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Abstract

I present a general overview of research in texture-based techniques for rendering complex virtual

environments that is being conducted by members of the Walkthrough Project at The University of North

Carolina at Chapel Hill.  I then describe in detail a specific implementation of a texture-based approach to

rendering global illumination.  Polygonal meshes that are produced by a radiosity process are captured as

texture maps in order to dramatically reduce polygon counts and improve rendering performance.  This

kind of technique takes advantage of current hardware trends to provide fast texturing capabilities.  I argue

that this approach can be applied to a wide range of difficult rendering situations and will allow us to

render increasingly complex virtual environments at interactive speeds.

1 Introduction

As long as there have been computer graphics, people have been inspired by the possibility that

some day we may be able to create artificial environments that are as vivid and complex as reality itself.

Members of the Walkthrough project at UNC conduct research in a wide range of areas related to the

creation and display of very large and complex virtual environments.  The focus of current research is on

real world problems such as architectural environments that contain up to tens of millions of polygons.

I will begin with a brief overview of the Walkthrough project, with a focus on current research in

texture based rendering techniques.  I then describe ongoing work with illumination-as-textures (IAT), and

present a detailed explanation of the current software implementation of this strategy.  Finally, I describe

future work in the area of IAT and speculate about possible research directions and opportunities.

This document is intended for faculty, staff, and students in the Computer Science Department

who are interested in learning about the implementation of IAT, as well as current research in texture-based

methods by the Walkthrough project.  I assume that the reader has some knowledge of texture mapping

techniques, a basic understanding of the performance demands for a virtual environment, and a

rudimentary knowledge of graphics hardware, graphics rendering, and radiosity.

2 Texture Based Research and the Walkthrough Project
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The stated goals of Walkthrough are to create virtual environments that are "faster, prettier,

handier, and realer."  The group focuses on real world problems and seeks solutions that use

commercially-available hardware and software as much as possible.  Because of the current trend in

graphics hardware to provide fast texture-mapping capabilities, a major topic of current research for

Walkthrough is on texture based approaches to rendering virtual environments.

John Poulton of the PixelFlow research group has pointed out another motivation for pursuing

texture or image based approaches to rendering.  He claims that the trend in graphics hardware will soon

support scenes with tens of millions of polygons, and as a result, the size of the average polygon on the

screen will shrink to a single pixel.  Because of this, it no longer makes sense to render polygons as three-

dimensional entitities, and we should instead focus on rendering pixels or images.

Walkthrough uses texture based techniques to render elaborate surface detail as well as areas or

objects of significant geometrical complexity within an environment. The three major areas that we are

currently investigating are standard texture, geometry-based texture, and illumination-as-texture.

2.1 Standard Texture

The Walkthrough project is primarily concerned with simulations of architectural environments.

This type of environment often has a large number of surfaces that benefit greatly in appearance from

surface detail textures. Whether it is wood grain or bathroom tile, these textures lend a much greater

appearance of realism than simple shaded polygons.

2.2 Geometry Based Texture

Geometry based texture (GBT), is a relatively new approach to rendering.  This technique

smoothly replaces complex geometry with a view-dependent texture map based on distance from the

viewpoint, direction the viewer is facing, or a stress-based criteria. Texture maps thereby serve as the

lowest level of detail for objects in the environment.

In addition, vistas through doorways or windows can be capped with a view dependent texture.

Instead of rendering geometry that is visible through a window, for example, a polygon is rendered in the
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opening that bears a texture map of the geometrical scene that would be visible through the window.   To

improve the realism of the effect, the texture map is transformed dynamically according to the viewing

angle.   In this way, we can simulate three-dimensional behavior with several two-dimensional texture

maps.

2.3 IAT

IAT is a technique by which global illumination for a model is captured and displayed in the form

of texture-mapped surfaces.  This area of research and a specific implementation of IAT are the primary

topics of this paper.

