Alternating Group A_{5} Actions on Homotopy $S^{2} \times S^{2}$

Hongxia Li^{1}
${ }^{1}$ College of Arts and Sciences, Shanghai Maritime University, Shanghai, China
Correspondence: Hongxia Li, College of Arts and Sciences, Shanghai Maritime University, Shanghai, China. Tel: 21-3828-2258. E-mail: lihongxia_2002@163.com

Received: December 14, 2015 Accepted: January 11, 2016 Online Published: January 25, 2016
doi:10.5539/jmr.v8n1p70 URL: http://dx.doi.org/10.5539/jmr.v8n1p70

The research is financed by (the National Natural Science Foundation of China NO.(11301334).)

Abstract

Let X be a smooth, closed 4-manifold which is homotopy equivalent to $S^{2} \times S^{2}$. By the Seiberg-Witten theory, we take $\operatorname{Ind}_{A_{5}} D_{X}$ as a virtual A_{5}-representation and give its concrete representation. We also study $\operatorname{Ind}_{A_{5}} D_{X}$ when X is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. Besides we give an example of our main theorem.

Keywords: homotopy $S^{2} \times S^{2}$, alternating group actions, Seiberg-Witten equations, Dirac operator

1. Introduction

Suppose X is a smooth, closed, connected spin 4-manifold. Let b_{i} be the i-th Betti number and b_{+}be the rank of the maximal positive definite subspace of $H^{2}(X ; \mathbb{R}) . \sigma(X)$ denotes the signature of X. By Freedman \& Quinn 1990 and Bryan 1998, the intersection form of X with non-positive signature should be

$$
-2 k E_{8} \oplus m H, \quad k \geq 0,
$$

where E_{8} is the 8 dimension bilinear intersection form and H is the hyperbolic form. Obviously, $m=b_{2}^{+}(X)$ and $k=$ $-\sigma(X) / 16$.
Suppose X admits a finite G-action which preserves the spin structure. We also suppose there is a Riemannian matric on X so that the G-action is isometric. Under these assumption, the G-action can always be lifted to a \tilde{G}-action on the spinor bundles, where \tilde{G} is in the following extension

$$
1 \rightarrow \mathbb{Z}_{2} \rightarrow \tilde{G} \rightarrow G \rightarrow 1
$$

If \tilde{G} contains a subgroup isomorphic to G, then the G-action is called even type. Otherwise, the G-action is called odd type. When G is the alternating group A_{5}, \tilde{G} is a group isomorphic to $\mathbb{Z}_{2} \times A_{5}$. Since A_{5} is a subgroup of $\mathbb{Z}_{2} \times A_{5}$, the spin A_{5} action on a spin 4-manifold must be of even type.

By Bryan 1998, for a spin even type G-action on a spin manifold X, the Dirac operator D_{X} is G-equivariant and $\operatorname{Ind}_{G} D_{X}=$ $\operatorname{ker} D_{X}-\operatorname{coker} D_{X} \in R(G)$. Suppose $\operatorname{Ind}_{A_{5}} D_{X}=a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}$, where $\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}$ and ρ_{4} are irreducible representations of A_{5} of degree $1,3,3,4$ and 5 (for detail see section 2), $a_{0}, b_{0}, c_{0}, d_{0}$ and e_{0} are all integers.
The finite spin group actions on spin 4-manifold are widely studied. Such as Bryan 1998, Fang 2001, Furuta 2001, Liu 2005, Liu 2006 and Liu \& Li 2008. In this paper, we mainly study the spin alternating group A_{5} action on spin 4-manifolds X which are homotopy equivalent to $S^{2} \times S^{2}$. Let $-X$ denote X with the reversed orientation. Then $-X$ is also homotopy equivalent to $S^{2} \times S^{2}$ and satisfies $\operatorname{Ind}_{A_{5}} D_{X}=-\operatorname{Ind}_{A_{5}} D_{-X}$. Using this property, representation theory, Seiberg-Witten theory and the character formula for K-theory degree, we obtain the following main result.
Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to $S^{2} \times S^{2}$. If X admits a smooth spin alternating group A_{5} action such that $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)$, then $\operatorname{Ind}_{A_{5}} D_{X}=a_{0}\left(\rho_{0}-2 \rho_{1}+\rho_{4}\right)+c_{0}\left(\rho_{2}-\rho_{1}\right)$, where a, b are integers.
Corrolary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. If X admits a smooth spin alternating group A_{5} action such that $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)$, then $\operatorname{Ind}_{A_{5}} D_{X}=a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}$ satisfies $\left|b_{0}+c_{0}+d_{0}+2 e_{0}\right| \leq \frac{n-1}{2}$.
Theorem 3. Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. Suppose X admit a smooth spin alternating group A_{5} action and $b_{2}^{+}\left(X / A_{5}\right)=0, b_{2}^{+}(X /<s>)=0$ and $b_{2}^{+}(X /<t>) \neq 0$. Then as an element of
$R\left(A_{5}\right)$, Ind $_{A_{5}} D$ is of the form

$$
a_{0} \rho_{0}+b_{0}\left(\rho_{1}+\rho_{2}\right)+\left(a_{0}+b_{0}\right) \rho_{3}-\left(a_{0}+2 b_{0}\right) \rho_{4}
$$

and $n \equiv 0 \bmod 4$.
The rest of this paper consists of three parts. The first one is the introduction about this study. The second one gives the proofs of Theorem 1, Corollary 2 and Theorem 3. The last part contains an example about the main theorem.

2. Preliminaries

In this section, we review some basics about the Seiberg-Witten equations and symmetries on it, conjugacy classes of alternating group A_{5}, the index of \mathcal{D} and the K-theory degree. Notice that this section largely depends on Bryan 1998. Besides, readers can also refer to Fang 2001, Furuta 2001 and Liu 2006.

