̃0|H.

Observe that the operators X̃0, . . . , X̃k lie in the commutative *-algebra Φ(C(Tk+1)). The X̃j are there-

fore commuting normal operators with X0, . . . , Xk as their compressions to H. We may suppose that

the smallest subspace of K which contains H and reduces each X̃j is K. The joint spectrum of the

(k + 1)-tuple of elements (α, c1(λ), . . . , ck(λ)) in C(Tk+1) is the range of this (k + 1)-tuple of functions

in Tk+1. The range of these functions is exactly T× bΓk. Next we may apply the unital representation

Φ to deduce that σ(X̃0, . . . , X̃k) ⊂ T× bΓk.

We shall construct spaces H− and N which are invariant for each Xj and satisfy H− ⊂ N ⊂ K and

H = N 	H−. Let

H− = {x ∈ K | f(X̃0, . . . , X̃k)x ⊥ H for every polynomial f}.

Clearly H− is invariant for each Xj , j = 0, . . . , k, and H− ⊥ H. Let N = H− ⊕ H. Then N is also

invariant for each Xj . We can prove this by considering any element x ∈ H and showing that, for each
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j ∈ {0, . . . , k},

X̃jx− PHX̃jx ∈ H−.

Suppose f is any polynomial in k variables, then

PH{f(X̃0, . . . , X̃k)(X̃jx− PHX̃jx)} = PHf(X̃0, . . . , X̃k)X̃jx− f(X̃0, . . . , X̃k)PHX̃jx

= f(X0, . . . , Xk)Xjx− f(X0, . . . , Xk)Xjx

= 0.

Thus, X̃jx − PHX̃jx ∈ H− and therefore N is invariant for each Xj as claimed. Clearly, Xj has the

form (6.3) with respect to the decomposition K = H− ⊕H⊕N⊥ so we may take H+ = N⊥ to see that

the result holds.
�

As in the previous chapter, we now present a result which allows us to verify the positivity of an

operator polynomial by reducing our calculations to the scalar valued case.

Lemma 6.2.3 Let (X0, . . . , Xk) be a commuting (k + 1)-tuple of operators on a Hilbert space H such

that σ(X0, . . . , Xk) ⊂ D× Γk. Choose α ∈ D. If D× Γk is a complete spectral set for (X0, . . . , Xk) and

µk(β, αc1, . . . , αkck) ≥ 0 (6.5)

for all β ∈ T and (c1, . . . , ck) ∈ bΓk then

µk(X0, αX1, . . . , α
kXk) ≥ 0.

Proof. Define K and X̃j as in Lemma 6.2.2. Since the X̃j are normal and commute it follows that they

generate a commutative C∗-subalgebra A of L(K). The space C(σ(X̃1, . . . , X̃k)) can be identified with A

by the Gelfand transform. By this transform, X̃j can be identified with the (j+1)th coordinate function.

Suppose (6.5) holds. An operator is positive semi-definite if and only if its Gelfand transformation is

non-negative, thus on application of an inverse Gelfand transform we have

µk(X̃0, αX̃1, . . . , α
kX̃k) ≥ 0. (6.6)
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To simplify the following calculations we introduce the operators:

Ñ =
k∑

r=0

(−1)r(k − r)αrX̃0
r
X̃r,

N =
k∑

r=0

(−1)r(k − r)αrXr
0Xr,

M̃ =
k∑

r=0

(−1)rrαrX̃0
r−1

X̃r,

M =
k∑

r=0

(−1)rrαrXr−1
0 Xr.

By the definition of X̃j we see that

Ñ ∼
[∗ ∗ ∗
0 N ∗
0 0 ∗

]
, M̃ ∼

[∗ ∗ ∗
0 M ∗
0 0 ∗

]
. (6.7)

with respect to the orthogonal decomposition K = H− ⊕H⊕H+. Using this new notation, (6.6) reads

Ñ∗Ñ − M̃∗M̃ ≥ 0. (6.8)

Recall Definition 17 and consider σ(Ñ).

σ(Ñ) = σ

(
k∑

r=0

(−1)r(k − r)αrβrX̃r

)

⊂

{
k∑

r=0

(−1)r(k − r)αrβrcr(λ) | λ ∈ Tk

}

⊂

{
k∑

r=0

(−1)r(k − r)cr(αβλ) | λ ∈ Dk

}

= {Ak,αβ(λ) | λ ∈ Dk}.

Corollary 4.2.3 implies that 0 /∈ σ(Ñ). It follows that Ñ is invertible. Rearrange (6.8) to give

1− Ñ∗−1M̃∗M̃Ñ−1 ≥ 0.

Therefore

‖M̃Ñ−1‖ ≤ 1.

Hence, by (6.7), N must be invertible and

Ñ−1 ∼
[∗ ∗ ∗
0 N−1 ∗
0 0 ∗

]
.

Hence

M̃Ñ−1 ∼
[∗ ∗ ∗
0 MN−1 ∗
0 0 ∗

]
.
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Thus, MN−1 is the compression to H of M̃Ñ−1, and so

‖MN−1‖ ≤ 1.

