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ABSTRACT

This work continues the generalized stability theory (GST) analysis of baroclinic shear flow in the
primitive equations (PE), focusing on the regime in which the mean baroclinic shear and the stratification
are of the same order. The Eady model basic state is used and solutions obtained using the PE are compared
to quasigeostrophic (QG) solutions.

Similar optimal growth is obtained in the PE and QG frameworks for eddies with horizontal scale equal
to or larger than the Rossby radius, although PE growth rates always exceed QG growth rates. The primary
energy growth mechanism is the conventional baroclinic conversion of mean available potential energy to
perturbation energy mediated by the eddy meridional heat flux. However, for eddies substantially smaller
than the Rossby radius, optimal growth rates in the PE greatly exceed those found in the QG. This
enhanced growth rate in the PE is dominated by conversion of mean kinetic energy to perturbation kinetic
energy mediated by the vertical component of zonal eddy momentum flux. This growth mechanism is
filtered in QG. In the intermediate Richardson number regime mixed Rossby-gravity modes are nonor-
thogonal in energy, and these participate in the process of energy transfer from the barotropic source in the
mean shear to predominantly baroclinic waves during the transient growth process.

The response of shear flow in the intermediate Richardson number regime to spatially and temporally
uncorrelated stochastic forcing is also investigated. It is found that a comparable amount of shear turbulent
variance is maintained in the rotational and mixed Rossby—gravity modes by such unbiased forcing sug-
gesting that any observed dominance of rotational mode energy arises from restrictions on the effective
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forcing and damping.

1. Introduction

In the first part of this paper (Heifetz and Farrell
2003, hereafter Part 1) we reported a generalized sta-
bility theory (GST) analysis of nongeostrophic baro-
clinic shear flow in the large Richardson number re-
gime; that is, Ri = (N/A)* = O(100), where N is the
Brunt-Viisild frequency and A is the vertical shear of
the mean zonal wind. This value of Ri corresponds to
the typical values of stratification and baroclinic shear
in the midlatitude jet [N = O(107%s™); A = O(107?
s 1)]. We compared solutions obtained with the primi-
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tive equations (PE) to those obtained with the quasi-
geostrophic (QG) equations using the Eady (1949) ba-
sic state. For our purposes QG dynamics differs most
notably from PE dynamics in filtering the divergent
inertio-gravity waves while retaining the rotational
Rossby waves. According to the Rossby adjustment
mechanism (Blumen 1972), while an initial disturbance
typically excites both rotational and inertio-gravity
waves, the latter radiate quickly and presumably incon-
sequentially away, leaving behind the persistent rota-
tional modes. However, this Rossby adjustment mecha-
nism based view of the separation into rotational and
divergent manifolds has been studied primarily in the
absence of mean shear for which gravity and Rossby
waves are orthogonal under both energy and enstrophy
norms. In the presence of shear the modal solutions
become mixed in divergent and rotational dynamics,
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and nonnormal interaction mediated growth is possible
as these modes interfere in the presence of shear so that
filtering out gravity waves may at the same time filter
out important nonnormal growth mechanisms (cf.
Dutfty 1990).

Mixing between divergent and rotational modes, and
the degree of nonorthogonality among modes, was
found to be influenced primarily by the shear number
S = 1/\/ﬁ = A/N, which is of order 0.1 for values of
the Richardson number typical of mean synoptic-scale
conditions. This value of S is too small to allow sub-
stantial mixing among the modes, and the Rossby
modes remain almost purely rotational while the grav-
ity modes remain almost purely divergent. Conse-
quently, the slow Rossby manifold, the dynamics of
which is described adequately by QG, remains almost
orthogonal to the fast gravity manifold so that, al-
though growth obtained with PE slightly exceeds
growth obtained with QG, the PE GST analysis at syn-
optic time scales of several days yields almost identical
results to that obtained using QG. The major difference
was found in the first few hours of initial growth for
which the optimal PE growth rate substantially exceeds
the QG optimal growth rate. This rapid growth rate was
traced to perturbations exploiting the divergent com-
ponent of the meridional wind to advect the “rota-
tional” component of the potential temperature result-
ing in a large transient eddy meridional heat flux. How-
ever, this growth mechanism is not sustained and
therefore does not substantially affect cyclone evolu-
tion on the synoptic time scale.

We also studied optimal growth in the PE and QG at
the horizontal mesoscale, L = O(100 km), for which
Ro = O(1), but again keeping Ri = O(100). Primarily
because the shear number, S, again remained too small
to establish appreciable nonorthogonality between the
divergent and rotational manifolds, it was found that,
although the two manifolds in this regime have similar
time scale, still the optimal growth for target times of
a few days obtained with PE is close to that obtained
with QG.

A fundamental difference between QG and PE is
that QG neglects the direct mechanism of energy
growth by transfer of kinetic energy from the mean
shear mediated by the vertical component of zonal
eddy momentum flux. This neglect is justified by the
scaling of the vertical velocity in QG. However, espe-
cially at the mesoscale, this mechanism cannot always
be neglected, and, in fact, we found that its contribution
to the total eddy energy growth could exceed by two
orders of magnitude that of the potential energy trans-
fer mediated by meridional heat flux. Nevertheless at
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large Richardson number, even at mesoscale, only in
the first few hours of evolution does the PE framework
yield a much larger growth than the QG due to the
direct Reynolds stress mechanism.

The response to stochastic forcing of PE shear dy-
namics was also investigated. For spatially and tempo-
rally uncorrelated forcing we found that at synoptic
scale the divergent manifolds maintain a variance com-
parable to that maintained by the rotational manifold.
In the mesoscale gravity waves maintained almost half
of the total variance. While there is some observational
and modeling evidence for this approximate equiparti-
tion at the mesoscale, there is no evidence for strong
variance in divergent motions at synoptic scale (Errico
1984). However, when white noise was replaced by red
noise, in agreement with the power-law frequency spec-
trum that is observed for gravity waves, the divergent
variance was strongly suppressed. In addition, when the
damping was made proportional to frequency (thus
making the eddy decorrelation time proportional to the
eddy period, a self-similarity in agreement with the ob-
served power law spectrum) the overprediction of di-
vergence variance was further reduced.

