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“The hardest single part of building a software system 
is deciding precisely what to build. No other part of the 
conceptual work is as difficult as establishing the 
detailed technical requirements...No other part of the 
work so cripples the resulting system if done wrong. No 
other part is as difficult to rectify later.” [Brooks 87]   

1.Introduction 
Deciding precisely what to build and documenting the 
results is the goal of the requirements phase of software 
development. For many developers of large, complex 
software systems, requirements are their biggest 
software engineering problem. While there is 
considerable disagreement on how to solve the 
problem, few would disagree with Brooks’ assessment 
that no other part of a development is as difficult to do 
well or as disastrous in result when done poorly. The 
purpose of this tutorial is to help the reader understand 
why the apparently simple notion of “deciding what to 
build” is so difficult in practice, where the state of the 
art does and does not address these difficulties, and 
what hope we have for doing better in the future.  
This paper does not survey the literature but seeks to 
provide the reader with an understanding of the 
underlying issues. There are currently many more 
approaches to requirements than one can cover in a 
short paper. This diversity is the product of different 
views about which of the many problems in 
requirements is pivotal and different assumptions about 
the desirable characteristics of a solution. This paper 
attempts to impart a basic understanding of the many 
facets of the requirements problem and the tradeoffs 
involved in attempting a solution. Thus forearmed, the 
reader may make his own assessment of the claims of 
different requirements methods and their likely 
effectiveness in addressing his particular needs. 

We begin with basic terminology and some historical 
data on the requirements problem. We examine the 
goals of the requirements phase and the problems that 
can arise in attempting those goals. As in Brooks’s 
article [Brooks 87], much of the discussion is 
motivated by the distinction between the difficulties 
inherent in what one is trying to accomplish (the 
“essential” difficulties) and those one creates through 
inadequate practice (“accidental” difficulties). We 
discuss how a disciplined software engineering process 
helps address many of the accidental difficulties and 
why the focus of such a disciplined process is on 
producing a written specification of the detailed 
technical requirements. We examine current technical 
approaches to requirements in terms of the specific 
problems each approach seeks to address. Finally, we 
examine technical trends and discuss where significant 
advances are likely to occur in the future. 
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2.Requirements and the Software Life 
Cycle 

A variety of software life–cycle models have been 
proposed with an equal variety of terminology. Davis 
[Davis 88] provides a good summary. While differing 
in the detailed decomposition of the steps (e.g., 
prototyping models) or in the surrounding management 
and control structure (e.g., to manage risk), there is 
general agreement on the core elements of the model. 
Figure 1 [Davis 93] is a version of the common model 
that illustrates the relationship between the software 
development stages and the related testing and 
acceptance phases  
When software is created in the context of a larger 
hardware and software system, system requirements are 
defined first followed by system design. System design 
includes decisions about which parts of the system 
requirements will be allocated to hardware and which 
to software. For software–only systems, the life cycle 
model begins with analysis of the software 

requirements. From this point on, the role of software 
requirements in the development model is the same 
whether or not the software is part of a larger system, as 
shown in Figure 2 [Davis 93]. For this reason, the 
remainder of our discussion does not distinguish 
whether or not software is developed as part of a larger 
system. For an overview of system versus software 
issues, the reader is referred to Dorfman and Thayer’s 
survey [Thayer 90]. 

In a large system development, the software 
requirements specification may play a variety of roles: 

• For customers, the requirements typically 
document what should be delivered and may 
provide the contractual basis for the 
development.  

• For managers it may provide the basis for 
scheduling and a yardstick for measuring 
progress.  

• For the software designers, it may provide the 
“design–to” specification.  

• For coders it defines the range of acceptable 
implementations and is the final authority on 
the outputs that must be produced. 

• For quality assurance personnel, it is the basis 
for validation, test planning and verification.  

The requirements may also used by such diverse groups 
as marketing and governmental regulators. 
It is common practice (e.g., see [Thayer 90]) to classify 
software requirements as “functional” or “non-
functional.” While definitions vary somewhat in detail, 
“functional” typically refers to requirements defining 
the acceptable mappings between system inputs values 
and corresponding output values. “Non-functional” 
then refers to all other constraints including, but not 
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limited to, performance, dependability, maintainability, 
reusability, and safety. 
While widely used, the classification of requirements as 
”functional” and ”non-functional” is confusing in its 
terminology and of little help in understanding common 
properties of different kinds of requirements. The word 
“function” is one of the most overloaded in computer 
science and its only rigorous meaning, that of a 
mathematical function, is not what is meant here. The 
classification of requirements as functional and non–
functional offers little help in understanding common 
attributes of different types of requirements since it 
partitions classes of requirements with markedly similar 
qualities (e.g., output values and output deadlines) 
while grouping others that have common only what 
they are not (e.g., output deadlines and maintainability 
goals). 
A more useful distinction is between what can be 
described as “behavioral requirements” and 
“developmental quality attributes” with the following 
definitions [Clements 95]: 

• Behavioral requirements - Behavioral 
requirements include any and all information 
necessary to determine if the run–time behavior 
of a given implementation is acceptable. The 
behavioral requirements define all constraints 
on the system outputs (e.g., value, accuracy, 
timing) and resulting system state for all 
possible inputs and current system state. By 
this definition, security, safety, performance, 
timing, and fault–tolerance are all behavioral 
requirements. 

• Developmental quality attributes - 
Developmental quality attributes include any 
constraints on the attributes of the system’s 
static construction. These include properties 
like testability, changeability, maintainability, 
and reusability. 

Behavioral requirements have in common that they are 
properties of the run–time behavior of the system and 
can (at least in principle) be validated objectively by 
observing the behavior of the running system, 
independent of its method of implementation. In 
contrast, developmental quality attributes are properties 
of the system‘s static structures (e.g., modularization) 
or representation. Developmental quality attributes 
have in common that they are functions of the 
development process and methods of construction. 
Assessment of developmental quality attributes are 
necessarily relativistic - for example, we do not say that 
a design is or is not maintainable but that one design is 
more maintainable than another. 

3.A Big Problem 
Requirements problems are persistent, pervasive, and 
costly. Evidence is most readily available for the large 
software systems developed for the U.S. Government 
since the results are a matter of public record. As soon 
as software became a significant part of such systems, 
developers identified requirements as a major source of 
problems. For example, developers of the early 
Ballistic Missile Defense System noted that: 

In nearly every software project that fails to 
meet performance and cost goals, requirements 
inadequacies play a major and expensive role 
in project failure [Alford 79]. 

Nor has the problem mitigated over the intervening 
years. A recent study of problems in mission critical 
defense systems identified requirements as a major 
problem source in two thirds of the systems examined 
[GAO 92]. This is consistent with results of a survey of 
large aerospace firms that identified requirements as the 
most critical software development problem [Faulk 92]. 
Likewise, studies by Lutz [Lutz 92] identified 
functional and interface requirements as the major 
source of safety related software errors in NASA’s 
Voyager and Galileo spacecraft. 
Results of industry studies in the 1970’s described by 
Boehm [Boehm 81], and since replicated a number of 
times, showed that requirements errors are the most 
costly. These studies all produced the same basic result: 
the earlier in the development process an error occurs 
and the later the error is detected, the more expensive it 
is to correct. Moreover, the relative cost rises quickly. 
As shown in Figure 3, an error that costs a dollar to fix 
in the requirements phase may cost 100 to 200 dollars 
to fix if it is not corrected until the system is fielded or 
in the maintenance phase. 

Stage Relative Repair Cost 
Requirements  1-2 
Design ˜ 5 
Coding ˜ 10 
Unit test ˜ 20 
System test ˜ 50 
Maintenance ˜ 200 

Figure 3: Relative cost to repair a software error in 
different stages 
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The costs of such failures can be enormous. For 
example, the 1992 GAO report notes that one system, 
the Cheyenne Mountain Upgrade, will be delivered 
eight years late, exceed budget by $600 million, and 
have less capability than originally planned, largely due 
to requirements-related problems. Prior GAO reports 
[GAO 79] suggest that such problems are the norm 
rather than the exception. While data from private 
industry is less readily available, there is little reason to 
believe that the situation is significantly different. 
In spite of presumed advances in software engineering 
methodology and tool support, the requirements 
problem has not diminished. This does not mean that 
the apparent progress in software engineering is 
illusory. While the features of the problem have not 
changed, the applications have grown significantly in 
capability, scale, and complexity. A reasonable 
conclusion is that the growing ambitiousness of our 
software systems has outpaced the gains in 
requirements technology, at least as such technology is 
applied in practice. 