That is

1−N∗−1M∗MN−1 ≥ 0

N∗N −M∗M ≥ 0

µk(X0, αX1, . . . α
kXk) ≥ 0

as required.
�

Lemma 6.2.4 If D × Γk is a complete spectral set for (X0, αX1, . . . , α
kXk) then it is also a complete

spectral set for (ν(X0), αX1, . . . , α
kXk) where ν is any automorphism of D.

Proof. If f is an analytic function on D× Γk then so is fν defined by

fν(x0, αx1, . . . , α
kxk) = f(ν(x0), αx1, . . . , α

kxk)

Thus

‖f(ν(X0), αX1, . . . , α
kXk)‖ = ‖fν(X0, αX1, . . . , α

kXk)‖

≤ sup
D×Γk

|fν(z, γ)|

= sup
D×Γk

|f(z, γ)|

as required.
�

Theorem 6.2.5 If D× Γk is a complete spectral set for a (k+ 1)-tuple of operators (X0, . . . , Xk) and ν

is any automorphism of the disc then

µk(ν(X0), αX1, . . . , α
kXk) ≥ 0 (6.9)

for all α ∈ D.

Proof. Suppose D× Γk is a complete spectral set for (X0, . . . , Xk). Lemma 6.2.4 states that D× Γk is a

complete spectral set for (ν(X0), . . . , Xk), thus it will suffice to show

µk(X0, αX1, . . . , α
kXk) ≥ 0
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for all α ∈ D. By Lemma 6.2.3, this will follow if

µk(β, αc1(λ), . . . , αkck(λ)) ≥ 0

for all β ∈ T, λ ∈ Tk, and α ∈ D. Recall Theorem 3.3.3 and the definition of pk,α given in (3.1). For

β ∈ T, λ ∈ Tk, and α ∈ D we have

µk(β, αc1(λ), . . . ,αkck(λ))

=
1
k

(
k∑

r=0

(−1)r(k − r)αrβrcr(λ)

)∗( k∑
r=0

(−1)r(k − r)αrβrcr(λ)

)

− 1
k

(
k∑

r=0

(−1)rrαrβr−1rcr(λ)

)∗( k∑
r=0

(−1)rrαrβr−1rcr(λ)

)

=
1
k

(
k∑

r=0

(−1)r(k − r)αrβrcr(λ)

)∗( k∑
r=0

(−1)r(k − r)αrβrcr(λ)

)

− 1
k
ββ

(
k∑

r=0

(−1)rrαrβr−1cr(λ)

)∗( k∑
r=0

(−1)rrαrβr−1cr(λ)

)

=
1
k

(
k∑

r=0

(−1)r(k − r)αrβrcr(λ)

)∗( k∑
r=0

(−1)r(k − r)αrβrcr(λ)

)

− 1
k

(
k∑

r=0

(−1)rrαrβrcr(λ)

)∗( k∑
r=0

(−1)rrαrβrcr(λ)

)

=
1
k

[
Ak,αβ(λ)Ak,αβ(λ)−Bk,αβ(λ)Bk,αβ(λ)

]
= pk,αβ(λ, λ)

= (1− |αβ|2)
k∑

j=1

∏
i 6=j

|1− αβλi|2

≥ 0.

as required. Hence (6.9) holds.
�

Corollary 6.2.6 If there exists an analytic function φ : D → Γk such that φ(zj) = (c(j)1 , . . . , c
(j)
k ) then

µk(ν(Λ), αC1, . . . , α
kCk) ≥ 0

for all automorphisms of the disc ν, and all α ∈ D.

Proof. Theorem 6.2.1 states that if there exists an analytic function φ : D → Γk such that φ(zj) =

(c(j)1 , . . . , c
(j)
k ) then D×Γk is a complete spectral set for the (k+1)-tuple of operators (Λ, C1, . . . , Ck). The-

orem 6.2.5 states that if D×Γk is a complete spectral set for the (k+1)-tuple of operators (Λ, C1, . . . , Ck)
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then

µk(ν(Λ), αC1, . . . , α
kCk) ≥ 0

for all automorphisms of the disc ν and all α ∈ D.
�

Just as in Chapter 5, this result can be transformed into a necessary condition for the existence of a

solution to a certain Nevanlinna-Pick problem in terms of the positivity of certain Pick matrices.

Corollary 6.2.7 Let n ∈ N. Choose n distinct points zj in D and n matrices Wj in Mk(C). If there

exists an analytic function φ : D → Mk(C) such that φ(zj) = Wj and σ(φ(z)) ⊂ D for all z ∈ D then
k∑

r,s=0

(−1)r+scs(αWj)ν(zj)
s−1

[ν(zj)(k2 − (r + s)k + rs)ν(zi)− rs]ν(zi)r−1cr(αWi)

1− zjzi



n

i,j=1

is positive semi-definite for every α ∈ D and all automorphisms of the disc ν.