2.1 Seiberg-Witten equations and its symmetry

Let $U^{ \pm}$be the positive and negative complex spinor bundles and $U=U^{+} \oplus U^{-}$. Denote by $D: \Gamma\left(U^{+}\right) \rightarrow \Gamma\left(U^{-}\right)$the Dirac operator and $\rho: \Lambda_{\mathbb{C}}^{*} \rightarrow \operatorname{End}_{\mathbb{C}}(U)$ the Clifford multiplication. Then the Seiberg-Witten equations are as follows

$$
D \phi+\rho(a) \phi=0, \quad \rho\left(d^{+} a\right)-\phi \otimes \phi^{*}+\frac{1}{2}|\phi|^{2} \mathrm{id}=0, \quad d^{*} a=0
$$

where $(a, \phi) \in \Omega^{1}(X, \sqrt{-1} \mathbb{R}) \times \Gamma\left(U^{+}\right)$. Let V be the L_{2}^{4}-completion of $\Gamma\left(\sqrt{-1} \Lambda^{1} \oplus U^{+}\right)$and W^{\prime} be the L_{2}^{3}-completion of $\Gamma\left(U^{-} \oplus \sqrt{-1} \mathrm{su}\left(U^{+}\right) \oplus \sqrt{-1} \Lambda^{0}\right)$. We could look the Seiberg-Witten equations as the zero set of a map

$$
\mathcal{D}+Q: V \rightarrow W^{\prime},
$$

where $\left.\mathcal{D}(a, \phi)=\left(D \phi, \rho\left(d^{+} a\right), d^{*} a\right)\right), Q(a, \phi)=\left(\rho(a) \phi, \phi \otimes \phi^{*}-\frac{1}{2}|\phi|^{2} \mathrm{id}, 0\right)$.
In fact, the image of $\mathcal{D}+Q$ is L^{2}-orthogonal to the constant functions in $\sqrt{-1} \Omega^{0} \subset W^{\prime}$. We denote W to be the orthogonal complement of the constant functions in W^{\prime} and consider $\mathcal{D}+Q: V \rightarrow W$.
Next we consider the symmetries on the Seiberg-Witten equations. Denote by $\operatorname{SU}(2)$. the group of unit quaternions and S^{1} the set of elements in the form $e^{\sqrt{-1} \theta}$. Suppose $\operatorname{Pin}(2)$ is the normalizer of S^{1} in $\mathrm{SU}(2)$. Then the elements of $\operatorname{Pin}(2)$ should be in the form $e^{\sqrt{-1} \theta}$ or $e^{\sqrt{-1} \theta} J$. The action of $\operatorname{Pin}(2)$ on $\Gamma\left(U^{ \pm}\right)$is the multiplication on the left. The action of $\mathbb{Z} / 2$ on $\Gamma\left(\Lambda_{\mathbb{C}}^{*}\right)$ is multiplication by ± 1. By this way, we obtain the action of $\operatorname{Pin}(2)$ on V, W. Furthermore, the operator \mathcal{D} and Q are all $\operatorname{Pin}(2)$ equivariant.
Assume X is a closed smooth spin 4-manifold and G is a compact Lie group action on X which is isometric and preserves the spin structure. If the action is of even type, then both \mathcal{D} and Q are $\tilde{G}=\operatorname{Pin}(2) \times G$ equivariant maps (Bryan 1998).

2.2 The Alternating Group A_{5}

In this paper, we consider the action of the alternating group A_{5} on homotopy $S^{2} \times S^{2}$. The alternating group A_{5} is the minimal nonabelian finite simple group which consists of even permutations of a set $\{a, b, c, d, e\}$ with 5 elements. It consists of 60 elements which can be divided into the following 5 conjugacy classes:
(1) the identity element 1 ;
(2) 15 elements of order 2 which is conjugate with $x=(a b)(c d)$;
(3) 20 elements of order 3 which is conjugate with $t=(a b c)$;
(4) 12 elements of order 5 which is conjugate with $s=(a b c d e)$;
(5) 12 elements of order 5 which is conjugate with $s^{2}=($ abced $)$.

Besides, we have the following character table for A_{5}, where $\omega=e^{2 \pi i / 5}$. For detail computation, we can refer to Serre 1997.

Table 1. Table title (the character table for A_{5})

1	t	x	s	s^{2}	
χ_{0}	1	1	1	1	1
χ_{1}	3	0	-1	$1+\omega+\omega^{4}$	$1+\omega^{2}+\omega^{3}$
χ_{2}	3	0	-1	$1+\omega^{2}+\omega^{3}$	$1+\omega+\omega^{4}$
χ_{3}	4	1	0	-1	-1
χ_{4}	5	-1	1	0	0

2.3 The Index of \mathcal{D} and the Character Formula for the K-theory Degree

Denote by $V_{\lambda} \subset V\left(\right.$ resp. $\left.W_{\lambda} \subset W\right)$ the subspace spanned by the eigenspaces of $\mathcal{D}^{*} \mathcal{D}$ (resp. $\mathcal{D} \mathcal{D}^{*}$) with eigenvalues less than or equal to $\lambda \in \mathbb{R}$. Denote $V_{\lambda, \mathbb{C}}=V_{\lambda} \otimes \mathbb{C}, W_{\lambda, \mathbb{C}}=W_{\lambda} \otimes \mathbb{C}$. Then

$$
\operatorname{Ind} \mathcal{D}=[\operatorname{ker} \mathcal{D}]-[\operatorname{Coker} \mathcal{D}]=\left[V_{\lambda, \mathbb{C}}\right]-\left[W_{\lambda, \mathbb{C}}\right] .
$$