The results of Part I suggest that the fundamental
reason the QG framework provides a good description
of midlatitudinal dynamics is due as much to the small-
ness of the shear number as to the smallness of the
Rossby number. Because the ratio of shear to stratifi-
cation is small in the midlatitude jet, appreciable non-
orthogonal interaction between the divergent and rota-
tional manifolds does not occur. This result invites a
study of baroclinic GST for larger shear number at vari-
ous ranges of Rossby numbers, in order to identify the
parameter for which the rotational and divergent mani-
folds mix and consequently support nonnormal growth.
Hence, here in Part II, we examine nonnormal dynam-
ics in the intermediate Richardson number regime in
which S = 1/A/Ri = O(1) both at Rossby numbers
typical of the synoptic scale and the mesoscale [Rossby
numbers O(0.1-10)]. This study addresses the funda-
mental theoretical issue of the mixing of the rotational
and the divergent mechanisms in the baroclinic dynam-
ics. Although at synoptic scale the Richardson number
is usually much larger than unity, in the mesoscale an
effective moist Richardson number (cf. the definition
by Durran and Klemp 1982) can easily reach order one
in fronts and jet streaks (e.g., Wakimoto and Bosart
2000, 2001; Bosart et al. 1998; Kaplan et al. 1997; Koch
and Dorian 1988). While the dynamics discussed in this
work is taken for simplicity to be dry, we expect the
nonnormality dependence on the shear number is gen-
eral.
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In section 2 we review the baroclinic PE formulation,
and in section 3 we investigate the generalized stability
of the PE in the Eady basic state for the intermediate
Richardson number regime. Our results and conclu-
sions are summarized in section 4.

2. PE baroclinic dynamics

The linearized nondimensional PE, on an f plane, in
the presence of constant thermally balanced zonal
baroclinic shear A, have been written in Part I [equa-
tion set (8)]:

d
Etvaz = _2SUX + (wx - uaz)v (13)
d_t U,, = ZSvy — (Wy - vaz), (1b)
d
7 (v, —u, +60,) = Sw, + v,.). (1¢)

The zonal, meridional, and vertical directions are de-
noted (x, y, z) respectively. The total vector velocity
perturbation is u = (&, v, w) = u, + u, where u, = (i,
v, w,) and u, = (u,, v, 0) are the ageostrophic and
geostrophic components. The geostrophic component
satisfies the thermal wind relation (u,, = —6,, v,, = 6,)
where 6 is the scaled potential temperature;

d_3. o3
dt ot lox

is the linearized substantial derivative, where S = A/
N =1/\/Ri is the shear number and N is the Brunt—
Viisild frequency. The time scale is taken to be f*,
where fis the Coriolis parameter. For the Eady basic
state the tropopause height, H, provides the scale for
distance in the vertical; however, there is no model con-
straint on the horizontal scale, L. The Rossby number is

U Ly
Ro = ﬁ =5 7
where Li = NH/fis the Rossby deformation radius and
U = AH. We choose conventionally L. = Ly so that
Ro = S. However, for the same value of shear number
we discuss perturbation dynamics with larger and
smaller scale than the Rossby radius, which corre-
sponds respectively to smaller and larger effective
Rossby numbers. In (1) we also assumed quasi-
hydrostatic balance, which requires the aspect ratio,
a = H/L, satisfy o < 1.
It is interesting to examine two limits of (1). In the
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QG limit the lhs of (1a)—(1b) and the rhs of (1c) vanish
and the full horizontal wind is replaced by its geo-
strophic component:

ZSng =w, — U, (2a)
2Svgy =W, = Uy, (2b)
d J—
7 (v, — Uy, + 6.)=0. (2¢)

Equations (2a)-(2b) can be interpreted as enforcing
complete adjustment to thermal wind balance in the
QG framework: the horizontal thermal gradient is con-
tinuously forced by differential meridional geostrophic
advection of the mean temperature [the lhs of (2a)-
(2b)], which tends to violate the thermal wind balance
while the ageostrophic circulation [the lhs of (2a)—-(2b)]
responds continuously to maintain the balance. As a
result the ageostrophic dynamics is slaved to the geo-
strophic dynamics, which can be obtained indepen-
dently by solving the geostrophic potential vorticity
(PV) conservation of (2c).
The other limit is that of zero mean shear:

d
EUHZ = (Wx - uaz)’ (3a)
d
7 taz = —(w, —v,,), (3b)
d
7 (v, — g, +6,)=0. (3¢)

Equations (3a)-(3b) describe pure ageostrophic iner-
tio-gravity wave dynamics, which is decoupled from the
barotropic geostrophic dynamics of (3c) [since the in-
ertio-gravity waves carry zero PV the only remaining
PV component in (3c) is geostrophic]. The two limits
are similar in the sense that the rotational geostrophic
dynamics is decoupled from the divergent dynamics,
while different in that the geostrophic limit does not
support inertio-gravity waves. The formulation of equa-
tion set (1) indicates that coupling between the geo-
strophic and ageostrophic component depends on the
vertical shear number, S. Imbalance between the rhs
terms of (1a)—(1b) forces growth of ageostrophic verti-
cal shear [the lhs of (1a—(1b)], while the ageostrophic
terms on the rhs of (1c) produce perturbation PV by
tilting horizontal mean vorticity into the vertical (Sw,),
and by tilting mean isentropes (Sv,.).