Proof. By multiplying out (6.1) we have,

µk(x0, . . . , xk;x̄0, . . . , x̄k)

=
1
k

k∑
r,s=0

(−1)r+sx̄sx̄0
s−1[x0(k2 − (r + s)k + rs)x0 − rs]xr−1

0 xr. (6.10)

Let a(Wj) = (c(j)1 , . . . , c
(j)
k ) and define Cj by (2.1). Let Λ be given by (6.2). By Corollary 6.2.6, if there

exists an analytic function φ such that φ(zj) = Wj and σ(φ(z)) ⊂ D for all z ∈ D then for all α ∈ D and

all automorphisms ν of the disc,

µk(ν(Λ), αC1, . . . , α
kCk) ≥ 0. (6.11)

For α ∈ D and any automorphisms ν of the disc, (6.11) is equivalent to

[
〈µk(ν(Λ), αC1, . . . , α

kCk)Kzi
,Kzj

〉
]n
i,j=1

≥ 0. (6.12)

Using the expansion given in (6.10) we see that

k〈µk(ν(Λ), αC1, . . . , α
kCk)Kzi

,Kzj
〉

is equal to〈
k∑

r,s=0

(−1)r+sᾱsC∗s ν(Λ)∗s−1[ν(Λ)∗(k2 − (r + s)k + rs)ν(Λ)− rs]ν(Λ)r−1αrCrKzi ,Kzj

〉
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Using an identical method to Corollary 5.2.2 we see that this is equal to

k∑
r,s=0

(−1)r+sᾱcs(Wj)ν(zj)
s−1

[ν(zj)(k2 − (r + s)k + rs)ν(zi)− rs]ν(zi)r−1cr(ᾱWi)Kzi
(zj)

which is the same as∑k
r,s=0(−1)r+scs(ᾱWj)ν(zj)

s−1
[ν(zj)(k2 − (r + s)k + rs)ν(zi)− rs]ν(zi)r−1cr(ᾱWi)

1− zjzi
. (6.13)

Substituting this last expression into (6.12) and observing that

µk(ν(Λ), αC1, . . . , α
kCk) ≥ 0

if and only if

kµk(ν(Λ), αC1, . . . , α
kCk) ≥ 0

yields the result.
�

Corollary 6.2.7 gives us a second necessary condition for the existence of an interpolating function

from D to Mk(C). This new neccessary condition implies the one proved earlier in Corollary 5.2.2 by

choosing ν as the identity. It is not clear however whether the two conditions are equivalent. It is

true that (C1, . . . , Ck) being a complete Γk-contraction is genuinely weaker than (Λ, C1, . . . , Ck) being a

complete D× Γk-contraction, and this might lead one to suspect that the resultant necessary conditions

in terms of polynomials would also be different. Whether this suspicion is true remains an open question.

Chapter 8 contains a discussion of the relative strengths of the two necessary conditions we have

presented.
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Chapter 7

The Caratheodory Distance on the

Symmetrized Polydisc

In this chapter we show how the main theorem of Chapter 5 gives rise to an interesting result concerning

the geometry of Γk. We derive an upper bound for the Caratheodory distance between two points in

Γk. Caratheodory introduced his notion of distance in [18] and [19]. Essentially Caratheodory says that

we can define a distance between two points in some domain by considering all analytic maps from that

domain into the disc and asking how far apart (in the sense of the pseudohyberbolic distance) the images

of the points can be. Parallels can clearly be drawn with the distance of Kobayashi [30] in which the roles

of the disc and the domain are basically reversed. Kobayashi defines the distance between two points

in some domain as the minimum distance between two points in the disc which can be mapped to the

points of interest by an analytic function from the disc to the domain.

The method employed in this chapter is inspired by the work of Agler in [2]. Agler and Young used

similar methods in [3] to find an explicit formula for the Caratheodory distance on Γ2. The technical

results we need to achieve the goals of this chapter are presented in Section 7.1 while the derivation of

an upper bound for the Caratheodory distance is contained in Section 7.2.

The upper bound we present is an infimum of a certain function. It is presented here as an infimum

over T. However, without the technical results of Chapter 4 the infimum would have to be taken over

the whole disc.
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7.1 Spectral Sets

The mathematical objects used in Section 7.2 differ slightly from those used in previous chapters. The

main differences occur because we consider spectral sets of operators acting on two dimensional Hilbert

spaces rather than complete spectral sets of operators acting on Hilbert spaces of arbitrary dimension.

We state (without proof) a result of Agler’s which, under special circumstances, will allow us to identify

complete spectral sets with spectral sets.

Definition 22 A set E ⊂ Ck is said to be a spectral set for a commuting k-tuple of operators (X1, . . . , Xk)

on some Hilbert space, if σ(X1, . . . , Xk) ⊂ E and if, for all scalar-valued functions f of k variables which

are analytic on E, we have

‖f(X1, . . . , Xk)‖ ≤ sup
(x1,...,xk)∈E

|f(x1, . . . , xk)|.

Notice that the concept of a spectral set is tautologically weaker than that of a complete spectral set.

Just as we would describe a commuting k-tuple of operators with E as a complete spectral set as a

complete E-contraction we will describe k-tuples of operators with E as a spectral set as E-contractions.

An active area of research in Operator Theory is to establish which sets have the property that they are

a complete spectral set for every k-tuple of operators which have them as a spectral set. The following

result of Agler’s ([2, Proposition 3.5]) solves this problem in a special case of interest to us.