Let $r: R(\widetilde{G}) \rightarrow R(\operatorname{Pin}(2))$ denotes the restriction map. Suppose $\widetilde{1}$ be the non-trivial one dimensional representation in $R(\operatorname{Pin}(2))$, which is obtained by pulling back the non-trivial $\mathbb{Z} / 2$ representation by the map $\operatorname{Pin}(2) \rightarrow \mathbb{Z} / 2$. Denote h_{i} the 2 dimensional irreducible representation in $R(\operatorname{Pin}(2))$, which is the restriction of the standard representation of $\mathrm{SU}(2)$ to $\operatorname{Pin}(2) \subset S U(2)$ and write $h_{1}=h$. Then Furuta determines $\operatorname{Ind} \mathcal{D}$ as a $\operatorname{Pin}(2)$ representation, and shows

$$
r(\operatorname{Ind} \mathcal{D})=2 k h-m \tilde{1}
$$

Thus $\operatorname{Ind} \mathcal{D}=s h-t \tilde{1}$, where s and t are polynomials such that $s(1)=2 k$ and $t(1)=m$.
For a spin A_{5} action, $\tilde{G}=\operatorname{Pin}(2) \times A_{5}$. We have

$$
\begin{aligned}
& s\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}, \\
& t\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=a_{1} \rho_{0}+b_{1} \rho_{1}+c_{1} \rho_{2}+d_{1} \rho_{3}+e_{1} \rho_{4},
\end{aligned}
$$

such that $a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}=2 k$ and $a_{1}+3 b_{1}+3 c_{1}+4 d_{1}+5 e_{1}=m=b_{2}^{+}(X)$.
Suppose $\langle g\rangle$ is the cyclic subgroup of A_{5} generated by $g \in A_{5}$. Then by using dimensions of invariant subspaces of $<g>$ and multiplicities of eigenvalue 1 of $\rho_{i},(0 \leq i \leq 4)$ for respective conjugacy classes, we get

$$
\begin{gathered}
\operatorname{dim}\left(H^{+}(X)^{A_{5}}\right)=a_{1}=b_{2}^{+}\left(X / A_{5}\right), \\
\operatorname{dim}\left(H^{+}(X)^{<(a b c)>}\right)=a_{1}+b_{1}+c_{1}+2 d_{1}+e_{1}=b_{2}^{+}(X /<(a b c)>), \\
\operatorname{dim}\left(H^{+}(X)^{<(a b)(c d)>}\right)=a_{1}+b_{1}+c_{1}+2 d_{1}+3 e_{1}=b_{2}^{+}(X /<(a b)(c d)>), \\
\operatorname{dim}\left(H^{+}(X)^{<(a b c d e)>}\right)=a_{1}+b_{1}+c_{1}+e_{1}=b_{2}^{+}(X /<(a b c d e)>), \\
\operatorname{dim}\left(H^{+}(X)^{<(a b c e d)>}\right)=a_{1}+b_{1}+c_{1}+e_{1}=b_{2}^{+}(X /<(\text { abced })>) .
\end{gathered}
$$

Moreover, for the Dirac operator of $\operatorname{Ind}_{A_{5}} D$, we get

$$
\begin{gathered}
\operatorname{dim}\left(\operatorname{Ind}_{A_{5}} D\right)^{A_{5}}=a_{0}, \\
\operatorname{dim}\left(\operatorname{Ind}_{A_{5}} D\right)^{<(a b c)>}=a_{0}+b_{0}+c_{0}+2 d_{0}+e_{0}, \\
\operatorname{dim}\left(\operatorname{Ind}_{A_{5}} D\right)^{<(a b)(c d)>}=a_{0}+b_{0}+c_{0}+2 d_{0}+3 e_{0}, \\
\operatorname{dim}\left(\operatorname{Ind}_{A_{5}} D\right)^{<(a b c d e)>}=a_{0}+b_{0}+c_{0}+e_{0}, \\
\operatorname{dim}\left(\operatorname{Ind}_{A_{5}} D\right)^{<(a b c e d)>}=a_{0}+b_{0}+c_{0}+e_{0} .
\end{gathered}
$$

Suppose V and W are two complex G-representations of compact Lie group G. $B V$ and $B W$ are balls in V and W. We construct a G-map $f: B V \rightarrow B W$ which preserves the boundaries of $B V$ and $B W$. Denote by V_{g} and W_{g} the subspaces of V and W fixed under the action of $g \in G$ and by V_{g}^{\perp} and W_{g}^{\perp} the corresponding orthogonal complements. Define $f^{g}: V_{g} \rightarrow W_{g}$ to be the restriction of f. Suppose $\lambda_{-1} \beta=\Sigma(-1)^{i} \lambda^{i} \beta$. Then we have the following character formula for the degree α_{f}.
Theorem 4.(Tom Dieck 1979) Let $f: B V \rightarrow B W$ be a G-map preserving boundaries and let $\alpha_{f} \in R(G)$ be the K-theory degree. Then

$$
\operatorname{tr}_{g}\left(\alpha_{f}\right)=d\left(f^{g}\right) \operatorname{tr}_{g}\left(\lambda_{-1}\left(W_{g}^{\perp}-V_{g}^{\perp}\right)\right),
$$

where tr_{g} is the trace of the action of an element $g \in G, d\left(f^{g}\right)$ is the topological degree of f^{g}.
Obviously, if $\operatorname{dim} V_{g} \neq \operatorname{dim} W_{g}$, then $d\left(f^{g}\right)=0$. Note that $\lambda_{-1}\left(\Sigma_{i} k_{i} \rho_{i}\right)=\prod_{i}\left(\lambda_{-1} \rho_{i}\right)^{k_{i}}$. When ρ_{i} is a 1-dim representation, $\lambda_{-1} \rho_{i}=\left(1-\rho_{i}\right)$. When ρ_{i} is a 2 -dim representation h, we have $\lambda_{-1} \rho_{i}=(2-h)$. Suppose $\phi \in S^{1} \subset \operatorname{Pin}(2)$ is the element generating a dense subgroup of $S^{1}, J \in \operatorname{Pin}(2)$ is an element in the set of quaternion. The action of ϕ on the 2-dim representation h is nontrivial and on the 1 -dim representation $\tilde{1}$ is trivial. J acts on h with two invariant subspaces. The
action of J on them is multiplying $\pm \sqrt{-1}$. In the following, to be simple we denote α_{f} by α, denote V_{g} and W_{g} by V and W.