4.Why are Requirements Hard? 
It is generally agreed that the goal of the requirements 
phase is to establish and specify precisely what the 
software must do without describing how to do it. So 
simple seems this basic intent that it is not at all evident 
why it is so difficult to accomplish in practice. If what 
we want to accomplish is so clear, why is it so hard? To 
understand this, we must examine more closely the 
goals of the requirements phase, where errors originate, 
and why the nature of the task leads to some inherent 
difficulties. 
Most authors agree in principle that requirements 
should specify “what” rather than “how.” In other 
words, the goal of requirements is to understand and 
specify the problem to be solved rather than the 
solution. For example, the requirements for an 
automated teller system should talk about customer 
accounts, deposits, and withdrawals rather than the 
software algorithms and data structures. The most basic 
reason for this is that a specification in terms of the 
problem captures the actual requirements without over 
constraining the subsequent design or implementation. 
Further, solutions in software terms are typically more 
complex, more difficult to change, and harder to 
understand (particularly for the customer) than a 
specification of the problem.  
Unfortunately, distinguishing “what” from “how” itself 
represents a dilemma. As Davis [Davis 88], among 
others, points out, the distinction between what and 
how is necessarily a function of perspective. A 

specification at any chosen level of system 
decomposition can be viewed as describing the “what” 
for the next level. Thus customer needs may define the 
“what” and the decomposition into hardware and 
software the corresponding “how”. Subsequently, the 
behavioral requirements allocated to a software 
components define its “what,” the software design, the 
“how, and so on. The upshot is that requirements 
cannot be effectively discussed at all without prior 
agreement on which system one is talking about and at 
what level of decomposition. One must agree on what 
constitutes the problem space and what constitutes the 
solution space - the analysis and specification of 
requirements then properly belongs in the problem 
space. 
In discussing requirements problems one must also 
distinguish the development of large, complex systems 
from smaller efforts (e.g., developments by a single or 
small team of programmers). Large system 
developments are multi–person efforts. They are 
developed by teams of tens to thousands of 
programmers. The programmers work in the context of 
an organization typically including management, 
systems engineering, marketing, accounting, and 
quality assurance. The organization itself must operate 
in the context of outside concerns also interested in the 
software product, including the customer, regulatory 
agencies, and suppliers.  
Even where only one system is intended, large systems 
are inevitably multi–version as well. As the software is 
being developed, tested, and even fielded, it evolves. 
Customers understand better what they want, 
developers understand better what they can and cannot 
do within the constraints of cost and schedule, and 
circumstances surrounding development change. The 
results are changes in the software requirements and, 
ultimately, the software itself. In effect, several 
versions of a given program are produced, if only 
incrementally. Such unplanned changes occur in 
addition to the expected variations of planned 
improvements. 
The multi–person, multi–version nature of large system 
development introduces problems that are both 
quantitatively and qualitatively different from those 
found in smaller developments. For example, scale 
introduces the need for administration and control 
functions with the attendant management issues that do 
not exist on small projects. The quantitative effects of 
increased complexity in communication when the 
number of workers rises are well documented by 
Brooks [Brooks 75]. In the following discussion, it is 
this large system development context we will assume 
since that is the one in which the worst problems occur 
and where the most help is needed.  
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Given the context of multi–person, multi–version 
development, our basic goal of specifying what the 
software must do can be decomposed into the following 
subgoals: 

 1. Understand precisely what is required of the 
software. 

 2. Communicate the understanding of what is 
required to all of the parties involved in the 
development. 

 3. Provide a means for controlling the production 
to ensure that the final system satisfies the 
requirements (including managing the effects of 
changes). 

It follows that the source of most requirements errors is 
in the failure to adequately accomplish one of these 
goals, i.e.: 

 1. The developers failed to understand what was 
required of the software by the customer, end user, 
or other parties with a stake in the final product. 

 2. The developers did not completely and 
precisely capture the requirements or subsequently 
communicate the requirements effectively to other 
parties involved in the development.  

 3. The developers did not effectively manage the 
effects of changing requirements or ensure the 
conformance of down–stream development steps 
including design, code, integration, test, or 
maintenance to the system requirements. 

The end result of such failures is a software system that 
does not perform as desired or expected, a development 
that exceeds budget and schedule or, all too frequently, 
failure to deliver any working software at all. 

4.1  Essential Difficulties 
Even our more detailed goals appear reasonably 
straightforward, why then do so many development 
efforts fail to achieve them? The short answer is that 
the mutual satisfaction of these goals, in practice, is 
inherently difficult. To understand why, it is useful to 
reflect on some points raised by  Brooks [Brooks 87] 
on why software engineering is hard and on the 
distinction he makes between essential difficulties - 
those inherent in the problem, and the accidental 
difficulties - those introduced through imperfect 
practice. For though requirements are inherently 
difficult, there is no doubt that these difficulties are 
many times multiplied by the inadequacies of current 
practice. 

The following essential difficulties attend each (in 
some cases all) of the requirements goals: 

• Comprehension. People do not know what they 
want. This does not mean that people do not 
have a general idea of what the software is for. 
Rather, they do not begin with a precise and 
detailed understanding of what functions 
belong in the software, what the output must be 
for every possible input, how long each 
operation should take, how one decision will 
affect another, and so on. Indeed, unless the 
new system is simply a reconstruction of an old 
one, such a detailed understanding at the outset 
is unachievable. Many decisions about the 
system behavior will depend on other decisions 
yet unmade and expectations will change as the 
problem (and attendant costs of alternative 
solutions) is better understood. Nonetheless, it 
is a precise and richly detailed understanding of 
expected behavior that is needed to create 
effective designs and develop correct code. 

• Communication. Software requirements are 
difficult to communicate effectively. As  
Brooks points out, the conceptual structures of 
software systems are complex, arbitrary, and 
difficult to visualize. The large software 
systems we are now building are among the 
most complex structures ever attempted. That 
complexity is arbitrary in the sense that it is an 
artifact of people’s decisions and prior 
construction rather than a reflection of 
fundamental properties (as, for example, in the 
case of of physical laws). To make matters 
worse, many of the conceptual structures in 
software have no readily comprehensible 
physical analogue so they are difficult to 
visualize.  

In practice, comprehension suffers under all of 
these constraints. We work best with regular, 
predictable structures, can comprehend only a 
very limited amount of information at one time, 
and understand large amounts of information 
best when we can visualize it. Thus the task of 
capturing and conveying software requirements 
is inherently difficult. 

The inherent difficulty of communication is 
compounded by the diversity of purposes and 
audiences for a requirements specification. 
Ideally a technical specification is written for a 
particular audience. The brevity and 
comprehensibility of the document depend on 
assumptions about common technical 
background and use of language. Such 
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commonality typically does not hold for the 
many diverse groups (e.g., customers, systems 
engineers, managers) that must use a software 
requirements specification. 

• Control. Inherent difficulties attend control of 
software development as well. The arbitrary 
and invisible nature of software makes it 
difficult to anticipate which requirements will 
be met easily and which will decimate the 
project’s budget and schedule if, indeed, they 
can be fulfilled at all. The low fidelity of 
software planning has become a cliche yet the 
requirements are often the best available basis 
for planning or for tracking to a plan.  

This situation is made incalculably worse by by 
software’s inherent malleability. Of all the 
problems bedeviling software mangers, few 
evoke such passion as the difficulties of dealing 
with frequent and arbitrary changes to 
requirements. For most systems, such changes 
remain a fact of life even after delivery. The 
continuous changes make it difficult to develop 
stable specifications, plan effectively, or 
control cost and schedule. For many industrial 
developers, change management is the most 
critical problem in requirements. 

• Inseparable concerns. In seeking solutions to 
the forgoing problems, we are faced with the 
additional difficulty that the issues cannot 
easily be separated and dealt with piecemeal. 
For example, developers have attempted to 
address the problem of changing requirements 
by baselining and freezing requirements before 
design begins. This proves impractical because 
of the comprehension problem - the customer 
may not fully know what he wants until he sees 
it. Similarly, the diversity of purposes and 
audiences is often addressed by writing a 
different specification for each. Thus there may 
be a system specification, a set of requirements 
delivered to customer, a distinct set of technical 
requirements written for the internal 
consumption of the software developers, and so 
on. However, this solution vastly increases the 
complexity, provides an open avenue for 
inconsistencies, and multiplies the difficulties 
of managing changes. 

