
Security Games with Arbitrary Schedules: A Branch and Price Approach

Manish Jain, Erim Kardeş,
Christopher Kiekintveld, Milind Tambe

Computer Science Department
University of Southern California

Los Angeles, CA 90089
{manish.jain,kardes,kiekintv,tambe}@usc.edu

Fernando Ordóñez
Industrial and Systems Engineering
University of Southern California

Los Angeles, CA - 90089; and
Industrial Engineering Department

University of Chile (Santiago)
fordon@usc.edu

Abstract

Security games, and important class of Stackelberg games,
are used in deployed decision-support tools in use by LAX
police and the Federal Air Marshals Service. The algorithms
used to solve these games find optimal randomized sched-
ules to allocate security resources for infrastructure protec-
tion. Unfortunately, the state of the art algorithms either
fail to scale or to provide a correct solution for large prob-
lems with arbitrary scheduling constraints. We introduce
ASPEN, a branch-and-price approach that overcomes these
limitations based on two key contributions: (i) A column-
generation approach that exploits a novel network flow rep-
resentation, avoiding a combinatorial explosion of schedule
allocations; (ii) A branch-and-bound algorithm that generates
bounds via a fast algorithm for solving security games with
relaxed scheduling constraints. ASPEN is the first known
method for efficiently solving massive security games with
arbitrary schedules.

Introduction
Algorithms for attacker-defender Stackelberg games, result-
ing in randomized schedules for deploying limited secu-
rity resources at airports, subways, ports, and other criti-
cal infrastructure have garnered significant research inter-
est (Paruchuri et al. 2008; Kiekintveld et al. 2009). In-
deed, two important deployed security applications are us-
ing such algorithms: ARMOR and IRIS. ARMOR has
been in use for over two years by Los Angeles Interna-
tional Airport police to generate canine-patrol and vehicle-
checkpoint schedules (Pita et al. 2009). IRIS was recently
deployed by the Federal Air Marshals Service (FAMS) to
create flight schedules for air marshals (Tsai et al. 2009).
These applications use efficient algorithms that solve large-
scale games (Paruchuri et al. 2008; Conitzer and Sandholm
2006; Basilico, Gatti, and Amigoni 2009), the latest being
ERASER-C, the algorithm used in IRIS.

Unfortunately, current state of the art algorithms for
Stackelberg games are inadequate for many applications.
For example, US carriers fly over 27,000 domestic and 2,000
international flights daily, presenting a massive scheduling
challenge for FAMS. IRIS addresses an important part of

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

this space — the international sector — but only consid-
ers schedules with a single departure and return flight. The
ERASER-C algorithm used in this application does not pro-
vide correct solutions for longer and more complex tours
(which are common in the domestic sector). In fact, recent
complexity results show that the problem of finding Stack-
elberg equibria with general scheduling constraints is NP-
hard (Korzhyk, Conitzer, and Parr 2010), and can be solved
in polynomial time only for restricted cases. This is due to
the exponential explosion in the size of the defender’s strat-
egy space caused by large, arbitrary schedules.

Despite the discouraging complexity results, arbitrary
schedules are an important element of security scheduling
problems for FAMS, border security, and many other ap-
plications. We develop algorithms for SPARS (Security
Problems with ARbitrary Schedules), drawing on techniques
used to solve very large mixed-integer programs. Our main
contribution is ASPEN (Accelerated SPars ENgine), which
is based on the branch and price framework. The first
novel feature of ASPEN is that it uses column generation
to avoid representing the full (exponential) strategy space
for the defender. To this end, we provide a novel decom-
position of SPARS into a master problem and a network
flow subproblem. Second, ASPEN uses a novel branch-
and-bound method for searching the space of attacker strate-
gies, achieving significant performance improvements by
integrating branching criteria and bounds generated with
ORIGAMI algorithm (Kiekintveld et al. 2009). We evaluate
ASPEN empirically on SPARS, illustrating that this is the
first known method for efficiently solving real-world-sized
security games with arbitrary schedules.

SPARS
A security game (Kiekintveld et al. 2009) is a two-player
game between a defender and an attacker. The attacker’s
pure strategy space A is the set of targets T that could be
attacked, T = {t1, t2, . . . , tn}. The corresponding mixed
strategy a = 〈ai〉 is a vector where ai represents the prob-
ability of attacking ti. The defender allocates resources of
different types λ ∈ Λ to protect targets, with the number of
available resources given by R = {r1, r2, . . . , r|Λ|}. Each
resource can be assigned to a schedule covering multiple tar-
gets, s ⊆ T , so the set of all legal schedules S ⊆ P(T).
There is a set of legal schedules for each λ, Sλ ⊆ S.