For typical midlatitudinal baroclinic jets S = O(0.1),
and therefore coupling between the geostrophic and
ageostrophic manifolds is weak. Hence, in Part I, inde-
pendent of the magnitude of the effective Rossby num-
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ber, we found in PE a branch of rotational modes that
is almost identical to that found in QG but also two
branches of almost purely divergent inertio-gravity
modes. It can be shown (see appendix) that under the
total energy norm a purely rotational component is or-
thogonal to a purely divergent one. By extension an
almost purely rotational mode is also almost orthogonal
to an almost purely divergent mode and, consequently
to the extent that modes are purely rotational or purely
divergent, such modes cannot interact in a nonnormal
fashion. This is why in Part I, almost no nonnormal
interaction was found between the almost QG branch
and the almost purely inertio-gravity modes. It is there-
fore important to examine the generalized stability of
system (1) when the coupling is significant, that is, when
the shear number is not small. Here we continue the
analysis for the case in which § = 1/\/E = 0(1).

3. Intermediate Richardson number dynamics of
the Eady basic state

Smaller Richardson numbers can be found in regions
of strong vertical shear and/or in regions of weak strati-
fication. Here we discuss intermediate Richardson
number dynamics for various horizontal scales corre-
sponding to the effective Rossby numbers: Ro = kS =
0(0.1; 1; 10), where (k, ) are the zonal and meridional
wavenumbers scaled by the inverse of the Rossby ra-
dius, L' Asin Part I we discuss horizontally isotropic
perturbations® (k = [) and solve both the inviscid and
viscid versions of (1) (for details see appendixes A and
B in Part I). Despite some differences in the dynamics
of the two versions for brevity we show here only the
inviscid results.

a. Normal-mode analysis

The real and imaginary frequencies (w,, ;) of the
modes of the discretized dynamics for § = 1 and for

! We use quasi-hydrostatic dynamics, which is strictly valid only
for o® = (H/L)* = O[(kf/IN)?] < 1. Hence, the interpretation of
increasing S while decreasing N should be made keeping this
quasi-hydrostatic limit in mind. As an example, for k = 10, a =
O(10 %N, decreasing N by an order of magnitude from its mid-
latitude synoptic value [N = O(107%)] would, strictly speaking,
violate the quasi-hydrostatic assumption. Thus, geophysical inter-
pretation of these results should be regarded as only indicative for
physical situations in which the aspect ratio is not small.

2 As shown by Stone (1966, 1970) and Plougonven et al. (2005),
the modal solution depends on the ratio k// in this regime. How-
ever, for the optimal nonmodal evolution this dependence was
found to be relatively weak, except for the case where k/l < 1,
which exhibits a nonmodal transient symmetric instability type of
growth. The latter will be discussed in a separate paper.
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Rossby numbers Ro = O(0.1; 1; 10) are shown in the
left panel of Fig. 1. The PE modes are denoted by the
asterisks, while the two QG Eady normal modes are
shown for reference by circles. In the middle panel the
149 modes are ordered increasing in their real values of
frequency.” The fraction of mode energy in the rota-
tional and the divergent components are indicated by
the black asterisks and gray plus symbols (recall that
under the quasi-hydrostatic energy norm the rotational
and the divergent energy components are orthogonal
and therefore their sum yields the total energy; see ap-
pendix). In the right panel, contours indicate the energy
norm inner product between every pair of modes. Zero
values correspond to orthogonality between modes
while unity corresponds to the normalized total energy
of the modes themselves (and occurs only along the
diagonal of the diagrams).

In the upper left panel of Fig. 1 [Ro = O(0.1)] three
distinct branches are seen that are separated in real
frequency. Growth rates of the growing and decaying
modes in the middle branch are almost identical to
those obtained in QG. This dispersion relation is very
similar to the one obtained for the case in Part I (cf. the
upper left of Fig. 4) where S = 0(0.1); Ro = 0(0.1). In
Part I the energy of the middle branch was found to be
almost purely rotational, while the energy of the other
two branches was almost purely divergent. Here, we see
from the upper middle panel that, while the energy of
the middle branch is also almost purely rotational, the
other two branches are mixed being composed of ap-
proximately 60% divergent energy and 40% rotational
energy. Therefore, as opposed to our results in Part I
where the nearly divergent modes were almost or-
thogonal to the nearly rotational modes, here some de-
gree of nonorthogonality between the branches is indi-
cated in the right upper panel of Fig. 1. When Ro =
O(1) (horizontal middle panel), the three branches are
distributed continuously in frequency, but their energy
partition into rotational and divergent components is
almost identical to that obtained when Ro = O(0.1).
The unstable mode growth rate is also almost identical
to that in QG.

It is remarkable that the dispersion relation of the
middle rotational branch is similar to the QG branch
although the shear number is not small. To understand
this we plot in Fig. 2 some zonal-vertical cross sections
of the most unstable mode for the case [Ro = O(1),

3 The Eady channel has been discretized in the vertical into 50
layers in order to obtain numerical convergence. This in turn
yields 149 modes that compose the solution; for details see ap-
pendix A of Part I.
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FiG. 1. (left) PE dispersion relation indicated by asterisks. The frequencies w,, ; have been scaled by the Coriolis
parameter, f. The circles indicate growing and decaying normal modes obtained from QG dynamics. (middle)
Partition of the modal total energy into rotational and divergent components, indicated respectively by the black
asterisks and the gray plus symbols. The modes are ordered by their real frequency values so that mode 1 has the
smallest real frequency. (right) Contour plot indicating the relative orthogonality among modes in the energy
norm. It shows contours of E;; = X}ij, at the intersection of (x = i, y = j), where y; is the normalized energy
coordinate vector of mode i (ordered by their frequency values) so that xjx; = 1: (top) k = [ = 0.1, (middle) / =

1, and (bottom) k = [ = 10.