I begin with an overview of the original system that was designed and written at UNC.  This

description should allow someone to understand the workings of the system and the code well enough to

both use the system and extend its functionality.  Next, I present the results in terms of both performance

and memory use shown by models processed by the system.  I compare the performance of models

processed with IAT to the original polygon based radiosity version. Finally, I describe improvements and

extensions to the system that are currently underway.

3 Our Original Implementation of IAT

I developed our initial software implementation of IAT during the Spring semester of 1995.  Work

was sponsored by the Walkthrough project and was also submitted as a final project for COMP 239,

"Exploring Virtual Worlds."  I continued working on the system during the following Summer while

employed at Silicon Graphics Incorporated in Mountain View, California.

I describe the current implementation of IAT in terms of seven major topics related to the process.

The topics are discussed in decreasing order of their generality.  I begin with a description of the most

general concepts; the model pipeline and model representation.  I follow this with a more specific

explanation of the generation and display of illumination textures.  Finally, I end with the specific details

of the implementation that were dictated by performance or hardware concerns; resource management,

texture scaling, and texture combination.
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3.1 The Model Pipeline

The model pipeline is the pathway by which a model is created, converted, radiositized, textured

and converted again, and finally displayed.  Several of these stages influenced the design of the IAT

implementation.  For example, I decided to embed the IAT process in a conversion stage, because the

necessary data structures were already being traversed for the conversion at that point.

Transitions between the various stages in the model pipeline are made using different invocations

of a tool called the Translator.  This is a software system that is currently under development for

Walkthrough that can read, write, and convert to and from a variety of model file formats.  The Translator

also provides facilities for model processing, such as IAT, as well as other operations and model cleanup.

3.1.1 MultiGen

The first stage of the model pipeline is model creation.  Models are created using MultiGen

modeling software available in the Graphics Lab or are obtained by some other means.  The Translator

currently supports MultiGen Openflight 14.2 (.flt), AutoCad (.dxf), Pixel Planes (.pphigs), Lightscape

preparation file format (.lp), and Lightscape solution file format (.lsb), where the parenthesized

expressions indicate conventional file name extensions.

3.1.2 Lightscape

In the second stage of the pipeline, the model is converted into a Lightscape preparation file format

(.lp) using the Translator.  The preparation file can then be loaded into the Lightscape radiosity tool from

Lightscape Technologies.  Using this radiosity tool, the user can interactively add and position lights in the

model.  A radiosity solution for the model is then computed and saved out as a Lightscape solution file

(.lsb).

3.1.3 IAT

In the third stage, the translator reads the Lightscape solution file and generates a texture mapped
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version of the model.  The user can select a criteria which determines the number and size of texture maps

that are generated.  The output from this conversion is an Openflight 14.2 file (.flt).

3.1.4 Perfjoy

For the final stage of the model pipeline, Walkthrough uses an application called "perfjoy" to

visualize and navigate models on a Silicon Graphics Onyx Reality Engine 2. Perfjoy is based on IRIS

Performer, and can load and display the Openflight file generated from the IAT stage of the model

pipeline.  Perfjoy can also be used to generate performance statistics for a given model, such as rendering

speed, total polygon count, and other useful data.

3.2 Model Representation

The representation of models is important to the various stages of the model pipeline.  Some stages

of the pipeline need to be run on a particular platform, while other stages are architecture-independent.  In

addition, the various model file formats that are used in the pipeline affect the types of data that the models

can contain.

Although both MultiGen and Lightscape must be run on a Silicon Graphics machine, the Translator

and the code that generates illumination textures can run on Silicon Graphics or Hewlett Packard and will

soon be ported to Sun workstations.  The ability to run the translator on multiple platforms is important

because converting a very large model can sometimes take several minutes, so it is advantageous to be able

to run simultaneous model conversions on many different machines in the Graphics Lab.  The same is true

for the IAT code.