These issues represent only a sample of the 
inherent dependencies between different facets 
of the requirements problem. The many distinct 
parties with an interest in a system’s 
requirements, the many different roles the 
requirements play, and the interlocking nature 

of software’s conceptual structures, all 
introduce dependencies between concerns and 
impose conflicting constraints on any potential 
solution. 

The implications are twofold. First we are 
constrained in the application of our most 
effective strategy for dealing with complex 
problems - divide and conquer. If a problem is 
considered in isolation, the solution is likely to 
aggravate other difficulties. Effective solutions 
to most requirements difficulties must 
simultaneously address more than one problem. 
Second, developing practical solutions requires 
making difficult tradeoffs. Where different 
problems have conflicting constraints, 
compromises must be made. Because the 
tradeoffs result in different gains or losses to 
the different parties involved, effective 
compromises require negotiation. These issues 
are considered in more detail when we discuss 
the properties of a good requirements 
specification. 

4.2  Accidental Difficulties 
While there is no doubt that software requirements are 
inherently difficult to do well, there is equally no doubt 
that common practice unnecessarily exacerbates the 
difficulty. We use the term “accidental” in contrast to 
“essential,”  not to imply that the difficulties arise by 
chance but that they are the product of common failings 
in management, elicitation, specification, or use of 
requirements. It is these failings that are most easily 
addressed by improved practice. 

• Written as an afterthought. It remains common 
practice that requirements documentation is 
developed only after the software has been 
written. For many projects, the temptation to 
rush into implementation before the 
requirements are adequately understood proves 
irresistible. This is understandable. Developers 
often feel like they are not really doing 
anything when they are not writing code; 
managers are concerned about schedule when 
there is no visible progress on the 
implementation. Then too, the intangible nature 
of the product mitigates toward early 
implementation. Developing the system is an 
obvious way to understand better what is 
needed and make visible the actual behavior of 
the product. The result is that requirements 
specifications are written as an afterthought (if 
at all). They are not created to guide the 
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developers and testers but treated as a 
necessary evil to satisfy contractual demands.  

Such after–the–fact documentation inevitably 
violates the principle of defining what the 
system must do rather than the how since it is a 
specification of the code as written. It is 
produced after the fact so it is not planned or 
managed as an essential part of the 
development but is thrown together.  In fact, it 
is not even available in time to guide 
implementation or manage development. 

• Confused in purpose. Because there are so 
many potential audiences for a requirements 
specification, with different points of view, the 
exact purpose of the document becomes 
confused. An early version is used to sell the 
product to the customer so it includes 
marketing hype extoling the product’s virtues. 
It is the only documentation of what the system 
does so it provides introductory, explanatory, 
and overview material. It is a contractual 
document so it is intentionally imprecise to 
allow the developer latitude in the delivered 
product or the customer latitude in making no–
cost changes. It is the vehicle for 
communicating decisions about software 
details to designers and coders so it 
incorporates design and implementation. The 
result is a document in which it is unclear 
which statements represent real requirements 
and which are more properly allocated to 
marketing, design, or other documentation. It is 
a document that attempts to be everything to 
everyone and ultimately serves no one well. 

• Not designed to be useful. Often in the rush to 
implementation little effort is expended on 
requirements. The requirements specification is 
not expected to be useful and, indeed, this turns 
out to be a self–fulfilling prophecy. Because 
the document is not expected to be useful little 
effort is expended on designing it, writing it, 
checking it, or managing its creation and 
evolution. The most obvious result is poor 
organization. The specification is written in 
English prose and follows the author’s stream 
of consciousness or the order of execution 
[Heninger 80].  

The resulting document is ineffective as a 
technical reference. It is unclear which 
statements represent actual requirements. It is 
unclear where to put or find particular 
requirements. There is no effective procedure 
for ensuring that the specification is consistent 

or complete. The is no systematic way to 
manage requirements changes. The 
specification is difficult to use and difficult to 
maintain. It quickly becomes out of date and 
loses whatever usefulness it might originally 
have had. 

• Lacks essential properties. Lack of 
forethought, confusion of purpose, or lack of 
careful design and execution all lead to 
requirements that lack properties critical to 
good technical specifications. The 
requirements, if documented at all, are 
redundant, inconsistent, incomplete, imprecise, 
and inaccurate.  

Where the essential difficulties are inherent in the 
problem, the accidental difficulties result from a failure 
to gain or maintain intellectual control over what is to 
be built. While the presence of the essential difficulties 
means that there can be no “silver bullet” that will 
suddenly render requirements easy, we can remove at 
least the accidental difficulties through a well though 
out, systematic, and disciplined development process. 
Such a disciplined process then provides a stable 
foundation for attacking the essential difficulties. 

5.  Role of a Disciplined Approach 
The application of discipline in analyzing and 
specifying software requirements can address the 
accidental difficulties. While there is now general 
agreement on the desirable qualities of a software 
development approach, the field is insufficiently mature 
to have standardized the development process. 
Nonetheless, it is useful to examine the characteristics 
of an idealized process and its products to understand 
where current approaches are weak and which current 
trends are promising. In general, a complete 
requirements approach will define: 

• Process: The (partially ordered) sequence of 
activities, entrance and exit criteria for each 
activity, which work product is produced in 
each activity, and what kind of people should 
do the work. 

• Products: The work products to be produced 
and, for each product, the resources needed to 
produce it, the information it contains, the 
expected audience, and the acceptance criteria 
the product must satisfy. 

Currently, there is little uniformity in different author’s 
decomposition of the requirements phase or in the 
terminology for the activities. Davis [Davis 88] 
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provides a good summary of the variations. Following 
Davis’s integrated model and terminology [Davis 93], 
the requirements phase consists of two conceptually 
distinct but overlapping activities corresponding to the 
first two goals for requirements enumerated previously: 

1. Problem analysis: The goal of problem analysis is 
to understand precisely what problem is to be 
solved. It includes identifying the exact purpose of 
the system, who will use it, the constraints on 
acceptable solutions, and the possible tradeoffs 
between conflicting constraints.  

2. Requirements specification: The goal of 
requirements specification is to create a document, 
the Software Requirements Specification (SRS), 
describing exactly what is to be built. The SRS 
captures the results of problem analysis and 
characterizes the set of acceptable solutions to the 
problem. 

In practice, the distinction between these activities is 
conceptual rather than temporal. Where both are 
needed, the developer typically switches back and forth 
between analysis of the problem and documentation of 
the results. When problems are well understood, the 
analysis phase may be virtually non–existent. When the 
system model and documentation are standardized or 
based on existing specifications, the documentation 
paradigm may guide the analysis [Hester 81].  

5.1  Problem Analysis  
Problem analysis is necessarily informal in the sense 
that there is no effective, closed end procedure that will 
guarantee success. It is an information acquiring, 
collating, and structuring process through which one 
attempts to understand all the various parts of a 
problem and their relationships. The difficulty in 
developing an effective understanding of large, 
complex software problems has motivated considerable 
effort to structure and codify problem analysis. 
The basic issues in problem analysis are: 

• How to effectively elicit a complete set of 
requirements from the customer or other 
sources? 

• How to decompose the problem into 
intellectually manageable pieces? 

• How to organize the information so it can be 
understood? 

• How to communicate about the problem with 
all the parties involved? 

• How to resolve conflicting needs?  

• How to know when to stop?  

5.2  Requirements Specification 
For substantial developments, the effectiveness of the 
requirements effort depends on how well the SRS 
captures the results of analysis and how useable the 
specification is. There is little benefit to developing a 
thorough understanding of the problem if that 
understanding is not effectively communicated to 
customers, designers, implementors, testers, and 
maintainers. The larger and more complex the system, 
the more important a good specification becomes. This 
is a direct result of the many roles the SRS plays in a 
multi–person, multi–version development [Parnas 86]: 

 1. The SRS is the primary vehicle for agreement 
between the developer and customer on exactly 
what is to be built. It is the document reviewed by 
the customer or his representative and often is the 
basis for judging fulfillment of contractual 
obligations. 

 2. The SRS records the results of problem 
analysis. It is the basis for determining where the 
requirements are complete and where additional 
analysis is necessary. Documenting the results of 
analysis allows questions about the problem to be 
answered only once during development. 

 3. The SRS defines what properties the system 
must have and the constraints on its design and 
implementation. It defines where there is, and is 
not, design freedom. It helps ensure that 
requirements decisions are made explicitly during 
the requirements phase, not implicitly during 
programming. 