Theorem 7.1.1 Let U be a bounded set in Ck. Assume that z1, z2 ∈ U, z1 6= z2 and σ(X1, . . . , Xk) ⊂

{z1, z2}. Then U is a spectral set for (X1, . . . , Xk) if and only if U is a complete spectral set for

(X1, . . . , Xk).

Corollary 7.1.2 If (X1, . . . , Xk) is a commuting k-tuple of operators on a two dimensional Hilbert space

then (X1, . . . , Xk) is a Γk-contraction if and only if it is a complete Γk-contraction.

Proof. The result follows from Theorem 7.1.1 since all reasonable forms of the joint spectrum of a k-tuple

of two dimensional operators are equal to the algebraic joint spectrum of those operators, which is clearly

a two point set.
�

We state the following Theorem without proof since the equivalences hold trivially.

Theorem 7.1.3 Let (X1, . . . , Xk) be a commuting k-tuple of operators with joint spectrum contained in

int Γk. The following statements are equivalent

(a) Γk is a spectral set for (X1, . . . , Xk),

(b) int Γk is a spectral set for (X1, . . . , Xk),

(c) ‖f(X1, . . . , Xk)‖ ≤ 1 for all analytic f : int Γk → D.
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7.2 Caratheodory Distance

Let N denote the set of analytic functions F : int Γk → D. The Caratheodory distance Dk on int Γk is

defined as follows. Let z1 = (c(1)1 , . . . , c
(1)
k ) and z2 = (c(2)1 , . . . , c

(2)
k ) be distinct points in int Γk. Then

Dk(z1, z2) = sup
F∈N

tanh−1

∣∣∣∣∣ F (z1)− F (z2)
1− F (z2)F (z1)

∣∣∣∣∣ .
To simplify notation, we use d(·, ·) to represent the pseudohyperbolic distance on the disc. That is, for

λ1, λ2 ∈ D,

d(λ1, λ2) =
∣∣∣∣ λ1 − λ2

1− λ2λ1

∣∣∣∣ .
Thus,

Dk(z1, z2) = sup
F∈N

tanh−1 d(F (z1), F (z2)).

We wish to express the Caratheodory distance between z1 = (c(1)1 , . . . , c
(1)
k ) and z2 = (c(2)1 , . . . , c

(2)
k ) in

terms of operators on certain Hilbert spaces. Let H be a two dimensional Hilbert space with inner

product 〈·, ·〉 and define

U(H) = {u = (u1, u2) | u is a basis of unit vectors for H}.

For u ∈ U(H) define the commuting k-tuple of operators (C1u, . . . , Cku) on H by

Cju ∼ diag{c(1)j , c
(2)
j } (7.1)

with respect to the basis u. We wish to show

σ(C1u, . . . , Cku) = {z1, z2} ⊂ int Γk. (7.2)

We begin by proving z1 ∈ σ(C1u, . . . , Cku). We have

c
(1)
j − Cju ∼ diag{0, c(1)j − c

(2)
j }

for j = 1, . . . , k. Hence,

(c(1)j − Cju)
[
1
0
]

= 0

for j = 1, . . . , k and therefore
k∑

j=1

Aj(c
(1)
j − Cju)

[
1
0
]

= 0

for all Aj in the *-algebra generated by (C1u, . . . , Cku). It follows that the identity is not contained in

the ideal generated by c(1)j − Cju for j = 1, . . . , k. Hence this ideal is proper and z1 ∈ σ(C1u, . . . , Cku).

Similarly z2 ∈ σ(C1u, . . . , Cku).
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Suppose z = (c1, . . . , ck) /∈ {z1, z2}. There exist (not necessarily distinct) integers i and j with

0 < i, j ≤ k such that

ci 6= c
(1)
i , cj 6= c

(2)
j .

Therefore

ci − Ciu ∼
[
∗ 0
0 ci − c

(2)
i

]
, cj − Cju ∼

[
cj − c

(1)
j 0

0 ∗

]
.

We can therefore find scalars α, β such that

α(ci − Ciu) + β(cj − Cju) = I.

The ideal generated by cj − Cju for j = 1, . . . , k is therefore not proper, and z /∈ σ(C1u, . . . , Cku). This

completes the proof of (7.2). Finally, we introduce the set U ′(H),

U ′(H) = {u ∈ U(H) | (C1u, . . . , Cku) is a Γk contraction}.

As a first step to interpreting the Caratheodory distance in terms of the Hilbert space H we have the

following Lemma which relates the pseudohyperbolic distance on D to U(H).

Lemma 7.2.1 If F ∈ N , u ∈ U(H) then

‖F (C1u, . . . , Cku)‖ ≤ 1 (7.3)

if and only if

|〈u1, u2〉|2 ≤ 1− d(F (z1), F (z2))2 (7.4)

Moreover, (7.3) holds with equality if and only if (7.4) holds with equality.

Proof. Consider F (C1u, . . . , Cku). Clearly,

‖F (C1u, . . . , Cku)‖ ≤ 1

if and only if

1− F (C1u, . . . , Cku)∗F (C1u, . . . , Cku) ≥ 0.