The various file formats used in the pipeline have both advantages and disadvantages.  Openflight

14.2 is extensive and can hold a large amount of model data for both modeling and rendering purposes.

Openflight is a binary format, which makes it compact in memory.  Because Openflight is primarily

designed for modeling purposes, it is not optimized for fast rendering.  Perfjoy converts Openflight files

into Performer run-time format in order to render the model more quickly during a simulation.

Lightscape format is primarily designed to facilitate the computation of global illumination.  This
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format contains a large amount of data concerning surface characteristics and other lighting properties.

Lightscape format does not preserve object-level hierarchy all the way to the solution stage, however, and

is not optimized for rapid display.  Perfjoy can convert a Lightscape model directly into Performer run-

time format for more efficient display.

3.3 Generation of Illumination Texture

Illumination textures are generated during the Illumination As Texture stage of the model pipeline.

IAT software takes advantage of data structures in the Lightscape file that are well suited for producing

texture maps.  I will later claim that the Openflight file that is created is equal or better in appearance than

the original polygonal version of the radiosity solution.

Lightscape computes a radiosity solution for an input model by adaptively subdividing the various

surfaces within the database. Surfaces are subdivided according to discontinuities in the color values

across that surface resulting from lights within the environment.  Surfaces with discontinuous lighting

information, shadows, and highlights tend to be subdivided many more times than surfaces that receive a

more uniform distribution of light.

The output of the radiosity process is a model where many of the original polygonal surfaces have

been subdivided into polygonal meshes (see Figure 1).  These meshes contain lighting information for the

surface in the form of color at every vertex in the mesh.  The Lightscape format stores this mesh

information as a quad-tree, where the original polygon is the root and its children are the result of recursive

subdivision.  The roots of each mesh are guaranteed to be either a quadrilateral or a triangle.
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Figure 1: Typical polygonal mesh resulting from adaptive subdivision for radiosity

The quad-tree representation of the mesh turns out to be extremely useful for producing texture

maps that capture the same color information.  Notice that a full quad tree can be    flattened  into a square

grid, where each position in the grid corresponds to a leaf of the tree (see Figure 2).  We can easily

generate a texture map from a quad tree by filling in texels with the color values contained at their

corresponding leaves.  When the quad tree is not full, as is often the case with radiosity solutions, we

simply use bilinear interpolation to fill in the missing values in the texture map.
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Figure 2: Full quad tree and its flattened representation as a square grid

Texture maps produced from the quad tree in this way capture the same information as the original

polygonal mesh. Every vertex in the mesh is replaced by a texel in the texture map.  The size of the texture

is therefore directly related to the discontinuity of the illumination across the original surface.  Because we

generate textures that are just large enough to represent the radiosity data, we make efficient use of

expensive texture memory.  The appearance of the final textured surface is equivalent to the polygonal

version because both representations contain and display the same color information at the same locations

on the surface polygon.  Texture hardware on the SGI bilinearly interpolates between texels in the texture

map, giving the surface the same smooth appearance of the polygonal version.  Because the SGIs also

support hardware mip-mapping and texture perspective correction, these textured surfaces remain stable

throughout all transformations that tend to occur during simulations of a model.
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3.4 Application of Illumination Textures

Illumination textures are automatically applied to the appropriate surfaces within the model.  The

pre-radiosity polygons can be reproduced by simply reading the root node of the quad tree for each surface

while ignoring the rest of the tree.  Textures are oriented correctly on these polygons and shifted beyond

the extents of the polygon by one half of one texel to prevent errors in texture map interpolation during

display.

3.5 Resource Management

The user can interactively balance the number of textures versus polygons in the final model.  The

IAT process uses a threshold value to determine if a texture map is generated for a particular surface.