 4. The SRS is the basis for estimating cost and 
schedule. It is management’s primary tool for 
tracking development progress and ascertaining 
what remains to be done. 

 5. The SRS is the basis for test plan development. 
It is the tester’s chief tool for determining the 
acceptable behavior of the software. 

 6. The SRS provides the standard definition of 
expected behavior for the system’s maintainers and 
is used to record engineering changes. 

For a disciplined software development, the SRS is the 
primary technical specification of the software and the 
primary control document. This is an inevitable result 
of the complexity of large systems and the need to 
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coordinate multi–person development teams. To ensure 
that the right system is built one must first understand 
the problem. To ensure agreement on what is to be built 
and the criteria for success, the results of that 
understanding must be recorded.  The goal of a 
systematic requirements process is thus the 
development of a set of specifications that effectively 
communicate the results of analysis. 
Requirement’s accidental difficulties are addressed 
through the careful analysis and specification of a 
disciplined process. Rather than developing the 
specification as an afterthought, requirements are 
understood and specified before development begins. 
One knows what one is building before attempting to 
build it. The SRS is the primary vehicle for 
communicating requirements between the developers, 
managers, and customers so the document is designed 
to be useful to that purpose. A useful document is 
maintained. 

6.Requirements for the Software 

Requirements Specification 
The goals of the requirements process, the attendant 
difficulties, and the role of the requirements 
specification in a disciplined process determine the 
properties of a “good” requirements specification. 
These properties do not mandate any particular 
specification method but do describe characteristics an 
effective method must possess. 
In discussing the properties of a good SRS, it useful to 
distinguish semantic properties from packaging 
properties [Faulk 92]. Semantic properties are a 
consequence of what the specification says (i.e., its 
meaning or semantics). Packaging properties are a 
consequence of how the requirements are written down 
- the format, organization, and presentation of the 
information. The semantic properties determine how 
effectively an SRS captures the software requirements. 
The packaging properties determine how useable the 
resulting specification is. Figure 4 illustrates the 
classification of properties of a good SRS: 

SRS Semantic Properties SRS Packaging Properties 
Complete Modifiable 
Implementation independent Readable 
Unambiguous and consistent Organized for reference and review 
Precise  
Verifiable  

Figure 4: Classification of SRS properties 
An SRS that satisfies the semantic properties of a good 
specification is: 

• Complete. The SRS defines the set of 
acceptable implementations. It should contain 
all the information needed to write software 
that is acceptable to the customer and no more. 
Any implementation that satisfies every 
statement in the requirements is an acceptable 
product. Where information is not available 
before development begins, areas of 
incompleteness must be explicitly indicated 
[Parnas 86].  

• Implementation independent. The SRS should 
be free of design and implementation decisions 
unless those decisions reflect actual 
requirements. 

• Unambiguous and Consistent. If the SRS is 
subject to conflicting interpretation, the 
different parties will not agree on what is to be 
built or whether the right software has been 

built. Every requirement should have only one 
possible interpretation. Similarly, no two 
statements of required behavior should conflict. 

• Precise. The SRS should define exactly the 
required behavior. For each output, it should 
define the range of acceptable values for every 
input. The SRS should define any applicable 
timing constraints such as minimum and 
maximum acceptable delay. 

• Verifiable. A requirement is verifiable if it is 
possible to determine unambiguously whether a 
given implementation satisfies the requirement 
or not. For example, a behavioral requirement 
is verifiable if it is possible to determine, for 
any given test case (i.e., an input and an 
output), whether the output represents an 
acceptable behavior of the software given the 
input and the system state. 
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An SRS that satisfies the packaging properties of a 
good specification1 is: 

• Modifiable. The SRS must be organized for 
ease of change. Since no organization can be 
equally easy to change for all possible changes, 
the requirements analysis process must identify 
expected changes and the relative likelihood of 
their occurrence. The specification is then 
organized to limit the effect of likely changes. 

• Readable. The SRS must be understandable by 
the parties that use it. It should clearly relate 
the elements of the problem space as 
understood by the customer to the observable 
behavior of the software. 

• Organized for reference and review.  The SRS 
is the primary technical specification of the 
software requirements. It is the repository for 
all the decisions made during analysis about 
what should be built. It is the document 
reviewed by the customer or his 
representatives. It is the primary arbitrator of 
disputes. As such the document must be 
organized for quick and easy reference. It must 
be clear where each decision about the 
requirements belongs. It must be possible to 
answer specific questions about the 
requirements quickly and easily. 

To address the difficulties associated with writing and 
using an SRS, a requirements approach must provide 
techniques addressing both semantic and packaging 
properties. It is also desirable that the conceptual 
structures of the approach treat the semantic and 
packaging properties as distinct concerns (i.e., as 
independently as possible). This allows one to change 
the presentation of the SRS without changing its 
meaning. 
In aggregate, these properties of a good SRS represent 
an ideal. Some of the properties may be unachievable, 
particularly over the short term. For example, a 
common complaint is that one cannot develop complete 
requirements before design begins because the 
customer does not yet fully understand what he wants 
or is still making changes. Further, different SRS 
“requirements” mitigate toward conflicting solutions. A 
commonly cited example is the use of English prose to 

                                                 
1. Reusability is also a packaging property and 
becomes an attribute of a good specification where 
reusability of requirements specifications is a goal. 

 

express requirements. English is readily understood but 
notoriously ambiguous and imprecise. Conversely, 
formal languages are precise and unambiguous, but can 
be difficult to read. 
Although the ideal SRS may be unachievable, 
possessing a common understanding of what constitutes 
an ideal SRS is important [Parnas 86] because it: 

• Provides a basis for standardizing an 
organization’s processes and products, 

• Provides a standard against which progress can 
be measured, and, 

• Provides guidance - it helps developers 
understand what needs to be done next and 
when they are finished. 

Because it is so often true that (1) requirements cannot 
be fully understood before at least starting to build the 
system and (2) a perfect SRS cannot be produced even 
when the requirements are understood, some 
approaches advocated in the literature do not even 
attempt to produce a definitive SRS. For example, 
some authors advocate going directly from a problem 
model to design or from a prototype implementation to 
the code. While such approaches may be effective on 
some developments, they are inconsistent with the 
notion of software development as an engineering 
discipline. The development of technical specifications 
is an essential part of a controlled engineering process. 
This does not mean that the SRS must be entire or 
perfect before anything else is done but that its 
development is a fundamental goal of the process as a 
whole. That we may currently lack the ability to write 
good specifications in some cases does not change the 
fact that it is useful and necessary to try. 

 7. State of the Practice 
Over the years, a large number of analysis and 
specification techniques have evolved. The general 
trend has been for software engineering techniques to 
be applied first to coding problems (e.g., complexity, 
ease of change), then to similar problems occurring 
earlier and earlier in the life cycle. Thus the concepts of 
structured programming led eventually to structured 
design and analysis. More recently, the concepts of 
object oriented programming have led to object 
oriented design and analysis. The following discussion 
characterizes the major schools of thought and provides 
pointers to instances of methods in each school. The 
general strengths and weaknesses of the various 
techniques are discussed relative to the requirements 
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difficulties and the desirable qualities of analysis and 
specification methods. 
It is characteristic of the immature state of requirements 
as a discipline that the more specific one gets, the less 
agreement there is. There is not only disagreement in 
terminology, approach, and the details of different 
methods, there is not even a commonly accepted 
classification scheme. The following general groupings 
are based on the evolution of the underlying concepts 
and the key distinctions that reflect paradigmatic shifts 
in requirements philosophy.  

7.1  Functional Decomposition   
Functional decomposition was originally applied to 
software requirements to abstract from coding details. 
Functional decomposition focuses on understanding 
and specifying what processing the software is required 
to do. The general strategy is to define the required 
behavior as a mapping from inputs to outputs. Ideally, 
the analysis proceeds top down, first identifying the 
function associated with the system as a whole. Each 
subsequent step decomposes the set of functions into 
steps or sub–functions. The result is a hierarchy of 
functions and the definitions of the functional 
interfaces. Each level of the hierarchy adds detail about 
the processing steps necessary to accomplish the more 
abstract function above. The function above controls 
the processing of its subfunctions. In a complete 
decomposition, the functional hierarchy specifies the 
“calls” structure of the implementation. One example of 
a methodology based on functional decomposition is 
Hamilton and Zeldin’s Higher Order Software 
[Hamilton 76].  
The advantage of functional decomposition is that the 
specification is written using the language and concepts 
of the implementors. It communicates well to the 
designers and coders. It is written in terms of the 
solution space so the transition to design and code is 
straightforward. 
Common complaints are that functional specifications 
are difficult to communicate, introduce design 
decisions prematurely, and difficult to use or change. 
Because functional specifications are written in the 
language of implementation, people who are not 
software or systems experts find them difficult to 
understand. Since there are inevitably many possible 
ways of decomposing functions into subfunctions, the 
analyst must make decisions that are not requirements. 
Finally, since the processing needed in one step 
depends strongly on what has been done the previous 
step, functional decomposition results in components 
that are closely coupled. Understanding or changing 

one function requires understanding or changing all the 
related functions.  
As software has increased in complexity and become 
more visible to non–technical people, the need for 
methods addressing the weaknesses of functional 
decomposition has likewise increased. 