3. Results

Theorem 1 Let X be a closed smooth 4-manifold which is homotopy equivalent to $S^{2} \times S^{2}$. If X admits a smooth spin alternating group A_{5} action with $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)$, then $\operatorname{Ind}_{A_{5}} D_{X}=a_{0}\left(\rho_{0}-2 \rho_{1}+\rho_{4}\right)+c_{0}\left(\rho_{2}-\rho_{1}\right)$, where a, b are integers.
Proof. Obviously, $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)=1, k=-\sigma(X) / 16=0$ and $m=b_{2}^{+}(X)=1$. For

$$
s\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}
$$

and

$$
t\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=a_{1} \rho_{0}+b_{1} \rho_{1}+c_{1} \rho_{2}+d_{1} \rho_{3}+e_{1} \rho_{4}
$$

we have

$$
\begin{gathered}
a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}=0 \\
a_{1}=1 \\
b_{1}=c_{1}=d_{1}=e_{1}=0 .
\end{gathered}
$$

Note that $\alpha \in R\left(\operatorname{Pin}(2) \times A_{5}\right)$, then it must in the form

$$
\alpha=\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i} h_{i},
$$

where $\alpha_{i}=l_{i} \rho_{0}+m_{i} \rho_{1}+n_{i} \rho_{2}+q_{i} \rho_{3}+r_{i} \rho_{4}, i \geq 0$ and $\tilde{\alpha}_{0}=\tilde{l}_{0} \rho_{0}+\tilde{m}_{0} \rho_{1}+\tilde{n}_{0} \rho_{2}+\tilde{q}_{0} \rho_{3}+\tilde{r}_{0} \rho_{4}$.
By the action of ϕ,

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi}=-\left(a_{1}+3 b_{1}+3 c_{1}+4 d_{1}+5 e_{1}\right)=-1 .
$$

Then from T. tom Dieck's character formula, we get $\operatorname{tr}_{\phi} \alpha=0$.
Notice that ϕt acts non-trivially on $V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h$. t acts trivially on ρ_{0}. The actions of t on $\rho_{1}, \rho_{2}, \rho_{4}$ all have a 1-dim invariant subspace, while the action of t on ρ_{3} has a 2-dim invariant subspace. The above actions give rise to

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi t}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi t}=-\left(a_{1}+b_{1}+c_{1}+2 d_{1}+e_{1}\right)=-1
$$

Hence $\operatorname{tr}_{\phi t} \alpha=0$.
The action of ϕx on $V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h$ is non-trivial while it is trivial on $\tilde{1}$. x acts on ρ_{1} and ρ_{2} both with a 1-dim invariant subspace while it has a 2-dim invariant subspace on ρ_{3} and a 3-dim invariant subspace on ρ_{4} respectively.

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi x}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi x}=-\left(a_{1}+b_{1}+c_{1}+2 d_{1}+3 e_{1}\right)=-1
$$

Therefore $\operatorname{tr}_{\phi x} \alpha=0$.
The action of ϕs on $V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h$ is nontrivial. s acts on ρ_{0} trivially and with a 1-dim invariant subspace on ρ_{1}, ρ_{2} and ρ_{4} respectively. Thus we have

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi s}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi s}=-\left(a_{1}+b_{1}+c_{1}+e_{1}\right)=-1
$$

For the same reason, we have

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi s^{2}}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{\phi s^{2}}=-\left(a_{1}+b_{1}+c_{1}+e_{1}\right)=-1
$$

Thus $\operatorname{tr}_{\phi s} \alpha=\operatorname{tr}_{\phi s^{2}} \alpha=0$.
In summary, if $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)=1$ then we have $\operatorname{tr}_{\phi} \alpha=\operatorname{tr}_{\phi t} \alpha=\operatorname{tr}_{\phi x} \alpha=\operatorname{tr}_{\phi s} \alpha=\operatorname{tr}_{\phi s^{2}} \alpha=0$ which implies that

$$
\begin{aligned}
0 & =\operatorname{tr}_{\phi} \alpha=\operatorname{tr}_{\phi}\left(\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i} h_{i}\right) \\
& =\operatorname{tr}_{\phi} \alpha_{0}+\operatorname{tr}_{\phi} \tilde{\alpha}_{0}+\sum_{i=1}^{\infty} \operatorname{tr}_{\phi} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right) \\
& =\left(l_{0}+3 m_{0}+3 n_{0}+4 q_{0}+5 r_{0}\right)+\left(\tilde{l}_{0}+3 \tilde{m}_{0}+3 \tilde{n}_{0}+4 \tilde{q}_{0}+5 \tilde{r}_{0}\right)+\sum_{i=1}^{\infty} \operatorname{tr}_{\phi} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right),
\end{aligned}
$$