Otherwise, the surface is output as a polygonal mesh.  The threshold value can be set by the user and

represents the depth of the mesh or the number of times the particular surface was subdivided.  If the

threshold is set at zero, for example, an illumination texture map will be generated for every polygon in the

input model.  If the threshold is set at 2, only polygons that were subdivided two or more times as a result

of the radiosity calculation will be texture mapped.  In this way, we avoid generating very small textures

that are more expensive to render than the fairly trivial polygonal meshes they would replace.

In the current implementation of IAT, the threshold value is determined in an ad hoc fashion for

each model.  The amount of available texture memory, as well as the performance of the model in a

simulation are important factors when deciding on a threshold value.  A surface that has been adaptively

subdivided n times will result in a mesh that contains between ( 4 + 7 * ( n - 1 ) ) and ( 4 ^ n ) polygons.

For example, a mesh resulting from 3 levels of regular subdivision will have 4 ^ 3 = 64 polygons, or it

can be replaced by a single polygon with a texture map.  The decision to replace this mesh with a texture

map will depend on the amount of texture memory available.  Myszkowski [2] proposes an empirical

approach to determine when a mesh should be replaced with a texture map.

3.6 Texture Scaling
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It is sometimes necessary to reduce the amount of texture memory that is used by a means other

than thresholding.  For very large simulations or for simulations on platforms that have limited texture

memory, illumination textures can be scaled after they are generated.  This will often produce visual

artifacts such as blurring or correspondence errors between neighboring surfaces.

3.7 Texture Combination

Some hardware platforms permit the combination of two texture maps on the same surface in a

single rendering pass. This allows us to combine illumination textures and surface detail textures on the

fly.  On such a platform it is possible to render a brick wall with shadows and other non-uniform

illumination.  The brick texture may be repeated on the face and combined with a low-resolution

illumination map that is applied with a scale of 1.0 to the face.  This results in the appearance of a high-

resolution surface image from fairly low resolution texture maps.  Surface detail textures, such as the brick

pattern discussed, are applied in the original model and preserved throughout the modeling pipeline.

4 Performance of IAT Models

The success of the system can be evaluated in terms of appearance, performance, and memory

requirements.  The immediate goal of the project was to produce a model that looked as good as the

original, but could be rendered significantly faster.  The idea was then to refine the process by improving

the appearance and making more efficient use of both texture and main memory.

4.1 Appearance

Models with illumination textures appear to be identical to the polygonal versions.  All the data in

each radiosity mesh is captured fully by a texture map.  The texture maps are bilinearly interpolated in

hardware, which produces the same appearance as the polygons of the mesh version that have a color at

every vertex.

4.2 Speed
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Models that are processed using my implementation of the illumination as texture approach show

significantly better performance in virtual environment simulations (see Figure 3).  Performance statistics

were obtained by running a basic Performer application on a Silicon Graphics Onyx Reality Engine 2 with

16 megabytes of texture memory.  Note both frames per second and memory usage.  The textured version

takes longer to load because the  texture maps must be downloaded from main memory into texture

memory, where they are then packed efficiently according to size.

Name No. Triangles Frame Rate  Texture Memory
(frames/second)     (megabytes)

       ________________________________________________________________

maus (polygon)       95536                  7.5         -
         maus (IAT)       39820       15.0    1.26

cave (polygon)       43960       20.0    -
cave (IAT)       19492       30.0 0.77

lavapit (polygon)       55158         8.6             -
lavapit (IAT)         7183                  30.0 1.48

pool (polygon)        84384         8.6    -
pool (IAT)        39865       15.0 2.76

Figure 3: Performance of IAT models compared to the polygonal versions

IAT models exhibit faster rendering because of the tradeoff between transformations and

rasterization.  For an IAT model, a single polygon is transformed according to the viewing matrix for each

surface in the scene, compared to a transformation for every polygon in the mesh at each surface in the

polygonal radiosity version of the model.  A large polygon must be rasterized for every surface in an IAT

model, whereas many smaller polygons are rasterized at every surface in the polygonal radiosity version.