7.2  Structured Analysis   
Structured analysis was developed primarily as a means 
to address the accidental difficulties attending problem 
analysis and, to a lesser extent, requirements 
specification, using functional decomposition. 
Following the introduction of structured programming 
as a means to gain intellectual control over increasingly 
complex programs, structured analysis evolved from 
functional decomposition as a means to gain 
intellectual control over system problems.  
The basic assumption behind structured analysis is that 
the accidental difficulties can be addressed by a 
systematic approach to problem analysis using 
[Svoboda 90]: 

• a common conceptual model for describing all 
problems, 

• a set of procedures suggesting the general 
direction of analysis and an ordering on the 
steps, 

• a set of guidelines or heuristics supporting 
decisions about the problem and its 
specification, and 

• a set of criteria for evaluating the quality of the 
product. 

While structured analysis still contains the 
decomposition of functions into subfunctions, the focus 
of the analysis shifts from the processing steps to the 
data being processed. The analyst views the problem as 
constructing a system to transform data. He analyzes 
the sources and destinations of the data, determines 
what data must be held in storage, what transformations 
are done on the data, and the form of the output.   
Common to the structured analysis approaches is the 
use of data flow diagrams and data dictionaries. Data 
flow diagrams provide a graphic representation of the 
movement of data through the system (typically 
represented as arcs) and the transformations on the data 
(typically represented as nodes). The data dictionary 
supports the data flow diagram by providing a 
repository for the definitions and descriptions of each 
data item on the diagrams. Required processing is 
captured in the definitions of the transformations. 
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Associated with each transformation node is a 
specification of the processing the node does to 
transform the incoming data items to the outgoing data 
items. At the most detailed level, a transformation is 
defined using a textual specification called a 
“MiniSpec”. A MiniSpec may be expressed in a 
number of different ways including English prose, 
decision tables, or a procedure definition language 
(PDL). 
Structured analysis approaches originally evolved for 
management information systems (MIS). Examples of 
widely used strategies include those described by 
DeMarco [DeMarco 78] and Gane and Sarson [Gane 
79]. “Modern” structured analysis was introduced to 
provide more guidance in modeling systems as data 
flows as exemplified by Yourdon [Yourdon 89]. 
Structured analysis has also been adapted to support 
specification of embedded control systems by adding 
notations to capture control behavior. These variations 
are collectively known as structured analysis/real–time 
(SA/RT). Major variations of SA/RT have been 
described by Ward and Mellor [Ward 86] and Hatley 
and Pirbhai [Hatley 87]. A good summary of structured 
analysis concepts with extensive references is given by  
Svoboda [Svoboda 90]. 
Structured analysis extends functional decomposition 
with the notion that there should be a systematic (and 
hopefully predictable) approach to analyzing a 
problem, decomposing it into parts, and describing the 
relationships between the parts. By providing a well 
defined process, structured analysis seeks to address, at 
least in part, the accidental difficulties that result from 
ad hoc approaches and the definition of requirements as 
an afterthought. It seeks to address problems in 
comprehension and communication by using a common 
set of conceptual structures a graphic representation of 
the specification in terms of those structures, based on 
the assumption that a decomposition in terms of the 
data the system handles will be clearer and less inclined 
to change than one based on the functions performed. 
While structured analysis techniques have continued to 
evolve and have been widely used, there remain a 
number of common criticisms. When used in problem 
analysis, a common complaint is that structured 
analysis provides insufficient guidance. Analysts have 
difficulty deciding which parts of the problem to model 
as data, which parts to model as transformations, and 
which parts should be aggregated. While the gross steps 
of the process are reasonably well defined, there is only 
very general guidance (in the form of heuristics) on 
what specific questions the analyst needs to answer 
next. Similarly, practitioners find it difficult to know 
when to stop decomposition and addition of detail. In 
fact, the basic structured analysis paradigm of modeling 
requirements as data flows and data transformations 

requires the analyst to make decisions about 
intermediate values (e.g., form and content of stored 
data and the details of internal transformations) that are 
not requirements. Particularly in the hands of less 
experienced practitioners, data flow models tend to 
incorporate a variety of detail that properly belongs to 
design or implementation. 
Many of these difficulties result from the weak 
constraints imposed by the conceptual model. A goal of 
the developers of structured analysis was to create a 
very general approach to modeling systems; in fact, one 
that could be applied equally to model human 
enterprises, hardware applications, software 
applications of different kinds, and so on. 
Unfortunately, such generality can be achieved only by 
abstracting away any semantics that are not common to 
all of the types of systems potentially being modeled. 
The conceptual model itself can provide little guidance 
relevant to a particular system. Since the conceptual 
model applies equally to requirements analysis and 
design analysis, its semantics provide no basis for 
distinguishing the two. Similarly, such models can 
support only very weak syntactic criteria for assessing 
the quality of structured analysis specifications. For 
example, the test for completeness and consistency in 
data flow diagrams is limited to determining that the 
transformations at each level are consistent in name and 
number with the data flows of the level above. 
This does not mean one cannot develop data flow 
specifications that are easy to understand, communicate 
effectively with the user, or capture required behavior 
correctly. The large number of systems developed using 
structured analysis show that it is possible to do so. 
However, the weakness of the conceptual model means 
that a specification’s quality depends largely on the 
experience, insight, and expertise of the analyst. The 
developer must provide the necessary discipline 
because the model itself is relatively unconstrained. 
Finally, structured analysis provides little support for 
producing an SRS meeting our quality criteria. Data 
flow diagrams are unsuitable for capturing 
mathematical relations or detailed specifications of 
value, timing, or accuracy so the detailed behavioral 
specifications are typically given in English or as 
pseudo–code segments in the Mini-specs. These 
constructs provide little or no support for writing an 
SRS that  is complete, implementation independent, 
unambiguous, consistent, precise, and verifiable. 
Further, the data flow diagrams and attendant 
dictionaries do not, themselves, provide support for 
organizing an SRS to satisfy the packaging goals of 
readability, ease of reference and review, or reusability. 
In fact, for many of the published methods, there is no 
explicit process step, structure, or guidance for 
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producing an SRS, as a distinct development product, 
at all. 

7.3  Operational Specification 
The operational2 approach focuses on addressing two 
of the essential requirements dilemmas. The first is that 
we often do not know exactly what should be built until 
we build it. The second is the problem inherent in 
moving from a particular specification of requirements 
(what to build) to a design that satisfies those 
requirements (how to build it). The closer the 
requirements specification is to the design, the easier 
the transition, but the more likely it is that design 
decisions are made prematurely. 
The operational approach seeks to address these 
problems, among others, by supporting development of 
executable requirements specifications. Key elements 
of an operational approach are: a formal specification 
language and an engine for executing well–formed 
specifications written in the language. Operational 
approaches may also include automated support for 
analyzing properties of the formal specification and for 
transforming the specification into an equivalent 
implementation. A good description of the operational 
approach, its rationale, and goals is given by Zave 
[Zave 82]. 
The underlying reasoning about the benefits of the 
operational approach is as follows: 

Making the requirements specification itself 
executable obviates the dilemma that one must 
build the system to know what to build. The 
developer writes the requirements specification 
in a formal language. The specification may 
then be executed to validate that the customer’s 
needs have been captured and the right system 
specified (e.g., one can apply scenarios and test 
cases). The approach is presumed to require 
less labor and be and more cost effective than 
conventional prototyping because a separate 
requirements specification need not be 
produced,  the specification and the 
“prototype” are the same thing. 

                                                 
2. We use the term “operational” here specifically to 
denote approaches based on executable specifications 
in the sense of Zave [Zave 82]. The term is sometimes 
used to contrast with axiomatic specification - that is 
not the meaning here. 