$$
\begin{aligned}
& 0=\operatorname{tr}_{\phi t} \alpha=\operatorname{tr}_{t}\left(\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right)\right) \\
& =\left(l_{0}+q_{0}-r_{0}\right)+\left(\tilde{l}_{0}+\tilde{q}_{0}-\tilde{r}_{0}\right)+\sum_{i=1}^{\infty} \operatorname{tr}_{t} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right), \\
& 0=\operatorname{tr}_{\phi x} \alpha=\operatorname{tr}_{x}\left(\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right)\right) \\
& =\left(l_{0}-m_{0}-n_{0}+r_{0}\right)+\left(\tilde{l}_{0}-\tilde{m}_{0}-\tilde{n}_{0}+\tilde{r}_{0}\right)+\sum_{i=1}^{\infty} \operatorname{tr}_{x} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right), \\
& 0=\operatorname{tr}_{\phi s} \alpha=\operatorname{tr}_{s}\left(\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right)\right) \\
& =\left[l_{0}+\left(1+\omega+\omega^{4}\right) m_{0}+\left(1+\omega^{2}+\omega^{3}\right) n_{0}-q_{0}\right]+ \\
& {\left[\tilde{l}_{0}+\left(1+\omega+\omega^{4}\right) \tilde{m}_{0}+\left(1+\omega^{2}+\omega^{3}\right) \tilde{n}_{0}-\tilde{q}_{0}\right]+\sum_{i=1}^{\infty} \operatorname{tr}_{s} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right),} \\
& 0=\operatorname{tr}_{\phi s^{2}} \alpha=\operatorname{tr}_{s}^{2}\left(\alpha_{0}+\tilde{\alpha}_{0} \tilde{1}+\sum_{i=1}^{\infty} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right)\right) \\
& =\left[l_{0}+\left(1+\omega^{2}+\omega^{3}\right) m_{0}+\left(1+\omega+\omega^{4}\right) n_{0}-q_{0}\right]+ \\
& {\left[\tilde{l}_{0}+\left(1+\omega^{2}+\omega^{3}\right) \tilde{m}_{0}+\left(1+\omega+\omega^{4}\right) \tilde{n}_{0}-\tilde{q}_{0}\right]+\sum_{i=1}^{\infty} \operatorname{tr}_{s^{2}} \alpha_{i}\left(\phi^{i}+\phi^{-i}\right) .}
\end{aligned}
$$

From these equations we can conclude $\alpha_{0}=-\tilde{\alpha}_{0}$ and $\alpha_{i}=0, i>0$, that is $\alpha=\alpha_{0}(1-\tilde{1})$.
Since J acts non-trivially on both h and $\tilde{1}$, and $\operatorname{dim} V_{J}=\operatorname{dim} W_{J}=0$, we have $d\left(f^{J}\right)=1$. Besides, $\operatorname{tr}_{J} h=0$ and $\operatorname{tr}_{J} \tilde{1}=-1$. Then we have $\operatorname{tr}_{J}(\alpha)=\operatorname{tr}_{J}\left((1-\tilde{1})^{m}(2-h)^{-2 k}\right)=2^{m-2 k}$.
Since the action of $J t$ is non-trivial on $V h$ and $W \tilde{1}$, we have $d\left(f^{J t}\right)=1$. Then

$$
\begin{aligned}
& \operatorname{tr}_{J t}(\alpha) \\
= & \operatorname{tr}_{J t}\left[\lambda-1\left(a_{1}\right) \tilde{1}-\lambda_{-1}\left(a_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}\right) h\right] \\
= & \operatorname{tr}_{J t}\left[(1-\tilde{1})^{a_{1}}(1-h)^{-a_{0}}\left(1-\rho_{1} h\right)^{-b_{0}}\left(1-\rho_{2} h\right)^{-c_{0}}\left(1-\rho_{3} h\right)^{-d_{0}}\left(1-\rho_{4} h\right)^{-e_{0}}\right] \\
= & \frac{2^{a_{1}}}{2^{a_{0}}\left[2\left(1+\varepsilon^{2}\right)(1+\varepsilon)\right]^{b_{0}}\left[2(1+\varepsilon)\left(1+\varepsilon^{2}\right)\right]^{c_{0}}\left[2^{2}\left(1+\varepsilon^{2}\right)(1+\varepsilon)\right]^{d_{0}}\left[2\left(1+\varepsilon^{2}\right)^{2}(1+\varepsilon)^{2}\right]^{e_{0}}} \\
= & 2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+2 d_{0}+e_{0}\right)} .
\end{aligned}
$$

Here the 3-dim representation ρ_{1} can be decomposed into three complex lines, the actions of t on them are multiplying 1 , ε and ε^{2}, where $\varepsilon=e^{2 \pi i / 3}$. Similarly, the action of t on the three subspaces of representation ρ_{2} is $1, \varepsilon^{2}$ and ε. For the 4-dimensional representation ρ_{3}, the action of t is $1,1, \varepsilon, \varepsilon^{2}$. For the 5 -dimensional representation ρ_{4}, the action of t is 1 , $\varepsilon, \varepsilon, \varepsilon^{2}, \varepsilon^{2}$.
Since $J x$ acts non-trivially on both $V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h$ and $W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) \tilde{1}$, we have

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{J x}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{J x}=0
$$

Consequently, $d\left(f^{J x}\right)=1$. Then

$$
\begin{aligned}
\operatorname{tr}_{J x}(\alpha) & =\operatorname{tr}_{J x}\left[\lambda_{-1}\left(a_{1}\right) \tilde{1}-\lambda_{-1}\left(a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}\right) h\right] \\
& =\operatorname{tr}_{J x}\left[(1-\tilde{1})^{a_{1}}\left(1-\rho_{0} h\right)^{-a_{0}}\left(1-\rho_{1} h\right)^{-b_{0}}\left(1-\rho_{2} h\right)^{-c_{0}}\left(1-\rho_{3} h\right)^{-d_{0}}\left(1-\rho_{4} h\right)^{-e_{0}}\right] \\
& =2^{a_{1}-\left(a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}\right)} .
\end{aligned}
$$