S = O(1)] [the structure of the most unstable mode
when Ro = 0(0.1), S = O(1), is qualitatively similar].
In Fig. 2 the horizontal and vertical scales are normal-
ized respectively by the wavelength and the tropopause
height. The total meridional wind and its geostrophic
and ageostrophic components are shown in the upper
panel while the potential temperature, PV, and the ver-
tical derivative of the ageostrophic meridional wind are
shown in the lower panel. We see that all structures
maximize near the boundaries. The total meridional
wind is slightly tilted eastward with height, while its
geostrophic component is tilted westward. The ageo-
strophic component is almost untilted and, in fact, looks
almost identical to the first inertio-gravity mode in the
Eady channel without shear. As in QG the temperature
field is tilted eastward. Near the surface the meridional
wind is located partly in phase and partly to the east of

the temperature anomaly and thus forces the tempera-
ture anomaly to both grow and propagate eastward.
Near the tropopause the meridional wind is located
partly in phase and partly to the west of the tempera-
ture, forcing the latter to grow and propagate westward
counter to the mean zonal eastward wind. Conse-
quently, the mean temperature advection by the me-
ridional wind enables the mode to resist the shear and
propagate coherently eastward while growing. Unlike
in QG the PE modes contain a nonzero PV anomaly
that is tilted eastward with height. It can be shown that
the dominant rhs term in the PV equation (1c) is Sv,,.
Figure 2 indicates that Sv,_, which is almost untilted, is
located near the surface partly in phase and partly to
the east of the PV anomaly while partly in phase and
partly to the west of the PV near the tropopause so that
this differential stretching with height contributes to the
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F1G. 2. Zonal-vertical cross sections of selected fields of the most unstable mode when &k =/ =1 [Ro = O(1)].
The zonal direction is scaled by the eddy zonal wavelength and the vertical by the tropopause height. (top left)
Total meridional wind, (top middle) geostrophic, and (top right) ageostrophic components. (bottom left) Potential
temperature, (bottom middle) PV, and (bottom right) vertical derivative of the meridional ageostrophic compo-

nent.

PV field propagating to the east in a coherent fashion
while growing.*

The ratio lv,/v,| as a function of height, indicated by
the dash—dot line in the left panel of Fig. 3, is O(1-10).
Hence, the ratio between the geostrophic and the ageo-
strophic energy components might be expected to be
0(10-100), as indeed is verified by the solid line. There-
fore, the domain-integrated ageostrophic energy is ap-
proximately 1% of the geostrophic, as was shown in
Fig. 1. However, the dynamics of (1) involves the ver-
tical derivative of the horizontal ageostrophic wind
rather than the horizontal ageostrophic wind itself (the
vertical wind itself contributes very little to the dynam-
ics). A plot of the vertical distribution of Iv,/v,,|
(dashed line) shows this to be O(10~" —1). Hence, al-
though the horizontal ageostrophic wind is small com-
pared to the geostrophic one, its vertical derivative is
not. This is why the structure of the PE gravest normal
mode differs substantially from its QG counterpart, al-
though its energy remains almost purely geostrophic.

4 The ageostrophic circulation on the rhs of (Ic) provides a
source to the eddy PV and in a sense plays a role equivalent to the
meridional advection of the mean interior PV in the QG frame-
work where the mean PV gradient is nonzero, for example, the
Charney (1947) model. Indeed, as in our case the PV structure of
the Charney unstable modes tilt eastward with height.

It remains to be investigated why the PE mode has
almost identical growth rate to its QG counterpart de-
spite their different structures. In normalized coordi-
nates the quasi-hydrostatic energy tendency equation
[Eq. (5) in Part I] can be written

I s
Y z(u +v +07)dV =S| (w0 —uw)dV

=S f[(vg + v,)(0, + 0,)
4)

[This partition of the ageostrophic from the geostrophic
fields, including the potential temperature, was done
using the QG" scheme, suggested by Muraki et al.
(1999); cf. also Part I of the paper for more details.] The
vertical distribution of the magnitude of the terms that
compose the baroclinic energy source [the rhs of (4)]
are shown in the right panel of Fig. 3. It is clear from the
figure that the energy source arises predominantly from
correlation between the geostrophic meridional wind
and the “geostrophic” temperature components. Since
the total energy of the gravest PE mode is almost geo-
strophic and its energy growth source is almost geo-
strophic as well, the resulting energy growth rate is al-
most that of the purely geostrophic mode.

— (g + u,wldv.
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FiG. 3. (left) Vertical distribution of the ratio between selected fields of the most unstable mode when
k =1 =1 (the vertical coordinate represents height normalized by the tropopause height). Dash—dot line
indicates the ratio between the geostrophic and ageostrophic meridional wind component. Dashed line
represents the ratio between the geostrophic meridional wind component and the vertical derivative of the
ageostrophic meridional wind component. Solid line indicates the vertical distribution of the ratio between
the geostrophic and the ageostrophic total energy. (right) Vertical distribution of the terms in the energy
tendency [the rhs of (4)]. The total meridional heat flux is indicated by the solid line, while its four

components (v,0,, v,0,,
symbols.

In the case with wavenumber k& = [ = 10 (lower panel
of Fig. 1) so that the effective Rossby number is O(10),
most of the modes are mixed (middle lower panel) with
energy partition of approximately 70% and 30% be-
tween the ageostrophic and geostrophic components.
Therefore, the orthogonality diagnostic (right lower
panel) shows some amount of nonorthogonality be-
tween almost every pair of modes (typically the degree
of nonorthogonality in this inner product measure is
about 30%, cf. the grayscale bar). The QG modes for
this wavenumber are neutral (indicated by the circles);
however, as noted by Stone (1966) and further investi-
gated by Nakamura (1988), because of the source term
in (1c), PE dynamics slightly destabilizes the modes by
inducing interior critical layers. Unlike the majority of
modes, these two unstable modes (number 15 and 135
in the lower panel) have almost 70% geostrophic en-
ergy and are therefore nearly orthogonal to the major-
ity of other modes. Since the Rossby penetration depth

v,0,, v,0,) are respectively indicated by the dash-dot line, asterisk, plus, and dot

is too small at this wavenumber to establish phase lock
between the two boundary waves, these two modes re-
main boundary trapped critical layer instabilities, one
near the surface and one near the tropopause, where
their respective critical layers lie approximately at z =
0.1; 0.9. Cross sections of the upper unstable mode (for
mode number 135) are shown in Fig. 4. We see that the
structures tilt eastward with height and maximize at the
upper boundary. Near the upper boundary the meridi-
onal wind is located partly in phase and partly to the
west of the temperature signature producing a tendency
to grow and propagate counter to the mean wind. Be-
low the critical layer the meridional wind is partly in
phase but partly to the east of the temperature field,
producing a tendency to grow and propagate faster
than the mean wind there. Consequently, the tempera-
ture field consistently grows while propagating coher-
ently with the phase speed of the critical level mean
wind.
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F1G. 4. Zonal-vertical cross sections of the uppermost unstable mode when & = [ = 10 [Ro = O(10)].
Shown are selected fields: total meridional wind, potential temperature, PV, and the combination of ageo-

strophic circulation, which enter the rhs of (1c).