 

• Operational specifications allow the developer 
to abstract from design decisions while 
simplifying the transition from requirements to 
design and implementation. Transition to 
design and implementation is both simple and 
automatable because the behavioral 
requirements are already expressed in terms of 
computational mechanisms. Design decisions 
concerning efficiency, resource management, 
and target language realization are abstracted 
from in the computational model. 

For general applications, operational approaches have 
achieved only limited success. This is at least in part 
due to the failure to achieve the necessary semantic 
distinction between an operational computational 
model and conventional programming. The benefits of 
the approach are predicated on the assumption that the 
operational model can be written in terms of the 
problem domain, without the need to introduce 
conceptual structures belonging to the solution domain. 
In practice, this goal has proven elusive. To achieve 
generality, operational languages have typically had to 
introduce implementation constructs. The result is not a 
requirements specification language but a higher–level 
programming language. As noted by Parnas [Parnas 
85b] and Brooks [Brooks 87], the specification ends up 
giving the solution method rather than the problem 
statement. Thus, in practice, operational specifications 
do not meet the SRS goal of implementation 
independent. 
The focus of operational specification is on the benefits 
of early simulation rather than on the properties of the 
specification as a reference document. Since 
executability requires formality, operational 
specifications necessarily satisfy the SRS semantic 
properties of being unambiguous, consistent, precise, 
and verifiable. The ability to validate the specification 
through simulation also supports completeness. 
However, as discussed, these properties have not been 
achieved in concert with implementation independence. 
Fruther, the methods discussed in the literature put little 
emphasis on the communication or packaging qualities 
of the specification, except as these qualities overlap 
with desirable properties of a design. Thus, there may 
be some support for modifiability but little for 
readability or organizing an SRS for reference and 
review. 

7.4  Object Oriented Analysis (OOA) 
There is currently considerable discussion in the 
literature, and little agreement, on exactly what should 
and should not be considered “object oriented.” OOA 
has evolved from at least two significant sources, 
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information modeling and object oriented design. Each 
has contributed to current views of OOA, and the 
proponents of each emphasize somewhat different sets 
of concepts. For the purposes of this tutorial, we are not 
interested in which method is by some measure “more 
object oriented” but in the distinct contributions of the 
object oriented paradigm to analysis and specification. 
For an overview of OOA concepts and methods see 
Balin’s article [Balin 94]; Davis’ book [Davis 93] 
includes both discussion and examples. Examples of 
recent approaches self–described as object oriented 
include work by Rumbaugh [Rumbaugh 91], Coad and 
Yourdon [Coad 91],  Shlaer and Mellor [Shlaer 88], 
and Selic, Gullekson, and Ward [Selic 94]. 
OOA techniques differ from structured analysis in their 
approach to decomposing a problem into parts and in 
the methods for describing the relationships between 
the parts. In OOA, the analyst decomposes the problem 
into a set of interacting objects based on the entities 
and relationships extant in the problem domain.  An 
object encapsulates a related set of data, processing, 
and state (thus, a significant distinction between object 
oriented analysis and structured analysis is that OOA 
encapsulates both data and related processing together). 
Objects provide externally accessible functions, 
typically called services or methods. Objects may hide 
information about their internal structure, data, or state 
from other objects. Conversely, they may provide 
processing, data, or state information through the 
services defined on the object interface. Dynamic 
relationships between objects are captured in terms of 
message passing (i.e., one object sends a message to 
invoke a service or respond to an invocation). The 
analyst captures static relationships in the problem 
domain using the concepts of aggregation and 
classification. Aggregation is used to capture 
whole/part relationships. Classification is used to 
capture class/instance relationships (also called “is–a” 
or inheritance relationships). 
The structural components of OOA (e.g., objects, 
classes, services, aggregation) support a set of analytic 
principles. Of these, two directly address requirements 
problems: 

 1. From information modeling comes the 
assumption that a problem is easiest to understand 
and communicate if the conceptual structures 
created during analysis map directly to entities and 
relationships in the problem domain. This principle 
is realized in OOA through the heuristic of 
representing problem domain objects and 
relationships of interest as OOA objects and 
relationships.. Thus an OOA specification of a 
vehicle registration system might model vehicles, 
vehicle owners, vehicle title, and so on [Coad  90] 

as objects. The object paradigm is used to model 
both the problem and the relevant problem context. 

 2. From early work on modularization by Parnas 
[Parnas 72] and abstract data types, by way of 
object oriented programming and design, come the 
principles of information hiding and abstraction. 
The principle of information hiding guides one to 
limit access to information on which other parts of 
the system should not depend. In an OO 
specification of  requirements, this principle is 
applied to hide details of design and 
implementation. In OOA, behavior requirements are 
specified in terms of the data and services provided 
on the object interfaces; how those services are 
implemented is encapsulated by the object. 

The principle of abstraction says that only the 
relevant or essential information should be 
presented. Abstraction is implemented in OOA 
by defining object interfaces that provide 
access only to essential data or state 
information encapsulated by an object 
(conversely hiding the accidentals).  

The principles and mechanisms of OOA provide a basis 
for attacking the essential difficulties of 
comprehension, communication, and control. The 
principle of problem domain modeling helps guide the 
analyst in distinguishing requirements (what) from 
design (how). Where the objects and their relationships 
faithfully model entities and relationships in the 
problem, they are understandable by the customer and 
other domain experts; this supports early 
comprehension of the requirements.  
The principles of information hiding and abstraction, 
with the attendant object mechanisms, provide 
mechanisms useful for addressing the essential 
problems of control and communication. Objects 
provide the means to divide the requirements into 
distinct parts, abstract from details, and limit 
unnecessary dependencies between the parts. Object 
interfaces can be used to hide irrelevant detail and 
define abstractions providing only the essential 
information. This provides a basis for managing 
complexity and improving readability. Likewise objects 
provide a basis for constructing reusable requirements 
units of related functions and data.  
The potential benefits of OOA are often diluted by the 
way the key principles are manifest in particular 
methods. While the objects and relations of OOA are 
intended to model essential aspects of the application 
domain, this goal is typically not supported by an 
corresponding conceptual model of the domain 
behavior. As for structured analysis, object modeling 
mechanisms and techniques are intentionally generic 
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rather than application specific. One result is 
insufficient guidance in developing appropriate object 
decompositions. Just as structured analysis practitioners 
have difficulty choosing appropriate data flows and 
transformations, OOA practitioners have difficulty 
choosing appropriate objects and relationships.  
In practice, one finds the notion that one can develop 
the structure of a system, or a requirements 
specification, based on physical structure is often 
oversold. It is true that the elements of the physical 
world are usually stable (especially relative to software 
details) and that real–world based models have intuitive 
appeal. It is not, however, the case that everything that 
must be captured in requirements has a physical analog. 
An obvious example is shared state information. 
Further, many real world structures are themselves 
arbitrary and likely to change (e.g., where two 
hardware functions are put on one physical platform to 
reduce cost). While the notion of basing requirements 
structure on physical structure is a useful heuristic, 
more is needed to develop a complete and consistent 
requirements specification. 
A further difficulty is that the notations and semantics 
of OOA methods are typically based on the conceptual 
structures of software rather than those of the problem 
domain the analyst seeks to model.  Symptomatic of 
this problem is that analysts find themselves debating 
about object language features and their properties 
rather than about the properties of the problem. An 
example is the use of message passing, complete with 
message passing protocols, where one object uses 
information defined in another. In the problem domain 
it is often irrelevant whether information is actively 
solicited or passively received. In fact there may be no 
notion of messages or transmission at all. Nonetheless 
one finds analysts debating about which object should 
initiate a request and the resulting anomaly of passive 
entities modeled as active. For example, to get 
information from a book one might request that the 
book “read itself” and “send” the requested information 
in a message. To control an aircraft the pilot might “use 
his hands and feet to ‘send messages’ to the aircraft 
controls which in turn send messages to the aircraft 
control surfaces to modify themselves” [Davis 93]. 
Such decisions are about OOA mechanisms or design, 
not about the problem domain or requirements. 
A more serious complaint is that most current OOA 
methods inadequately address our goal of developing a 
good SRS. Most OOA approaches in the literature 
provide only informal specification mechanisms, 
relying on refinement of the OO model in design and 
implementation to add detail and precision. There is no 
formal basis for determining if a specification is 
complete, consistent, or verifiable.  Further, none of the 
OOA techniques discussed directly address the issues 

of developing the SRS as a reference document. The 
focus of all of the OOA techniques cited is on problem 
analysis rather than specification.  If the SRS is 
addressed at all, the assumption is that the principles 
applied to problem understanding and modeling are 
sufficient, when results are written down, to produce a 
good specification. Experience suggests otherwise. As 
we have discussed, there are inherently tradeoffs that 
must be made to develop a specification that meets the 
need of any particular project. Making effective 
tradeoffs  requires a disciplined and thoughtful 
approach to the SRS itself, not just the problem. Thus, 
while OOA provide the means to address packaging 
issues, there is typically little methodological emphasis 
on issues like modifiability or organization of a 
specification for reference and review. 