Since $J s$ acts non-trivially on both $V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h$ and $W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) \tilde{1}$, we have

$$
\operatorname{dim}\left(V\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{J s}-\operatorname{dim}\left(W\left(\rho_{0}, \rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)\right)_{J s}=0
$$

thereby, $d\left(f^{J s}\right)=1$. From tom Dieck formula, we have

$$
\begin{aligned}
\operatorname{tr}_{J s}(\alpha)= & \operatorname{tr}_{J s}\left[\lambda_{-1}\left(a_{1}\right) \tilde{1}-\lambda_{-1}\left(a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}\right) h\right] \\
= & 2^{a_{1}} 2^{-a_{0}}\left[2\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{-b_{0}}\left[2\left(1+\omega^{4}\right)(1+\omega)\right]^{-c_{0}} \\
& {\left[\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)(1+\omega)\left(1+\omega^{3}\right)\right]^{-d_{0}}\left[2\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)(1+\omega)\left(1+\omega^{3}\right)\right]^{-e_{0}} } \\
= & 2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)}\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{b_{0}-c_{0}} .
\end{aligned}
$$

For the same reasons, we have

$$
\operatorname{tr}_{J s^{2}}(\alpha)=2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)}\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{c_{0}-b_{0}}
$$

By calculating directly, we have

$$
\begin{gather*}
\operatorname{tr}_{J} \alpha_{0}=l_{0}+3 m_{0}+3 n_{0}+4 q_{0}+5 r_{0}=2^{m-2 k-1}=1, \tag{1}\\
\operatorname{tr}_{t} \alpha_{0}=l_{0}+q_{0}-r_{0}=2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+2 d_{0}+e_{0}\right)-1}=2^{2\left(b_{0}+c_{0}+d_{0}+2 e_{0}\right)}, \tag{2}\\
\operatorname{tr}_{x} \alpha_{0}=l_{0}-m_{0}-n_{0}+r_{0}=2^{a_{1}-\left(a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}\right)-1}=2^{m-2 k-1}=1, \tag{3}\\
\operatorname{tr}_{s} \alpha_{0}=l_{0}+\left(1+\omega+\omega^{4}\right) m_{0}+\left(1+\omega^{2}+\omega^{3}\right) n_{0}-q_{0} \\
=2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)-1}\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{b_{0}-c_{0}}, \tag{4}\\
\operatorname{tr}_{s^{2}} \alpha_{0}=l_{0}+\left(1+\omega^{2}+\omega^{3}\right) m_{0}+\left(1+\omega+\omega^{4}\right) n_{0}-q_{0} \\
=2^{a_{1}-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)-1}\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{c_{0}-b_{0}} . \tag{5}
\end{gather*}
$$

Notice that we have the following relations.

$$
\begin{aligned}
\operatorname{tr}_{J x} \alpha & =\operatorname{tr}_{x}\left(2 \alpha_{0}\right)=2 \operatorname{tr}_{x} \alpha_{0} \\
\operatorname{tr}_{J t} \alpha & =\operatorname{tr}_{t}\left(2 \alpha_{0}\right)=2 \operatorname{tr}_{t} \alpha_{0} \\
\operatorname{tr}_{J s} \alpha & =\operatorname{tr}_{s}\left(2 \alpha_{0}\right)=2 \operatorname{tr}_{s} \alpha_{0} \\
\operatorname{tr}_{J s^{2}} \alpha & =\operatorname{tr}_{s^{2}}\left(2 \alpha_{0}\right)=2 \operatorname{tr}_{s^{2}} \alpha_{0}
\end{aligned}
$$

From (1) and (3) we get

$$
l_{0}+q_{0}+2 r_{0}=1
$$

which together with (2) shows us

$$
r_{0}=\frac{1}{3}\left[1-2^{2\left(b_{0}+c_{0}+d_{0}+2 e_{0}\right)}\right] .
$$

Since $r_{0} \in \mathbb{Z}$, so $b_{0}+c_{0}+d_{0}+2 e_{0} \geq 0$.
Now we consider $-X$, the reverse-oriented homotopy $S^{2} \times S^{2}$. If we denote by $\operatorname{Ind}_{A_{5}} D_{-X}=a_{0}^{\prime} \rho_{0}+b_{0}^{\prime} \rho_{1}+c_{0}^{\prime} \rho_{2}+d_{0}^{\prime} \rho_{3}+e_{0}^{\prime} \rho_{4}$, from the above discussion we know that $b_{0}^{\prime}+c_{0}^{\prime}+d_{0}^{\prime}+2 e_{0}^{\prime} \geq 0$. On the other hand, we have $\operatorname{Ind}_{A_{5}} D_{X}=-\operatorname{Ind}_{A_{5}} D_{-X}$, so $a_{0}^{\prime}=-a_{0}, b_{0}^{\prime}=-b_{0}, c_{0}^{\prime}=-c_{0}, d_{0}^{\prime}=-d_{0}$ and $e_{0}^{\prime}=-e_{0}$. From these equations, we get $b_{0}+c_{0}+d_{0}+2 e_{0} \leq 0$ and then $b_{0}+c_{0}+d_{0}+2 e_{0}=0$. Thus we have

$$
\begin{equation*}
l_{0}=1+m_{0}+n_{0}=1-q_{0} \tag{6}
\end{equation*}
$$

From (4) and (5), we have

$$
2 l_{0}+m_{0}+n_{0}-2 q_{0}=2^{-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)}\left[\left(\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right)^{c_{0}-b_{0}}+\left(\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right)^{b_{0}-c_{0}}\right]
$$

which along with (6) shows that

$$
q_{0}=\frac{2-2^{-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)}\left[\left(\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right)^{c_{0}-b_{0}}+\left(\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right)^{b_{0}-c_{0}}\right]}{5}
$$