Having gained some familiarity with the modes we
turn now from modal dynamics to explore the GST
dynamics in the intermediate Richardson number re-
gime.

b. GST analysis

Equation set (1) can be transformed into Eq. (9) of
Part I:

(5a)

where x is the generalized energy coordinates vector,
whose inner product yields the quasi-hydrostatic total
energy. The matrix D is given in appendix A of Part 1.
The solution of (5a) can be written

x(t) = e®'x(0) = UZV'x(0), (5b)

where U V' is the singular value decomposition (here-
after SVD) of the matrix propagator from an initial
time zero to target time ¢, ®(0, f) = ¢! (cf. Farrell and
Ioannou 1996, hereafter FI96). The optimal initial unit

magnitude perturbation in the energy norm x(0) pro-
ducing maximal growth at target time ¢ is the first col-
umn vector of V, which is projected onto the first col-
umn unit vector of U with magnitude increase o = E;,
where o denotes the optimal growth over time t.

As in Part I we investigate first the instantaneous
perturbation energy growth, continue with the optimal
excitation analysis for an intermediate target time, and
end this section with the optimal asymptotic limit of
time infinity.

1) INSTANTANEOUS GROWTH

The maximum instantaneous growth rate of dynami-
cal systems of the type of (5) is equal to the largest
eigenvalue of the matrix (D + D")/2, and the structure
X producing this growth rate is its associated eigenvec-
tor (FI196). In Fig. 1 of Part I it was shown that the PE
instantaneous growth rate exceeds the QG growth rate
at all wavelengths. At small wavenumbers (k < 1), the
differences in growth rates were small because in both
PE and QG the energy growth mechanism was domi-
nated by the conventional baroclinic available potential
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F1G. 5. Zonal-vertical cross sections of the structures with maximal instantaneous growth
rate. (top left) Ageostrophic meridional wind component and (top right) “geostrophic” po-
tential temperature when k = / = 1. (bottom) Scaled arrows of the (u, w) vector field for

k=1=10.

energy (APE) growth mechanism mediated by the eddy
meridional heat flux v6. In contrast, for larger wave-
numbers (k > 2) the differences in instantaneous
growth rate are large since in the PE framework the
growth is dominated by the effective kinetic energy
(KE) growth, due to the zonal-vertical component of
the Reynolds stress, —uw. The latter produces growth
rates in PE that reach, at the quasi-hydrostatic limit,
two orders of magnitude larger than QG growth rates.
These results were found to be insensitive to the Rich-
ardson number over the range O(10~%) = Ri = O(10%).
Structures producing maximum instantaneous growth
rate are shown in Fig. 5 for § = 1 and k = 1 (upper
panel) and for k = 10 (lower panel). While in QG v and
6 are the zonal and vertical derivatives of the geo-
strophic streamfunction, here for k = 1, PE dynamics
exploits the additional freedom to amplify the meridi-
onal heat flux by advecting the “geostrophic” potential
temperature with the ageostrophic meridional wind so
that the volume integral of v,0, in the rhs of (4) domi-
nates the growth (cf. the remarkable correlation be-
tween the two fields in Fig. 5). The scaled vectors of the
zonal and vertical wind components are also shown for
k =10 in Fig. 5 revealing the tilt against the mean shear

indicative of energetically positive contribution from
the eddy Reynolds stress, —uw.

The optimal instantaneous structures can be com-
pared to the most unstable normal modes (Figs. 2-5).
The most unstable modes act to maximize the correla-
tion between v and 6 under the constraint of being
phase locked, and for wavenumbers corresponding to
scales smaller or of order Rossby radius these fields are
nearly identical to the geostrophic components of v and
6. The instantaneous structures are fundamentally dif-
ferent since without the phase locking constraint the
structures maximize the correlation between fields,
which produces maximum growth rate: however, we
find that this correlation is not necessarily sustained.

In Part I we found for S = 0.1 that, indeed, these
large instantaneous growth rates were not sustained
and the intermediate time PE optimal growth was
nearly the same as that in QG. We now examine the
intermediate time optimal growth for § = 1.

2) INTERMEDIATE TIME OPTIMAL GROWTH

Finite-time optimal growth diagnostics for consecu-
tive target times of 1 to 24 h for S = 1 are shown in
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FiG. 6. (left) The optimal growth, o(¢), obtained over time interval ¢ by symmetric wave-
number and (right) the corresponding effective growth rate y(r) = Ino(z)/t, scaled by (f/N)A.
For both left and right panels the PE growth is indicated by circles, and the QG growth by
asterisks. The growth corresponds to wavenumbers (top) kK =/ = 0.1, (middle) k = [ = 1, and

(bottom) k =1 = 10.

Fig. 6. Circles indicate the PE solution and asterisks
indicate the QG solution. The optimal growth o(f) over
the interval of time ¢ is shown in the left panel. The
mean growth rate (), which solves o(f) = exp(yt), is
shown in the right panel.’ The upper, middle, and lower
panels represent the respective growth of symmetric
perturbations (k = /) with Ro = 0(0.1, 1, 10) corre-
sponding to the respective horizontal scale of (10, 1,
0.1) times the Rossby radius. In all three cases the PE
optimal growth is larger or equal to the QG growth. We
can see that for very large horizontal perturbation (up-
per panel) the PE and the QG optimal growth are very
similar and are practically the same after 8 h of evolu-
tion. For Rossby radius scale perturbation (middle
panel) the PE growth always exceeds the QG but only
by a little. Only in the sub-Rossby radius scale (lower
panel) do the two optimal dynamics diverge signifi-
cantly.