Since u ∈ U(H) this is equivalent to

[〈(1− F (C1u, . . . , Cku)∗F (C1u, . . . , Cku))uj , ui〉]2i,j=1 ≥ 0. (7.5)

With respect to the basis u we have

F (C1u, . . . , Cku) ∼ diag{F (c(1)1 , . . . c
(1)
k ), F (c(2)1 , . . . c

(2)
k )} = diag{F (z1), F (z2)}.
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Thus (7.5) is equivalent to

[〈uj , ui〉 − 〈F (C1u, . . . , Cku)uj , F (C1u, . . . , Cku)ui〉]2i,j=1 ≥ 0,

which is [
1− |F (z1)|2 (1− F (z1)F (z2))〈u2, u1〉

(1− F (z2)F (z1))〈u1, u2〉 1− |F (z2)|2

]
≥ 0.

Taking determinants, we see this is equivalent to

(1− |F (z1)|2)(1− |F (z2)|2)− (1− F (z1)F (z2))〈u2, u1〉(1− F (z2)F (z1))〈u1, u2〉 ≥ 0.

Thus (7.3) holds if and only if

|〈u1, u2〉|2 ≤
(1− |F (z1)|2)(1− |F (z2)|2)

|1− F (z2)F (z1)|

= 1− d(F (z1), F (z2))2.

This proves the first part of the result. If (7.3) holds with equality then each of the equivalent statements

above will hold with equality. This completes the proof.
�

We can now represent Dk(z1, z2) in terms of the Hilbert space H.

Lemma 7.2.2 Let zj = (c(j)1 , . . . , c
(j)
k ) ∈ int Γk for j = 1, 2. Suppose H is a two dimensional Hilbert

space and let u ∈ U(H). If, for i = 1, . . . , k, Ciu is given by (7.1) then Γk is a spectral set for

(C1u, . . . , Cku) if and only if

|〈u1, u2〉| ≤ sechDk(z1, z2).

Furthermore,

sechDk(z1, z2) = sup
u∈U ′(H)

|〈u1, u2〉|.

Proof. Γk is a spectral set for (C1u, . . . , Cku) if and only if

‖F (C1u, . . . , Cku)‖ ≤ 1

for all analytic functions F : int Γk → D. By Lemma 7.2.1 it follows that (C1u, . . . , Cku) is a Γk

contraction if and only if

|〈u1, u2〉|2 ≤ 1− sup
F∈N

d(F (z1), F (z2))2

= 1− tanh2Dk(z1, z2)

= sech2Dk(z1, z2).
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This completes the first part of the result.

Since 〈u1, u2〉 may be interpreted as the cosine of the acute angle between the two unit vectors u1

and u2 and 0 ≤ sechx ≤ 1 for all x ∈ R it is possible to choose u′ = (u′1, u
′
2) ∈ U(H) such that

|〈u′1, u′2〉| = sech2Dk(z1, z2).

It then follows from above that (C1u, . . . , Cku) is a Γk-contraction. Therefore

sup
u∈U ′(H)

|〈u1, u2〉| ≥ sech2Dk(z1, z2).

It is clear from (7.3) however that the opposite inequality holds and we may therefore conclude that

sup
u∈U ′(H)

|〈u1, u2〉| = sech2Dk(z1, z2)

as required.
�

Recall the definition of Pk in (1.6). For ω ∈ T and x = (x1, . . . , xk), y = (y1, . . . , yk) define the hereditary

polynomial vk,ω by

vk,ω(x, y) = Pk(1, ωx1, . . . , ω
kxk; 1, ωy1, . . . , ωkyk).

In Theorem 7.2.5 we prove a specialisation of Theorem 5.1.5. The specialisation relies on the properties

of vk,ω given in the following Lemma.

Lemma 7.2.3 If ω ∈ T and x, y ∈ int Γk then

vk,ω(x, x) > 0,

and

vk,ω(x, y) 6= 0.

Proof. Since x ∈ int Γk there exists λ = (λ1, . . . , λk) ∈ D such that x = (c1(λ), . . . , ck(λ)). Thus,

vk,ω(x, x) = Pk(1, ωc1(λ), . . . , ωkck(λ); 1, ωc1(λ), . . . , ωkck(λ))

= Pk(1, c1(ωλ), . . . , ck(ωλ); 1, c1(ωλ), . . . , ck(ωλ)).

Then, by Corollary 3.3.2, we have

vk,ω(x, x) = pk,ω(λ, λ).

That is, by (3.1),

vk,ω(x, x) =
k∑

j=1

(1− |λj |2)
∏
i 6=j

|1− ωλ|2
 > 0.
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This completes the proof of the first statement in the result. If y ∈ int Γk then there exists δ ∈ Dk such

that y = (c1(δ), . . . , ck(δ)). By Theorem 3.3.3,

vk,ω(x, x) =
1
k
|Ak,ω(λ)|2 − 1

k
|Bk,ω(λ)|2.

Furthermore, by Corollary 4.2.3 we have Ak,ω(λ) 6= 0. Thus vk,ω(x, x) > 0 if and only if

1 >
∣∣∣∣Bk,ω(λ)
Ak,ω(λ)

∣∣∣∣ . (7.6)

Again by Theorem 3.3.3, we have

kvk,ω(x, y) = Ak,ω(δ)Ak,ω(λ)−Bk,ω(δ)Bk,ω(λ).