For models with significant mesh complexity (i.e. a tenfold increase in the original polygon count as a

result of the radiosity process), the transformation time for the many polygons dominates the rendering
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cost and the IAT version will run faster.

4.3 Space

Models with illumination texture require less RAM and more texture memory at run time.  They

tend to require roughly the same amount of disk storage space as the polygonal version because of the

large number of image files that are associated with the model file.  Texture memory can be conserved by

using some of the resource management techniques discussed previously, such as thresholding.

5 Current Work on the IAT System

Members of the Walkthrough project are currently working on improvements and extensions to the

original IAT implementation.  These changes are designed to improve both the appearance of the model as

well as the performance. Concurrently, we are attempting to improve the efficiency of texture memory use.

5.1 New Texture Generation Process

The original program generated texture maps by sampling the quad-tree for every position in the

image grid.  We have recently implemented a new approach that uses a polygon scan conversion algorithm

to fill in the texture values.  This is more efficient because it requires only a single pass through the quad

tree data structure for each surface.  In addition, this approach is better suited to handle difficult degenerate

cases such as triangles with very obtuse or acute angles.

5.2 Better Approximation of Illumination Function

The current implementation uses simple bilinear interpolation to fill in gaps in the radiosity mesh

when a texture map is being produced.  We can fit a higher order polynomial function to the values in the

radiosity mesh to obtain a richer approximation of the illumination function for the surface.  This

polynomial would allow us to use bicubic, rather than bilinear interpolation, to generate a texture map.

A polynomial approximation of the surface illumination function provides two significant

enhancements to the IAT process.  First, the textures generated will be smoother because of the bicubic
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interpolation.  Second, we can easily produce textures at arbitrary resolution from the approximating

function.

Bicubic interpolation should improve the appearance of the IAT texture maps.  The textures will

look smoother and will have fewer visual artifacts because of the higher order interpolation.  IAT models

will no longer be identical to the original mesh version, but they will contain fewer artificial discontinuities

than the simple meshed version because many of the discontinuities are a result of the adaptive subdivision

process itself and not a result of global illumination.  Rushmeier [3] proposes some metrics that we can

use to evaluate the quality of the images produced by our polynomial approximation.  Our ability to

generate good approximating polynomials will improve if we perform discontinuity meshing, which I will

discuss in the next section.

We can generate texture maps at arbitrary resolutions because the polynomial approximation is a

continuous function.  Values at the edges can be clamped to prevent the correspondence problems between

neighboring surfaces that we observed with previous attempts to scale these textures. This technique will

enable us to improve our resource management, as well as produce multiple levels of detail textures for

each surface.

5.3 Discontinuity Meshing

Discontinuity meshing is a pre-process computation that meshes polygons in a non-regular fashion

according to the geometrical relationship between lights, receivers, and occluders in the environment.  For

example, a diagonal shadow on a wall might cause it to be divided into three triangles defined by the edge

of the shadow.  We plan to implement discontinuity meshing as a pre-processing stage on a model before

it is loaded into Lightscape.

Discontinuity meshing promises to improve both the appearance and performance of the models we

generate.  It is difficult to capture non-axially aligned shadows smoothly in Lightscape without

subdividing the face to a great extent. As a result, aliasing is common in the form of blocky edges on

diagonal shadows.  Discontinuity meshing should reduce aliasing, and also decrease the size of the model

and textures by reducing the amount of subdivision required on each face.



13

In addition, discontinuity meshing will allow us to generate better approximating polynomials for

the surface illumination function.  If we divide polygons according to discontinuities, we can be confident

that there are no significant discontinuities within a particular polygon. This knowledge makes it much

easier to produce a polynomial to capture all the surface illumination data for that polygon.

5.4 Multiple Pass Techniques

SGI Reality Engine platforms do not support the combination of multiple textures on the same face

in a single pass.  They do, however, provide a means to project one texture onto another in an additional

pass.  This technique can be used to combine illumination and surface detail textures at different scales as

previously described. We are currently working on the implementation of this approach.