5 Note that y(r = 0) is equal to the maximum instantaneous
growth rate, that is, to the largest eigenvalue of the matrix (D +
D")/2. A comparison between these values and the values of w, in
Fig. 1 shows that the instantaneous growth rate always exceeds the
most unstable mode growth rate, as expected.

Optimal structures and energy source terms for tar-
get time 12 h (associated with the typical time scale of
explosive cyclogenesis) are shown in Fig. 7. The optimal
meridional wind structures are shown in the left panel
and the resulting wind structures after 12 h of evolution
are shown in the middle column. After 12 h, for the
largest horizontal scale the structures are almost iden-
tical to those obtained in QG (in agreement with Fig.
6). At the Rossby radius scale, the structures are quali-
tatively similar to the QG with the initial perturbation
evolving from concentration in the midtroposphere to-
ward the upper and lower boundaries. For the sub-
Rossby radius scale, the perturbation is initially tilted
against the shear and is subsequently rotated by the
shear (in time the perturbation converges to a super-
position of the two unstable edge modes). The total
energy growth rate of the 12 h optimal perturbations as
a function of time is indicated by circles in the right
panel. This growth rate results from the meridional
heat flux contribution v6, indicated by asterisks, and the
zonal-vertical Reynolds stress component —uw, indi-
cated by the plus symbols. In the large horizontal scale
case the total energy growth is almost solely due to the
vh term while at the Rossby radius scale it still domi-
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F1G. 7. (left) Zonal-vertical cross sections of the total meridional wind for the initial optimal structures for target
time of 12 h. (middle) The resulting structures after 12 h. (right) Evolution of the total energy growth rate within
the 12 h is indicated by the circles. The partition of this growth rate to the meridional temperature flux component
and to the zonal-vertical component of the Reynolds stress are indicated respectively by the asterisks and the plus
symbols. The structures and growth rates correspond to wavenumbers (top) k = / = 0.1, (middle) k = / = 1, and

(bottom) k =1 = 10.

nates the growth. Consistently, for these eddy scales the
optimal PE and QG growth are similar. In contrast, in
the sub-Rossby radius scale, the optimal growth is
mainly due to the KE growth term —uw, which is fil-
tered out a priori by QG and the optimal perturbation
is primarily structured such as to maximize the contri-
bution from —uw.

Hence, to summarize the intermediate time optimal
growth for intermediate Richardson numbers, we note
the following. The PE and QG yield similar optimal
growth for horizontal scales larger or equal to the
Rossby radius. This is true, although when Ri = O(1)
the Rossby number is O(1) for eddies with horizontal
scale of the Rossby radius. In both cases the dominant
growth mechanism is the same baroclinic transfer of
mean APE mediated by meridional heat flux. On the
other hand, it was shown in Part I that the direct KE

growth mechanism dominates at small horizontal scales
and can dominate baroclinic APE growth at larger
scales. However, for large Richardson numbers the
transient KE growth mechanism is not sustained. Here,
for intermediate Richardson numbers, we find that this
latter mechanism is sustained and provides much larger
growth.

We next briefly examine optimal evolution for target
time infinity.

3) THE ASYMPTOTIC { — % OPTIMAL

The optimal excitation for t — < is the perturbation
that optimally excites the most unstable mode and this
is the conjugate of the biorthogonal of this most un-
stable mode. The meridional wind structures of the
most unstable modes for wavenumbers £ = 0.1, 1, 10
are shown in the right panels of Fig. 8, while in the left
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FI1G. 8. (left) Zonal-vertical cross sections of the meridional wind v, for the (left) optimal and the (right)
evolved optimal for target time infinity for (top) k = [ = 0.1, (middle) kK = / = 1, and (bottom) k = [ = 10.

panels the optimals are shown. (Since two most un-
stable modes with identical growth rates exist for k =
10, we use this opportunity to plot in the lower panels
of Fig. 8 the surface unstable mode and its biorthogonal
conjugate, as the tropopause unstable mode was al-
ready shown in Fig. 4.) For k = 0.1 the structures are
almost identical to the QG ones. The optimal QG evo-
lution in the Eady model is investigated in detail by
Morgan and Chih-Chieh (2002) and also by deVries
and Opsteegh (2005). In contrast, and as in the case of
the inviscid Orr—Sommerfeld equation, the optimal
perturbation for kK = 1, 10 are concentrated in the re-
gion of the critical level (Drazin and Reid 1981), where
in accordance with the analysis in section 3a, their me-
ridional wind (which is composed of both geostrophic
and agestrophic components) tilt eastward with height.

In Part I we saw that although at synoptic time scales
optimal dynamics in PE was similar to that in QG
(Morgan and Chih-Chieh 2002; deVries and Opsteegh
2005), response to stochastic forcing was rather differ-
ent in the two frameworks. Here, for intermediate

Richardson number, we found more differences in op-
timal dynamics in the two frameworks, which suggests
greater differences in their response to stochastic forc-
ing.

¢. Response to stochastic forcing

In stochastic shear turbulence theory stochastic forc-
ing parameterizes excitation of the dominant nonnor-
mal growth mechanisms by sources arising from both
intrinsic nonlinear interaction among waves in the flow
as well as extrinsic processes such as latent heat release
(FI96). The statistical equilibrium of the midlatitudinal
troposphere has been successfully modeled as an as-
ymptotically stable linear dynamical system subject to
stochastic forcing (Farrell and Ioannou 1995; DelSole
and Farrell 1995; Whitaker and Sardeshmukh 1998;
Zhang and Held 1999). Here we further investigate sto-
chastic baroclinic shear turbulence at intermediate Ri-
chardson number using the PE.