Therefore vk,ω(x, y) = 0 if and only if

Ak,ω(δ)Ak,ω(λ)−Bk,ω(δ)Bk,ω(λ) = 0.

That is, if and only if

1− Bk,ω(δ)
Ak,ω(δ)

Bk,ω(λ)
Ak,ω(λ)

= 0

which contradicts (7.6). Thus vk,ω(x, y) 6= 0.
�

Lemma 7.2.4 Let (X1, . . . , Xk) be a k-tuple of commuting operators on a two dimensional Hilbert space

such that σ(X1, . . . , Xk) ⊂ int Γk. Then

ρk(ωX1, . . . , ω
kXk) ≥ 0 (7.7)

for all ω ∈ T if and only if

ρk(αX1, . . . , α
kXk) ≥ 0

for all α ∈ D.

Proof. (⇐) This follows immediately by taking radial limits.

(⇒) Suppose (7.7) holds. Then

A∗ωAω −B∗ωBω ≥ 0

for all ω ∈ T, where

Aω =
k∑

r=0

(−1)r(k − r)ωrXr,

Bω =
k∑

r=0

(−1)rrωrXr.
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Now, Aω is invertible since by Corollary 4.2.3 its spectrum does not contain the point zero. Therefore

(7.7) implies

‖BωA
−1
ω ‖ ≤ 1

for all ω ∈ T. However, Corollary 4.2.3 also tells us that Aα is invertible for all α ∈ D and hence the map

α 7→ BαA
−1
α

is analytic. By the maximum modulus principle,

‖BαA
−1
α ‖ ≤ 1 (7.8)

for all α ∈ D. Inequality (7.8) is equivalent to

A∗αAα −B∗αBα ≥ 0

for all α ∈ D, and hence to

ρk(αX1, . . . , α
kXk) ≥ 0

for all α ∈ D.
�

Theorem 7.2.5 Suppose H is a two dimensional Hilbert space. Let (X1, . . . , Xk) be a k-tuple of com-

muting operators on H such that σ(X1, . . . , Xk) ⊂ int Γk. Then Γk is a spectral set for (X1, . . . , Xk) only

if

ρk(ωX1, . . . , ω
kXk) ≥ 0

for all ω ∈ T.

Proof. Theorem 7.1.2 states that Γk is a spectral set for (X1, . . . , Xk) if and only if it is a complete

spectral set for (X1, . . . , Xk). Theorem 5.1.5 states that Γk is a complete spectral set for (X1, . . . , Xk)

only if

ρk(αX1, . . . , α
kXk) ≥ 0

for all α ∈ D. The result then follows from Lemma 7.2.4.
�
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The above specialisation of Theorem 5.1.5 gives rise to the following inequality, which we use to establish

an upper bound for the Caratheodory distance on int Γk.

Lemma 7.2.6 Let H be a two dimensional Hilbert space and let u = (u1, u2) ∈ U(H). Suppose zj =

(c(j)1 , . . . , c
(j)
k ) ∈ int Γk for j = 1, 2. For i = 1, . . . , k, let Ciu be defined by (7.1). If Γk is a spectral set

for (C1u, . . . , Cku) then

|〈u1, u2〉|2 ≤ inf
ω∈T

vk,ω(z1, z1)vk,ω(z2, z2)
|vk,ω(z1, z2)|2

.

Proof. If Γk is a spectral set for (C1u, . . . , Cku) then by Theorem 7.2.5,

ρk(ωC1u, . . . , ω
kCku) ≥ 0

for all ω ∈ T. This is equivalent to[
< ρk(ωC1u, . . . , ω

kCku)uj , ui >
]2
i,j=1

≥ 0

for all ω ∈ T. This in turn is equivalent to the matrix[
< Pk(1, ωC1u, . . . , ω

kCku; 1, ωC∗1u, . . . , ω
kC∗ku)uj , ui >

]2
i,j=1

being positive semi-definite for all ω ∈ T, which is to say,[
< Pk(1, ωc(j)1 , . . . , ωkc

(j)
k ; 1, ωc1(i), . . . , ωkc

(i)
k )uj , ui >

]2
i,j=1

≥ 0

for all ω ∈ T. Equivalently, [
vk,ω(z1, z1) vk,ω(z2, z1)〈u2, u1〉

vk,ω(z1, z2)〈u1, u2〉 vk,ω(z2, z2)

]
≥ 0

for all ω ∈ T. This last inequality is equivalent to

vk,ω(z1, z1)vk,ω(z2, z2)− |vk,ω(z2, z1)|2|〈u2, u1〉|2 ≥ 0

for all ω ∈ T. By Lemma 7.2.3, for all ω ∈ T,

|〈u1, u2〉|2 ≤
vk,ω(z1, z1)vk,ω(z2, z2)

|vk,ω(z2, z1)|2
.

Therefore

|〈u1, u2〉|2 ≤ inf
ω∈T

vk,ω(z1, z1)vk,ω(z2, z2)
|vk,ω(z2, z1)|2

.