5.5 Texture Packing

The concept of texture packing will make texture memory use much more efficient.  The IAT

process generates a large number of variably-sized textures.  The majority of these textures are

considerably smaller than the optimal size for texture memory access on an SGI Reality Engine.  We plan

to pack many smaller texture maps into a single larger palette to increase texture memory access speed and

reduce the total number of accesses.

6 Future Work

The IAT techniques illustrated in this paper provide insight into a more general category of

applications.  In this section, I describe some potential alternative uses of this approach, and propose some

new directions in which this line of thinking might take us.

6.1 The Panel Concept

We were motivated by the desire to render virtual environments with global illumination at a high

frame rate when we set out to implement IAT.  The technique to replace coplanar polygonal meshes, such

as the ones generated by a radiosity process, with texture maps is based on the concept of a panel.  The
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notion of a panel as described by Dr. Fred Brooks, is that a collection of coplanar polygons can and

should be treated as a single three dimensional entity that bears some two dimensional surface information,

rather than as a collection of independent three dimensional pieces. Capturing illumination as a texture

mapped polygon is a good embodiment of this concept because a texture map contains data in a two

dimensional parameter space, yet this information can be easily applied to the surface of the polygon in

three dimensions.

6.1.1 Surface Functions

The panel as texture approach can be extended to a broader domain of surface rendering

applications. Simulation of reality will inevitably need to incorporate both intrinsic and extrinsic properties

of the surfaces in the environment.  Global illumination on a surface is just one type among many different

classes of functions that provide detail related to the intrinsic properties of a surface as well as properties

related to its environment.

6.1.2 The Texture Map Representation

If you think of surface detail as a function applied to a panel, it is easy to conceive of many such

functions combined on the surface in some meaningful way.  Our job is simplified by the image-based

representation of these functions, because now the problem is reduced to combining a series of images

based on some meaningful criteria.  Imagine a combination of illumination function, surface detail, bump

map, and reflection map on the same panel.  This could be used to simulate a wooden table that is partially

polished and partially rough, with shadows and moving highlights dancing across its surface.

6.2 Possible Directions

The idea of surfaces that contain information in the form of a function can be extended to cover a

variety of lighting and related surface effects.  These techniques also take advantage of the simplicity and

speed of the texture map representation of the surface function.
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6.2.1 Dynamic Functions

Another product of this line of thinking is to render dynamic or oscillating surface functions.  A

good example would be to calculate different radiosity solutions for different times of day for a model of a

room.  We could then compute a simple linear interpolation between each stage to create the illusion of a

continuous change as the sun moves across the sky.  There is no reason these surface functions need to be

static, as long as graphics hardware allows us the appropriate access.

6.2.2 Level of Detail

A similar interpolation technique would allow us to blend between illumination or detail textures of

different resolutions.  Ideally, blending could be done with hardware and should not require multiple

passes.  This would effectively allow smooth transitions between levels of detail for the surface function.

6.2.3 Hardware Support

In order to take full advantage of this family of texture based rendering techniques, graphics

programmers will need improved hardware support and access to hardware texturing capabilities.  Future

graphics machines should allow direct manipulation of texture memory and the frame buffer.  They should

provide a means to smoothly blend between two or more textures on the same surface based on

interpolation techniques.  In addition, they should allow the combination of multiple textures at different

scales on the same face without requiring additional rendering passes. Finally, future graphics engines

should provide even larger texture memories with faster access to make these methods even more effective

and powerful.

7 Conclusions

 The technique of rendering illumination as textured panels appears to be a small member of a much

larger set of surface operations.  This type of technique is appropriate considering the increasing demands

for richness in virtual environments as well as the current trend towards fast texturing in graphics

hardware.  I believe that this type of approach promises to carry us towards the goal of richness in virtual
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environments.
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