Since $q_{0} \in \mathbb{Z}$ and $\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{c_{0}-b_{0}}+\left[\left(1+\omega^{2}\right)\left(1+\omega^{3}\right)\right]^{b_{0}-c_{0}}$ is a positive integer, we have $a_{0}+b_{0}+c_{0}+e_{0} \leq 0$. Using the reverse-orientation as before, we get $a_{0}+b_{0}+c_{0}+e_{0}=0$.
Thus we have the following equations

$$
\begin{gather*}
a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}=0, \tag{7}\\
a_{0}+b_{0}+c_{0}+e_{0}=0, \tag{8}\\
b_{0}+c_{0}+d_{0}+2 e_{0}=0, \tag{9}
\end{gather*}
$$

from which we get

$$
a_{0}=e_{0}, b_{0}=-c_{0}-2 e_{0}, d_{0}=0
$$

Thus $\operatorname{Ind}_{A_{5}} D_{X}=a_{0}\left(\rho_{0}-2 \rho_{1}+\rho_{4}\right)+c_{0}\left(\rho_{2}-\rho_{1}\right)$. This completes the proof of Theorem 1.
We can also study the G-Index of A_{5} action on homotopy $\#_{n} S^{2} \times S^{2}$ in the similar way, and get the following result.
Corollary 2 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. If X admits a spin alternating group A_{5} action with $b_{2}^{+}\left(X / A_{5}\right)=b_{2}^{+}(X)$, and denote by $\operatorname{Ind}_{A_{5}} D_{X}=a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}$, then $\left|b_{0}+c_{0}+d_{0}+2 e_{0}\right| \leq \frac{n-1}{2}$.
Notice that when X is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}, b_{2}^{+}(X)=n$ and $k=0$.
Theorem 3 Let X be a closed smooth 4-manifold which is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. Suppose X admit a smooth spin alternating group A_{5} action and $b_{2}^{+}\left(X / A_{5}\right)=0, b_{2}^{+}(X /<s>)=0$ and $b_{2}^{+}(X /<t>) \neq 0$. Then as an element of $R\left(A_{5}\right), \operatorname{Ind}_{A_{5}} D$ is of the form

$$
a_{0} \rho_{0}+b_{0}\left(\rho_{1}+\rho_{2}\right)+\left(a_{0}+b_{0}\right) \rho_{3}-\left(a_{0}+2 b_{0}\right) \rho_{4}
$$

and $n \equiv 0 \bmod 4$.
Proof. Let X is homotopy equivalent to $\sharp_{n} S^{2} \times S^{2}$. Next we assume $b_{2}^{+}\left(X / A_{5}\right)=0, b_{2}^{+}(X /<s>)=0$ and $b_{2}^{+}(X /<t>) \neq 0$, that is $a_{1}=b_{1}=c_{1}=e_{1}=0$ and $d_{1} \neq 0$. Then $b_{2}^{+}(X)=a_{1}+3 b_{1}+3 c_{1}+4 d_{1}+5 e_{1}=4 d_{1}$. Since $d_{1} \in \mathbb{Z}$, we have $n \equiv 0 \bmod 4$.
Considering the action of ϕs, we know the action of ϕs on $h, \rho_{1} h, \rho_{2} h, \rho_{3} h, \rho_{4} h$ and $\rho_{3} \tilde{1}$ are all non-trivial but it acts on $1, \rho_{1} \tilde{1}, \rho_{2} \tilde{1}, \rho_{4} \tilde{1}$ all with a 1-dimensional invariant subspace. So

$$
\operatorname{dim}\left(V\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) h\right)_{\phi s}-\operatorname{dim}\left(W\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right) \tilde{1}\right)_{\phi s}=-\left(a_{1}+b_{1}+c_{1}+e_{1}\right)=0
$$

and then $d\left(f^{\phi s}\right)=1$. By tom Dieck formula, we have

$$
\begin{aligned}
\operatorname{tr}_{\phi s} \alpha= & \operatorname{tr}_{\phi s}\left[\lambda_{-1}\left(d_{1} \rho_{3}\right) \tilde{1}-\lambda_{-1}\left(a_{0} \rho_{0}+b_{0} \rho_{1}+c_{0} \rho_{2}+d_{0} \rho_{3}+e_{0} \rho_{4}\right) h\right] \\
= & {\left[(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{3}\right)\left(1-\omega^{4}\right)\right]^{d_{1}}\left[(1-\phi)\left(1-\phi^{-1}\right)\right]^{-\left(a_{0}+b_{0}+c_{0}+e_{0}\right)} } \\
& {\left[\left(1-\omega^{2} \phi\right)\left(1-\omega^{2} \phi^{-1}\right)\right]^{-\left(c_{0}+d_{0}+e_{0}\right)}\left[\left(1-\omega^{3} \phi\right)\left(1-\omega^{3} \phi^{-1}\right)\right]^{-\left(c_{0}+d_{0}+e_{0}\right)} } \\
& {\left[(1-\omega \phi)\left(1-\omega \phi^{-1}\right)\right]^{-\left(b_{0}+d_{0}+e_{0}\right)}\left[\left(1-\omega^{4} \phi\right)\left(1-\omega^{4} \phi^{-1}\right)\right]^{-\left(b_{0}+d_{0}+e_{0}\right)} . }
\end{aligned}
$$

Since $\operatorname{tr}_{s \bullet} \alpha £ U(1) \rightarrow \mathbb{C}$ is a C^{0}-function and ϕ is a generic element, then $a_{0}+b_{0}+c_{0}+e_{0} \leq 0, c_{0}+d_{0}+e_{0} \leq 0$, $b_{0}+d_{0}+e_{0} \leq 0$. Besides, $\operatorname{dim}\left(\operatorname{Ind} D_{A_{5}}\right)=a_{0}+3 b_{0}+3 c_{0}+4 d_{0}+5 e_{0}=0$. Then we have

$$
\begin{equation*}
a_{0}+b_{0}+c_{0}+e_{0}=c_{0}+d_{0}+e_{0}=b_{0}+d_{0}+e_{0}=0 \tag{10}
\end{equation*}
$$

which means $b_{0}=c_{0}, d_{0}=a_{0}+b_{0}$ and $e_{0}=-\left(a_{0}+2 b_{0}\right)$. This completes the proof of Theorem.