�
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We are now in a position to establish an upper bound for the Caratheodory distance between two points

in int Γk.

Theorem 7.2.7 Let z1, z2 ∈ int Γk. Then

sech2Dk(z1, z2) ≤ inf
ω∈T

vk,ω(z1, z1)vk,ω(z2, z2)
|vk,ω(z2, z1)|2

.

Proof. Applying Lemmas 7.2.2 and 7.2.6 in turn we have

sech2Dk(z1, z2) = sup{|〈u1, u2〉|2 : u ∈ U ′(H)}

≤ sup
{
|〈u1, u2〉|2 : |〈u1, u2〉|2 ≤ inf

ω∈T

vk,ω(z1, z1)vk,ω(z2, z2)
|vk,ω(z1, z2)|2

}
≤ inf

ω∈T

vk,ω(z1, z1)vk,ω(z2, z2)
|vk,ω(z1, z2)|2

.

�

81



Chapter 8

Areas of Further Study

This thesis has touched on a number of different mathematical and engineering areas, including interpo-

lation theory, operator theory, Hilbert spaces, complex geometry, linear systems and control engineering.

The Main Problem of this thesis is studied in one form or another by specialists in most of these dis-

ciplines. It is beyond the scope of this work to place accurately our results alongside those of our

colleagues in different fields, or even to speculate on how future approaches to these problems should be

made. Instead, we content ourselves by discussing some questions which we believe arise naturally as a

consequence of our work.

We draw comparisons mainly with the work of Agler and Young, not because they are the only

authors to have dealt with the problem, but because it is their approach which we adopted to derive our

results. If the reader is interested in seeing a different approach to spectral interpolation problems, then

we recommend the series of papers by Bercovici, Foias and Tannenbaum [10, 11, 12, 14, 15]. The third

of these contains a number of illuminating examples.

A more general introduction to interpolation problems (including their applications) can be found in

[33], while [27] is an excellent introduction to the wealth of control engineering literature.

It seems that a natural question to ask, when presented with two necessary conditions for the existence

of a solution to the spectral Nevanlinna-Pick problem, is whether either, or both, of these conditions is

sufficient. I do not know the answer to this question.

In [6] Agler and Young proved that Γ2 is a complete spectral set for the commuting pair of operators

(C1, C2) if and only if

ρ2(αC1, αC2) ≥ 0 (8.1)

for all α ∈ D. Furthermore, the same paper contains a realisation formula for all hereditary polynomials
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which are positive on Γ2-contractions. This means, when k = 2, we can use the realisation formula

to verify whether any particular pair of commuting contractions will satisfy (8.1). Unfortunately, for

general k, it is impossible to employ the methods of Agler and Young to establish an equivalent result.

The realisation formula for hereditary polynomials which are positive on Γ2-contractions relies on the

fact that a certain Hilbert space can be assumed to be one dimensional. Since we were unable to justify

such an assumption, we were unable to present a realisation formula for hereditary polynomials which

are positive on Γk-contractions. Another difference between this work and that of Agler and Young is

that the inequality in (8.1) is sufficient (as well as necessary) for (C1, C2) to be a Γ2-contraction. We

prove the necessity of (8.1) for general k in Chapter 5. Agler and Young’s proof of sufficiency relies on an

application of the Commutant Lifting Theorem, which cannot be applied to more than two commuting

contractions. It is therefore impossible to apply Agler and Young’s methods in the case of arbitrary k. Of

course, just because the same method of proof cannot be employed, it does not follow that an equivalent

result is not true for arbitrary k. Indeed, I have been unable to produce a counter-example to such a

claim.

The fact that (8.1) is equivalent to (C1, C2) being a Γ2-contraction also allowed Agler and Young

[3] to give an exact formula for the Caratheodory distance on int Γ2. The formula they present takes

exactly the same form as the upper bound for the Caratheodory distance we present in Chapter 7. The

additional information given by an exact formula for the Caratheodory distance enabled Agler and Young

to produce Caratheodory extremal functions for Γ2.

Even if one were able to establish that the k-dimensional equivalent of the operator inequality (8.1) is

sufficient for a k-tuple of operators to be a Γk-contraction, one would still lack a full sufficient condition

for spectral interpolation. The argument presented in Chapter 1 to reduce spectral interpolation to Γk

interpolation fails to prove the equivalence of the two problems. An identical obstacle faced Agler and

Young in their treatment of the two dimensional case. In [5] they were able to show that the two types of

interpolation problem are equivalent whenever all or none of the target matrices are scalar multiples of

the identity. If the target matrices fail to satisfy this condition, then it has been shown that the spectral

Nevanlinna-Pick problem is equivalent to a Γk interpolation problem with a condition on the derivative

of the interpolating function. It would appear that one could begin to approach the question of whether

Γk interpolation is equivalent to k×k spectral interpolation in the same way. Namely, one could base an

analysis on a suitable generalization of scalar matrices. The work of Agler and Young suggests that the

correct generalization would be to consider whether the target matrices are derogatory. That is, whether

the target matrices have the property that their minimal and characteristic polynomials coincide. In the

case of 2× 2 matrices, derogatory and scalar are synonymous.
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Simplifying the Γk problem by considering only two interpolation points yielded success, in terms

of a sufficiency result, in the two dimensional case in [4]. Here, Agler and Young were able to prove a