7.5Software Cost Reduction (SCR) Method 
Where most of the techniques thus far discussed focus 
on problem analysis, the requirements work at the 
United States Naval Research Laboratory (NRL) 
focused equally on issues of developing a good SRS. 
NRL initiated the Software Cost Reduction (SCR) 
project in 1978 to demonstrate the feasibility and 
effectiveness of advanced software engineering 
techniques by applying them to a real system, the 
Operational Flight Program (OFP) for the A–7E 
aircraft. To demonstrate that (then academic) 
techniques such as information hiding, formal 
specification, abstract interfaces, and cooperating 
sequential processes could help make software easier to 
understand, maintain, and change, the SCR project set 
out to re–engineer the A–7E OFP. 
Since no existing documentation adequately captured 
the A–7E’s software requirements, the first step was to 
develop an effective SRS. In this process, the SCR 
project identified a number of properties a good SRS 
should have and a set of principles for developing 
effective requirements documentation [Heninger 80]. 
The SCR approach uses formal, mathematically based 
specifications of acceptable system outputs to support 
development of a specification that is unambiguous, 
precise, and verifiable. It also provided techniques for 
checking a specification for a variety of completeness 
and consistency properties. The SCR approach 
introduced principles and techniques to support our 
SRS packaging goals including the principle of 
separation of concerns to aid readability and support 
ease of change. It also includes the use of a standard 
structure for an SRS specification and the use of tabular 
specifications that improve readability, modifiability, 
and facilitate use of the specification for reference and 
review. 
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While other requirements approaches have stated 
similar objectives, the SCR project is unique in having 
applied software engineering principles to develop a 
standard SRS organization, a specification method, 
review method [Parnas 85a], and notations consistent 
with those principles. The SCR project is also unique in 
making publicly available a complete, model SRS of a 
significant system [Alspaugh 92].  
A number of issues were left unresolved by the original 
SCR work. While the product of the requirements 
analysis was well documented, the underlying process 
and method were never fully described. Since the 
original effort was to re–engineer an existing system, it 
was not clear how effective the techniques would be on 
a new development. Since the developers of the A–7E 
requirements document were researchers, it was also 
unclear whether industrial developers would find the 
rather formal method and notation useable, readable, or 
effective. Finally, while the A–7E SRS organization is 
reasonably general, many of the specification 
techniques are targeted to real–time, embedded 
applications. As discussed in the following section, 
more recent work by Parnas [Parnas 91], NRL 
[Heitmeyer 95a,b], and others [Faulk 92] has addressed 
many of the open questions about the SCR approach. 

8.  Trends and Emerging Technology 
While improved discipline will address requirement’s 
accidental difficulties, addressing the essential 
difficulties requires technical advances. Significant 
trends, in some cases backed by industrial experience, 
have emerged over the past few years that offer some 
hope for improvement: 

• Domain specificity: Requirements methods will 
provide improved analytic and specification 
support by being tailored to particular classes 
of problems. Historically requirements 
approaches have been advanced as being 
equally useful to a wide variety of types of 
applications. For example, structured analysis 
methods were deemed to be based on 
conceptual models that were “universally 
applicable” (e.g., [Ross 77]); similar claims 
have been made for object oriented approaches. 

Such generality comes at the expense of ease of 
use and amount of work the analyst must do for 
any particular application. Where the 
underlying models have been tailored to a 
particular class of applications, the properties 
common to the class are embedded in the 
model. The amount of work necessary to adapt 

the model to a specific instance of the class is 
relatively small. The more general the model, 
the more decisions that must be made, the more 
information that must be provided, and the 
more tailoring that must be done. This provides 
increased room for error and, since each 
analyst will approach the problem differently, 
makes solutions difficult to standardize. In 
particular, such generality precludes 
standardization of sufficiently rigorous models 
to support algorithmic analysis of properties 
like completeness and consistency. 

Similar points have been expressed in a recent 
paper by  Jackson [Jackson 94]. He points out 
that some of the characteristics separating real 
engineering disciplines from what is 
euphemistically described as “software 
engineering” are well understood procedures, 
mathematical models, and standard designs 
specific to narrow classes of applications. 
Jackson points out the need for software 
methods based on the conceptual structures and 
mathematical models of behavior inherent in a 
given problem domain (e.g., publication, 
command and control, accounting, and so on). 
Such common underlying constructs can 
provide the engineer guidance in developing 
the specification for a particular system. 

• Practical formalisms: Like so many of the 
promising technologies in requirements, the 
application of formal methods is characterized 
by an essential dilemma. On one hand, formal 
specification techniques hold out the only real 
hope for producing specifications that are 
precise, unambiguous, and demonstrably 
complete or consistent. On the other, industrial 
practitioners widely view formal methods as 
impractical. Difficulty of use, inability to scale, 
readability, and cost are among the reasons 
cited. Thus, in spite of significant technical 
progress and a growing body of literature, the 
pace of adoption by industry has been 
extremely slow. 

In spite of the technical and technical transfer 
difficulties, increased formality is necessary. 
Only by placing behavioral specification on a 
mathematical basis will we be able to acquire 
sufficient intellectual control to develop 
complex systems with any assurance that they 
satisfy their intended purpose and provide 
necessary properties like safety. The solution is 
better formal methods - methods that are 
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practical given the time, cost, and personnel 
constraints of industrial development. 

Engineering models and the training to use 
them are de rigueur in every other discipline 
that builds large, complex, or safety–critical 
systems. Builders of a bridge or skyscraper 
who did not employ proven methods or 
mathematical models to predict reliability and 
safety would be held criminally negligent in the 
event of failure. It is only the relative youth of 
the software discipline that permits us to get 
away with less. But, we cannot expect great 
progress overnight. As Jackson [Jackson 94] 
notes, the field is sufficiently immature that 
“the prerequisites for a more mathematical 
approach are not in place.” Further, many of 
those practicing our craft lack the background 
required of licensed engineers in other 
disciplines [Parnas 89]. Nonetheless, sufficient 
work has been done to show that more formal 
approaches are practical and effective in 
industry. For an overview of formal methods 
and their role in practical developments, the 
reader is referred to Rushby’s summary work 
[Rushby 93]. 

• Improved tool support: It remains common to 
walk into the office of a software development 
manager and find the shelves lined with the 
manuals for CASE tools that are not in use. In 
spite of years of development and the contrary 
claims of vendors, many industrial developers 
have found the available requirements CASE 
tools of marginal benefit.  

Typically, the fault lies not so much with the 
tool vendor but with the underlying method or 
methods the tool seeks to support. The same 
generality, lack of strong underlying conceptual 
model, and lack of formality that makes the 
methods weak limits the benefits of 
automation. Since the methods do not 
adequately constrain the problem space and 
offer little specific guidance, the corresponding 
tool cannot actively support the developer in 
making difficult decisions. Since the model and 
SRS are not standardized, its production eludes 
effective automated support. Since the 
underlying model is not formal, only trivial 
syntactic properties of the specification can be 
evaluated. Most such tools provide little more 
than a graphic interface and requirements data 
base. 

Far more is now possible. Where the model, 
conceptual structures, notations, and process 
are standardized, significant automated support 

becomes possible. The tool can use information 
about the state of the specification and the 
process to guide the developer in making the 
next step. It can use standardized templates to 
automate rote portions of the SRS. It can use 
the underlying mathematical model to 
determine to what extent the specification is 
complete and consistent. While only the 
potential of such tools has yet been 
demonstrated, there are sufficient results to 
project the benefits (e.g., [Heitmeyer 95b], 
[Leveson 94]). 