Adding a forcing vector g(¢) to the rhs of (5a) yields
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F1G. 9. The (left) first stochastic optimal and (middle) the first EOF for (top) k = [ = 0.1, (middle) k = [ =1,
(bottom) k = [ = 10. In the right panels, the PE and QG frequency responses to white noise forcing are indicated
by the solid dot lines and by the dashed line, respectively.

the asymptotic equilibrium solution in the frequency
domain:

X(®) = R(w)g(w), R(w)= (il —D)"!, (6ab)

in which the caret superscript denotes the Fourier
transform,

1 ([ _
X(w) = >— f  x(e ™ dr, ™

where o is the frequency and | the identity matrix.
Hereafter we omit the caret superscript, which indi-
cates the frequency domain. When a spectrum of fre-
quencies, w € (w;, w,), is excited by spatially and tem-
porally uncorrelated forcing with unit variance, that is,
(8i(w,), 8 (»,) = 8;8(w,, — ®,)/27, the ensemble vari-
ance resulting is given by

0=

where F(w) = trace[R'(w) R(w)]. The frequency re-
sponse F(w) is shown in Fig. 9 for the three horizontal

[0}

’ F(w) do, (8)

w1

wavenumbers k£ = 0.1, 1, 10 and in the presence of equal
Rayleigh damping and Newtonian cooling, correspond-
ing to a 1-day damping time. While this is an overesti-
mation of the explicit damping in the atmosphere,
within the context of stochastic turbulence theory it
accounts for both linear and nonlinear damping mecha-
nisms serving to limit perturbation growth. That these
damping mechanisms in total are equivalent to the
damping rate assumed is required by boundedness or
turbulent variance, as this damping ensures that all
modes decay and consequently F(w) is bounded. The
PE response is larger than the QG at all frequencies,
and most notably the PE response is substantial at high
frequency for which the QG response is negligible.

For spatially and temporally uncorrelated forcing the
EOFs and the stochastic optimals are obtained respec-
tively by SVD of the matrices C, B:

1 [« 1 [«
C=— f R(w)R (w)dw; B=— f R(w)R(w)dw,
2 o1 2 o

(9a,b)
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with C and B obtained conveniently by solving the al-
gebraic Lyapunov equations:

DC+CD'=-I; D'B+BD=-1 (10ab)

The structures of the first stochastic optimal and the
first EOF are plotted respectively in the left and middle
columns of Fig. 9 for k = [ = 0.1. From the right upper
panel we see that variance is distributed almost equally
among the three branches of predominantly rotational
modes (middle branch) and the two mixed Rossby—
gravity branches. This distribution was also obtained in
Part T in the large Richardson number regime. Using
(9) we can find C and B for each branch separately and
obtain the first stochastic optimal and first EOF for
each branch separately. For the rotational branch these
structures (not shown here) are similar to the optimal
for target time infinity and to the most unstable mode
(cf. upper panels of Fig. 8). For the mixed branches the
structures were found to be statistically degenerate. For
k =1 =1 the variance is maximized for the rotational
unstable mode (which becomes the least damped mode
in the presence of damping); however, the distribution
of the response in the mixed range is rather uniform.
The first stochastic optimal displays a tilted-against-the-
shear structure concentrated in the midtroposphere,
and the first EOF a more vertical structure tilted
slightly with the shear. For the case of k = [ = 10, the
first EOF shown in the middle lower panel resemble
the two boundary modes. The first stochastic optimal
for this case maximizes at the two critical layers of these
two modes and resemble the target time infinity opti-
mals. Both structures carry less than 8% of the total
energy since the variance is distributed uniformly among
the mixed modes in the frequency range w € (0, 10).

While the eddy baroclinic spectrum has been inves-
tigated previously in the large Richardson number re-
gime and at synoptic scale, we are not aware of obser-
vational studies of the spectrum of motions in the in-
termediate Richardson number regime to which we
could make comparison (cf. Errico 1984).

4. Discussion

The motivation for this study was to further under-
standing of the dynamics of eddies in baroclinic jets.
The baroclinic basic state is highly nonnormal and im-
plications of this nonnormality for dynamics have been
investigated primarily in the QG framework or at syn-
optic scale (e.g., Farrell 1984; Farrell and Ioannou 1995,
1996; DelSole and Farrell 1995; Whitaker and Sardesh-
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mukh 1998; Zhang and Held 1999). We suspected that
such analysis might be incomplete since QG is based on
assumptions that rule out specific growth mechanisms
and, while modal baroclinic PE instability has been in-
vestigated extensively (e.g., Arnason 1963; Stone 1966,
1970; Derome and Dolph 1970; Mak 1977; Bannon
1989; Nakamura 1988; Snyder 1995; Yamazaki and
Peltier 2001), we speculated that PE nonnormal dy-
namics might differ from QG dynamics in ways not
revealed by modal analysis.

PE dynamics differs from QG by including explicitly
the divergent dynamics that give rise to direct kinetic
energy growth mechanisms via the zonal-vertical com-
ponent of the Reynolds stress. The filtering out of di-
vergent modes by QG is based on temporal scale sepa-
ration and is justified by the smallness of the Rossby
number. The neglecting of the KE growth mechanism is
based on the eddies horizontal scale, which is assumed
to be of the order of the Rossby radius of deformation.

At first consideration it might seem that neglect of
divergent dynamics should not greatly affect optimal
PE solutions since purely divergent modes and purely
rotational modes are orthogonal under both energy and
enstrophy norms and therefore do not interact in a non-
normal fashion. However, in the primitive equations
mixing of rotational and divergent components within
the modes depends on the magnitude of the shear num-
ber. In Part I we examined the optimal dynamics for
shear number of order 0.1 (Richardson number of or-
der 100) since this value is typical of the midlatitudinal
baroclinic jet. It turned out that for this value of shear
number there is little mixing of divergent and rotational
components within the modes. Consequently the al-
most purely rotational modes are almost identical to
the QG modes while additionally there are a set of
divergent modes that are almost identical to the inertio-
gravity modes. As a result, optimal growth at synoptic
time scale is almost identical in the two frameworks.
The KE growth mechanism at horizontal scales smaller
than the Rossby radius is also not sustained although it
is large initially.