Schwarz Lemma for Γ2. That is, they were able to show that the condition in (8.1) is equivalent to the

existence of a solution to the Γ2 interpolation problem in the case of two interpolation points when one of

the target points is (0, 0). The resultant Pick-matrix form of this result is very much in keeping with the

classical Schwarz Lemma, and it serves to demonstrate the increasing difficulty one faces in considering

higher dimensional versions of the problem. A Schwarz Lemma of this type seems to be an achievable

target for k > 2. The results of this thesis provide the necessary condition part of such a result. I believe

that a Schwarz Lemma for k > 2 would present the greatest chance of success if one were to attempt to

extend the various results of Agler and Young from the two dimensional case.

Until now we have been concerned with the sufficiency of the necessary conditions for spectral in-

terpolation presented in Chapters 5 and 6. At this point however, it is not even clear whether these

different conditions are equivalent to one another. It is easy to see that the necessary condition given

in Chapter 5 is a special case of the condition in Chapter 6. Whether the opposite implication holds is

an open question. As discussed in Chapter 6, the condition presented there is derived from the fact that

D × Γk is a complete spectral set for a (k + 1)-tuple of operators, whereas the necessary condition in

Chapter 5 is based on the genuinely weaker fact that Γk is a complete spectral set for a certain k-tuple

of operators. Although there is a real difference between the two underlying spectral set conditions,

it is unclear whether this difference remains when the dust has cleared and we are presented with the

two necessary conditions for spectral interpolation in Pick-matrix form. The question of whether the

two necessary conditions presented in this thesis are equivalent is open even in the case k = 2. Having

attempted in vain to construct a number of examples which would show that the conditions are different,

I would not like to guess whether they are or not. Agler and Young are currently pursuing research in

this area.

A series of papers by Bercovici et al. has examined the spectral Nevanlinna-Pick problem from

a different, but still operator theoretic, perspective. In [12] these authors prove a spectral commutant

lifting theorem. They then apply this theorem to the spectral Nevanlinna-Pick problem in much the same

way as one would use the classical Commutant Lifting Theorem to prove Pick’s theorem (Corollary 1.1.3).

The solution to the spectral Nevanlinna-Pick theorem which results from this approach is complete in the

sense that the condition given is both necessary and sufficient. However, the condition which Bercovici et

al. show to be equivalent to the existence of a solution to the spectral Nevanlinna-Pick problem is rather

difficult to apply in general. They, like us, construct a Hilbert Space H and an operator A from the

interpolation information. Their theorem states that there exists a solution to the spectral Nevanlinna-
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Pick problem if and only if there exists an invertible operator M which commutes with the shift operator

(compressed to H) such that ‖MAM−1‖ < 1. The paper concludes with a section consisting of various

examples which demonstrate the subtlety of the spectral Nevanlinna-Pick problem. Included in this

section is an example in which each of the target matrices is diagonal, there is a solution, but no diagonal

interpolating function exists. Another example illustrates the difference between spectral and classical

Nevanlinna-Pick interpolation: it shows that a solution to the spectral version of the problem can have

arbirarily large norm.

Bercovici, Foias and Tannenbaum extended the results of [12] in [14] where they considered the

tangential spectral Nevanlinna-Pick problem. The method employed in this paper is very similar to that

of their previous work. The paper [14] includes an algorithm for constructing optimal solutions (in the

sense that their spectral radius is as small as possible) to the tangential version of the problem- a theme

which is continued in [13], where the authors describe a property of an optimal solution to the spectral

Nevanlinna-Pick problem. They summarise their result by saying that optimal solutions to the spectral

Nevanlinna-Pick problem are spectral analogues of inner functions which appear as optimal solutions in

dilation theory.

The condition which Bercovici et al. prove equivalent to the existence of a solution to the spectral

Nevanlinna-Pick problem is closely related to the structured singular value- or more precisely, an upper

bound for the structured singular value. The link between these two concepts is examined further in [15]

in which the spectral commutant lifting theorm of [12] is used to prove that the structured singular value

is equal to its upper bound under certain conditions. The method of dealing with robust stabilization

problems via an upper bound for the structured singular value, rather than the quantity itself, is common

amongst engineers.

Doyle and Packard published a comprehensive paper [32] in which they discussed various methods of

calculating bounds for the sturctured singular value whilst in [16], Braatz et al. demonstrated why so

much effort is expended in dealing with bounds for µ when they showed that in many cases the exact

calculation of µ is NP-hard. They politely suggest that attempting to calculate µ directly is therefore

futile. A more recent, and more operator theoretic study of the structured singular value was undertaken

by Feintuch and Markus [25]. These authors again focus on the closeness of upper bounds for µ, but do

so in the more general setting of infinite dimensional Hilbert space.

Whether one is interested in robust stablisation, or spectral interpolation there are a wealth of different

approaches currently being pursued. I hope the results of this work will make a significant contribution

to the field by throwing light on a hard, concrete special case.
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