4. An example of Theorem 1.

As we know there exist a smooth action of A_{5} on the standard $S^{2} \times S^{2}$ induced by the icosahedral action on each factor. Furthermore, the fixed points of this action for every non-trivial element is 4 isolated points. Next we compute $\operatorname{Ind}_{A_{5}} D_{X}$ as a virtual A_{5}-representation.
(1) When $g=1, \operatorname{spin}(g, X)=-\frac{\operatorname{sign}(X)}{8}=0$.
(2) When $g=t$, denote m_{+}, m_{-}the number of fixed points with local representation $(1,2)$ and $(1,1)$ respectively. Besides

$$
\begin{gathered}
v_{+}(P)=\frac{1}{\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right)\left(\left(\zeta^{2}\right)^{1 / 2}-\left(\zeta^{2}\right)^{-1 / 2}\right)}=1 / 3 \\
v_{-}(P)=\frac{1}{\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right)\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right)}=-1 / 3
\end{gathered}
$$

Since $\operatorname{sign}(X /<g>)$ is integer, we have $m_{+}=m_{-}=2$. Then $\operatorname{spin}(g, X)=m_{+} v_{+}(P)+m_{-} v_{-}(P)=0$.
(3) When $g=x$, two of the fixed points have $v(P)=-1 / 4$, and the other two have $v(P)=+1 / 4$. Then $\operatorname{spin}(g, X)=-1$.
(4) When $g=s$, the local representation of the 4 fixed points may be of type $(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4)$ or $(4,4)$. Besides we have

$$
\begin{gathered}
v_{(1,1)}=-v_{(1,4)}=v_{(4,4)}=\frac{1}{\zeta+\zeta^{4}-2} \\
v_{(1,2)}=v_{(3,4)}=\frac{1}{-2 \zeta^{2}-2 \zeta^{3}-1}, \\
v_{(1,3)}=v_{(2,4)}=\frac{1}{-2 \zeta-2 \zeta^{4}-1}, \\
v_{(2,2)}=-v_{(2,3)}=v_{(3,3)}=\frac{1}{\zeta^{2}+\zeta^{3}-2}
\end{gathered}
$$

Note that

$$
\begin{gathered}
\frac{1}{\zeta+\zeta^{4}-2}+\frac{1}{\zeta^{2}+\zeta^{3}-2}=-1 \\
\frac{1}{-2 \zeta^{2}-2 \zeta^{3}-1}+\frac{1}{-2 \zeta-2 \zeta^{4}-1}=0
\end{gathered}
$$

If $\operatorname{spin}(g, X)$ is rational, then $\operatorname{spin}(g, X)=0, \pm 1$ or ± 2.
(5) When $g=s^{2}$, the result is the same as above.

Then the coefficient $a_{0}, b_{0}, c_{0}, d_{0}$ and e_{0} can be computed as follows.

$$
a_{0}=\frac{1 \times 1 \times 0+1 \times 20 \times 0+1 \times 15 \times 0+1 \times 12 \times \operatorname{spin}(s, X)+1 \times 12 \times \operatorname{spin}\left(s^{2}, X\right)}{60}
$$

Since a_{0} is an integer, the only possible case is $a_{0}=0$. Similarly, $b_{0}=c_{0}=d_{0}=e_{0}=0$. Thus $\operatorname{Ind}_{A_{5}} D_{X}=0$. This is consistent with Theorem 1.

References

Bryan, J. (1998). Seiberg-Witten theory and $\mathbb{Z} / 2^{p}$ actions on spin 4-manifolds. Math. Res. Letter, 5, 165-183. http://dx.doi.org/10.4310/MRL.1998.v5.n2.a3
Fang, F. (2001). Smooth group actions on 4-manifolds and Seiberg-Witten theory. Diff. Geom. and its Applications, 14, 1-14. http://dx.doi.org/10.1016/S0926-2245(00)00036-X
Freedman, M. H., \& Quinn, F. (1990). The topology of 4-manifolds. Princeton Mathematical Series. 39, Princeton University Press, Princeton.
Furuta, M. (2001). Monopole equation and $\frac{11}{8}$-conjecture. Math. Res. Letter, 8, 279-291. http://dx.doi.org/10.4310/MRL.2001.v8.n3.a5
Liu, X. (2005). On S3-actions on spin 4-manifolds. Carpathian J. Math., 21(1-2), 137C142.
Liu, X. (2006). On spin alternating group actions on spin 4-manifolds. Korean Math. Soc., 6, 1183-1197.

Liu, X., \& Hongxia, L. (2008). Symmetric group actions on homotopy $S 2 \times S 2$. Mon. Math., 153(1), 49-57. http://dx.doi.org/10.1007/s00605-007-0514-0
Serre, J. P. (1977). Linear Representation of Finite Groups. Springer-Verlag, New York. http://dx.doi.org/10.1007/978-1-4684-9458-7

Tom Dieck, T. (1979). Transformation Groups and Representation Theory. Lecture Notes in Mathematics. 766, Springer, Berlin. http://dx.doi.org/10.1007/BFb0085965

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