• Integrated paradigms: One of the Holy Grails 
of software engineering has been the integrated 
software development environment. Much of 
the frustration in applying currently available 
methods and tools is the lack of integration, not 
just in the tool interfaces, but in the underlying 
models and conceptual structures. Even where 
an approach works well for one phase of 
development, the same techniques are either 
difficult to use in the next phase or there is no 
clear transition path. Similarly tools are either 
focused on a small subset of the many tasks 
(e.g., analysis but not documentation) or 
attempt to address the entire life cycle but 
support none of it well. The typical 
development employs a hodgepodge of 
software engineering methodologies and ad hoc 
techniques. Developers often build their own 
software to bridge the gap between CASE 
platforms. 

In spite of a number of attempts, the production 
of a useful integrated set of methods and 
supporting environment has proven elusive. 
However, it now appears that there is sufficient 
technology available to provide, if not a 
complete solution, at least the skeleton for one. 
. 

The most significant methodological trend can be 
described as convergent evolution. In biology, 
convergent evolution denotes a situation where 
common evolutionary pressures lead to similar 
characteristics (morphology) in distinct species. An 
analogous convergence is ongoing in requirements. As 
different schools of thought have come to understand 
and attempt to address the weaknesses and omissions in 
their own approaches, the solutions have become more 
similar. In particular, the field is moving toward a 
common understanding of the difficulties and common 
assumptions about the desired qualities of solutions. 
This should not be confused with the bandwagon effect 
that often attends real or imaginary paradigm shifts 
(e.g., the current rush to object oriented everything). 
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Rather it is the slow process of evolving common 
understanding and changing conventional practices. 
Such trends and some preliminary results are currently 
observable in requirements approaches for embedded 
software. In the 1970’s the exigencies of national 
defense and aerospace applications resulted in demand 
for complex, mission critical software. It became 
apparent early on that available requirements 
techniques addressed neither the complexity of the 
systems being built nor the stringent control, timing, 
and accuracy constraints of the applications. 
Developers responded by creating a variety of domain 
specific approaches. Early work by TRW for the U.S. 
Army on the Ballistic Missile Defense system produced 
the Software Requirements Engineering Method 
(SREM) [Alford 77] and supporting tools.  Such 
software problems in the Navy led to the SCR project. 
Ward, Mellor, Hatley, and Pirbhai ([Ward 86], [Hatley 
87]) developed extensions to structured analysis 
techniques targeted to real time applications. Work on 
the Israeli defense applications led Harel to develop 
statecharts [Harel 87] and the supporting tool 
Statemate. 
The need for high–assurance software in mission and 
safety critical systems also led to the introduction of 
practical formalisms and integrated tools support. TRW 
developed REVS [Davis 77] and other tools as part of a 
complete environment supporting SREM and other 
phases of the life cycle. The SCR project developed 
specification techniques based on mathematical 
functions and tabular representations [Heninger 80]. 
These allowed a variety of consistency and 
completeness checks to be performed by inspection. 
Harel introduced a compact graphic representation of 
finite state machines with a well–defined formal 
semantics. These features were subsequently integrated 
in the Statemate tool that supported symbolic execution 
of statecharts for early customer validation and limited 
code generation. All of these techniques began to 
converge on an underlying model based on finite state 
automata. 
More recent work has seen continuing convergence 
toward a common set of assumptions and similar 
solutions. Recently, Ward and colleagues have 
developed the Real–Time Object Oriented Modeling 
(ROOM) method [Selic 94]. ROOM integrates 
concepts from operational specification, object oriented 
analysis, and statecharts. It employs an object oriented 
modeling approach with tool support. The tool is based 
on a simplified statechart semantics and supports 
symbolic execution and some code generation. The 
focus of ROOM currently remains on problem 
modeling and the transition to design, and execution 
rather than formal analysis. 

Nancy Leveson and her colleagues have adapted 
statecharts to provide a formally based method for 
embedded system specification [Jaffe 91]. The 
approach has been specifically developed to be useable 
and readable by practicing engineers. It employs both 
the graphical syntax of statecharts and a tabular 
representation of functions similar to those used in the 
SCR approach. Its underlying formal model is intended 
to support formal analysis of system properties, with an 
emphasis on safety. The formal model also supports 
symbolic execution. These techniques have been 
applied to develop a requirements specification for 
parts of the Federal Aviation Administration’s safety 
critical Traffic Alert and Collision Avoidance System 
(TCAS) [Leveson 94]. 
Extensions to the SCR work have taken a similar 
direction. Parnas and Madey have extended the SCR 
approach to create a standard mathematical model for 
embedded system requirements [Parnas 91]. Heitmeyer 
and colleagues at NRL have extended the 
Parnas/Madey work by defined a corresponding formal 
model for the SCR approach [Heitmeyer 95b]. This 
formal model has been used to develop a suite of 
prototype tools supporting analysis of requirements 
properties like completeness and consistency 
[Heitmeyer 95a]. The NRL tools also support 
specification–based simulation and are being integrated 
with other tools to support automated analysis of 
application specific properties like safety assertions. 
Concurrent work at the Software Productivity 
Consortium by Faulk and colleagues [Faulk 92] has 
integrated the SCR approach with object oriented and 
graphic techniques and defined a complete 
requirements analysis process including a detailed 
process for developing a good SRS. These techniques 
have been applied effectively in development of 
requirements for Lockheed’s avionics upgrade on the 
C–130J aircraft [Faulk 94]. The C–130J avionics 
software is a safety–critical system of approximately 
100K lines of Ada code. 
Other recent work attempts to increase the level of 
formality and the predictability of the problem analysis 
process and its products. For example, Potts and his 
colleagues are developing process models and tools to 
support systematic requirements elicitation that include 
a formal structure for describing discussions about 
requirements [Potts 94]. Hsai and his colleagues, 
among others are investigating formal approaches to 
the use of scenarios in eliciting and validating 
requirements [Hsai 94]. Recent work by Boehm and his 
colleagues [Boehm 94] seeks to address the accidental 
difficulties engendered by adversarial software 
procurement processes.  
While none of the works mentioned can be considered 
a complete solution it is clear that (1) the work is 
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converging toward common assumptions and solutions, 
(2) the approaches all provide significantly improved 
capability to address both accidental and essential 
requirements difficulties, and (3) the solutions can be 
effectively applied in industry.  

9.  Conclusions 
Requirements are intrinsically hard to do well. Beyond 
the need for discipline, there are a host of essential 
difficulties that attend both the understanding of 
requirements and their specification. Further, many of 
the difficulties in requirements will not yield to 
technical solution alone. Addressing all of the essential 
difficulties requires the application of technical 
solutions in the context of human factors such as the 
ability to manage complexity or communicate to 
diverse audiences. A requirements approach that does 
not account for both technical and human concerns can 
have only limited success. For developers seeking new 
methods, the lesson is caveat emptor. If someone tells 
you his method makes requirements easy, keep a hand 
on your wallet. 
Nevertheless, difficulty is not impossibility and the 
inability to achieve perfection is not an excuse for 
surrender. While all of the approaches discussed have 
significant weaknesses, they all contribute to the 
attempt to make requirements analysis and specification 
a controlled, systematic, and effective process. Though 
there is no easy path, experience confirms that the use 
of any careful and systematic approach is preferable to 
an ad hoc and chaotic one. Further good news is that, if 
the requirements are done well, chances are much 
improved that the rest of the development will also go 
well. Unfortunately, ad hoc approaches remain the 
norm in much of the software industry. 
A final observation is that the benefits of good 
requirements come at a cost. Such a difficult and 
exacting task cannot be done properly by personnel 
with inadequate experience, training, or resources. 
Providing the time and the means to do the job right is 
the task of responsible management. The time to 
commit the best and brightest is before, not after, 
disaster occurs. The monumental failures of a host of 
ambitious developments bear witness to the folly of 
doing otherwise. 

10 . Further Reading 
Those seeking more depth on requirements 
methodologies than this tutorial can provide should 
read Alan Davis’ book Software Requirements: 
Objects, Functions, and States [Davis 93]. In addition 

to a general discussion of issues in software 
requirements, Davis illustrates a number of problem 
analysis and specification techniques with a set of 
common examples and provides a comprehensive 
annotated bibliography. For a better understanding of 
software requirements in the context of systems 
development, the reader is referred to the book of 
collected papers edited by Thayer and Dorfman, System 
and Software Requirements Engineering [Thayer 90]. 
This tutorial work contains in one volume both original 
papers and reprints from many of the authors discussed 
above. The companion volume, Standards, Guidelines, 
and Examples on System and Software Requirements 
Engineering [Dorfman 90] is a compendium of 
international and U.S. government standards relating to 
system and software requirements and provides some 
illustrating examples. 
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