In Part IT we investigated baroclinic shear dynamics
at intermediate Richardson number (where both the
shear and the Richardson numbers are at the order of
1) hypothesizing that here the explicit divergent dy-
namics would have more effect on the optimal evolu-
tion. Such Richardson numbers are found in regions of
strong shear and weak stratification such as in jet
streaks and fronts.

We found that for horizontal scales equal to or larger
than the Rossby radius modes have frequency and
growth rates almost identical to QG modes although
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the shear number is not small. Consistently, the energy
of these modes is almost purely rotational. The major
difference in the two frameworks is that the energy of
the set of modes in PE not found in QG consists of a
mixture of approximately 60% divergent and 40% ro-
tational energy. While PE modes are not identical to
their QG counterparts, their growth rates are practi-
cally the same. Their growth is due to the conventional
available potential energy conversion from the basic
state mediated by the eddy meridional heat flux. These
results secure and extend QG validity to nonnormal
dynamics in the intermediate Richardson number re-
gime for eddies that are larger or equal to the Rossby
radius.

For eddies with smaller scale than the Rossby radius
a different picture emerges. Most modes are mixed,
comprising approximately 70% divergent and 30% ro-
tational energy. Furthermore, the PE introduced addi-
tional trapped boundary unstable modes, which were
approximately 70% rotational and 30% divergent. The
growth mechanism of these Rossby—gravity modes
was found to be primarily the conventional APE
conversion. In contrast, the nonorthogonality between
the modes allowed the PE optimal evolution to take
advantage of the KE growth mechanism to provide a
much larger growth than obtained in QG by the
APE mechanism. Thus, for sub-synoptic-scale eddies
[Ro = O(10)] in the intermediate Richardson number
regime, optimal PE growth is fundamentally different
from QG growth. Therefore, the optimal structures are
configured to maximize the evolution of correlation be-
tween the westward eddy’s wind and its upward vertical
velocity, rather than to maximize the correlation be-
tween the eddy’s meridional wind and potential tem-
perature.

It is the shear number that determines the amount of
coupling between the ageostrophic and geostrophic cir-
culations, and it is the Rossby radius that determines
the horizontal scales for which the KE growth mecha-
nism dominates the APE one. In Part I we found that
for large Richardson number (small shear number) the
PE optimal dynamics is close to the QG optimal dy-
namics for both Rossby numbers of 0.1 and 1. For Ri-
chardson (and shear) numbers of order unity the
Rossby number is also of order unity if the horizontal
scale is the Rossby radius, and the optimal growth was
again found to be similar to that found in QG for both
Rossby number values 0.1 and 1. It was the combina-
tion of the intermediate shear number (which breaks
the orthogonality between the modes) and the small
horizontal scale (which allows the KE growth mecha-
nism to dominate) that enables PE dynamics to obtain
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much larger growth than QG.° The existence of an ad-
ditional manifold of modes in PE might change its sta-
tistical equilibrium response to stochastic forcing. In
Part I we found that for large Richardson number the
synoptic-scale divergent modes carry more variance
than the rotational modes when forcing was unbiased
(white noise). There is no observational support for
large-scale divergent eddies of this amplitude in the mid-
latitudes. We found that, by replacing the white noise by
red and making damping linearly proportional to the
frequency, the divergent variance could be suppressed,
but it remains an open question why the easily excited
divergent motions are not observed. For the interme-
diate Richardson number regime at horizontal scales
larger or equal to the Rossby radius we also found that
a substantial amount of variance in horizontal scales
larger or equal to the Rossby radius is maintained in the
mixed modes. The energy accounted for by the stochas-
tic optimal and the first EOF are small, indicating an
even partition of variance among the modes. For scale
smaller than the Rossby radius the first EOF resembles
the boundary modes and the stochastic optimal re-
sembles a superposition of their biorthogonal conjugate
vectors. For all three scales PE variance exceeds QG
variance at all frequencies. As in the large Richardson
number regime, red noise and damping linearly propor-
tional to frequency suppressed the divergent variance
but we are not aware of observational constraints on
eddy variance and structure in the intermediate Rich-
ardson number regime to be used for comparison.

This analysis was carried out in the Eady basic state
because of its simplicity and because both its QG non-
normal dynamics (Farrell 1984) and its PE normal dy-
namics (Stone 1966, 1970; Nakamura 1988; Bannon
1989; Yamazaki and Peltier 2001) have been investi-
gated. It is possible that other dynamical effects occur
when curvature and variation of the Coriolis parameter
are also taken into account.
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APPENDIX

Energy Norm Orthogonality

Applying the 3D Helmholtz decomposition, sug-
gested by Muraki et al. (1999),

© For larger shear numbers O(10) and Rossby numbers order
unity or larger, the optimal growth were found to be primarily
associated with interaction among the divergent modes. However,
since this regime is remote from the primary focus of this paper on
the interaction of the rotational and divergent manifolds we did
not show these results.
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v F (I)x_GZ
“U | =VO+VX{=VO+VX |G |=|P +F, , (A1)
0 0 ®, + G, — F,

then V® and V X {represent respectively the rotational
and divergent components of (v, —u, 0). We use the
Fourier decomposition for the state vector

N = @z, ek = [i?(z, 0, é(z, 0, fi)(z, £yl
(A2)

and the rigid horizontal boundary conditions of w(z =
0) = w(z = 1) = 0, which were shown in appendix A of

Part I to require
F0)=G0)=0, F(1)=G(@1)=0. (A3)

We wish to show that the rotational and divergent com-
ponents are orthogonal under the quasi-hydrostatic to-

1 1
f V-V XZdV =i f [kd*G, — ID*F_ + ®*(kG — [F)]dz = i f [®*(kG — [F)]. dz = 0.
0 0

The asterisk denotes the complex conjugate. The last
integral in (A6) vanished due to the boundary condi-
tions of (A3).
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