The defender’s pure strategies are the set of joint sched-
ules that assign each resource to at most one schedule. Addi-
tionally, we assume that a target may be covered by at most
1 resource in a joint schedule (though this can be general-
ized). A joint schedule j can be represented by the vector
Pj = 〈Pjt〉 ∈ {0, 1}n where Pjt represents whether or
not target t is covered in joint schedule j. The set of all
feasible joint schedules is denoted by J. We define a map-
ping M from j to Pj as: M(j) = 〈Pjt〉, where Pjt = 1 if
t ∈

⋃
s∈j s; 0 otherwise. The defender’s mixed strategy x

specifies the probabilities of playing each j ∈ J, where each
individual probability is denoted by xj . Let c = 〈ct〉 be the
vector of coverage probabilities corresponding to x, where
ct =

∑
j∈J Pjtxj is the marginal probability of covering t.

Payoffs depend on the target attacked and whether or not
a defender resource is covering the target. U cd(t) denotes
the defender’s utility if t is attacked when it is covered by
a resource of any type. If t is not covered, the defender
gets Uud (t). Likewise, the attacker’s utilities are denoted by
U ca(t) and Uua (t). We assume adding coverage to target t
is strictly better for the defender and worse for the attacker:
U cd(t) > Uud (t) and U ca(t) < Uua (t), however, not neces-
sarily zero-sum. For a strategy profile 〈c,a〉, the expected
utilities for the defender and attacker are given by:

Ud(c,a) =
∑
t∈T

at (ctU cd(t) + (1− ct)Uud (t)) (1)

Ua(c,a) =
∑
t∈T

at (ctU ca(t) + (1− ct)Uua (t)) (2)

We adopt a Stackelberg model in which the defender acts
first and the attacker chooses a strategy after observing the
defender’s mixed strategy. Stackelberg games are common
in security domains where attackers can surveil the defender
strategy (Paruchuri et al. 2008). The standard solution
concept is Strong Stackelberg Equilibrium (SSE) (Leitmann
1978; Breton, Alg, and Haurie 1988; von Stengel and Zamir
2004), in which the leader selects an optimal mixed strategy
based on the assumption that the follower will choose an op-
timal response, breaking ties in favor of the leader.1 There
always exists an optimal pure-strategy response for the at-
tacker, so we restrict our attention to this set in this paper.

Example: Consider a FAMS game with 5 targets (flights),
T = {t1, . . . , t5}, and three marshals of the same type,
r1 = 3. Let the set of feasible schedules be S1 =
{{t1, t2}, {t2, t3}, {t3, t4}, {t4, t5}, {t1, t5}}. The set of
feasible joint schedules is shown below, where column J1

represents the joint schedule {{t1, t2}, {t3, t4}}.

P =

J1 J2 J3 J4 J5

t1 :
t2 :
t3 :
t4 :
t5 :

1 1 1 1 0
1 1 1 0 1
1 1 0 1 1
1 0 1 1 1
0 1 1 1 1

1This tie-breaking rule is counter-intuitive, but the defender can

make this response strictly optimal for the attacker by playing a
strategy an infinitesimal ε away from the SSE strategy.

Each joint schedule in J assigns only 2 air marshals in this
example, since no more than 1 FAM is allowed on any flight.
Thus, the third air marshal will remain unused. Suppose all
of the targets have identical payoffs U cd(t) = 1, Uud (t) =
−5, U ca(t) = −1 and Uua (t) = 5. In this case, the optimal
strategy for the defender randomizes uniformly across the
joint schedules, x = 〈.2, .2, .2, .2, .2〉, resulting in coverage
c = 〈.8, .8, .8, .8, .8〉. All pure strategies have equal payoffs
for the attacker, given this coverage vector.

ASPEN Solution Approach and Related Work
The ERASER-C mixed-integer linear program (Kiekintveld
et al. 2009) is the most recent algorithm developed for larger
and more complex Stackelberg security games.Whereas pre-
vious work has focused on patrolling arbitrary topologies us-
ing Stackelberg games (Basilico, Gatti, and Amigoni 2009;
Paruchuri et al. 2008), it has typically focused on a sin-
gle defender. In contrast, ASPEN and ERASER-C focus on
games with large numbers of defenders of different types,
handling the combinatorial explosion in the defender’s joint
schedules. Unfortunately, as the authors note, ERASER-C
may fail to generate a correct solution in cases where arbi-
trary schedules with more than two flights (i.e., multi-city
tours) are allowed in the input, or when the set of flights
cannot be partitioned into distinct sets for departure and ar-
rival flights. For instance, ERASER-C incorrectly outputs
the coverage vector c = 〈1, 1, 1, 1, 1〉 for the example above.
ERASER-C avoids enumerating joint schedules to gain ef-
ficiency, but loses the ability to correctly model arbitrary
schedules. Furthermore, ERASER-C only outputs a cover-
age vector c and not the distribution x over joint schedules
J necessary to implement the coverage in practice.

SPARS problems can be formulated as mixed-integer pro-
grams in which adversary strategies are represented by inte-
ger variables a with at = 1 if target t is attacked and 0
otherwise. Two key computational challenges arise in this
formulation. First, the space of possible strategies (joint
schedules) for the defender suffers from combinatorial ex-
plosion: a FAMS problem with 100 flights, schedules with
3 flights, and 10 air marshals has up to 100,000 sched-
ules and

(
100000

10

)
joint schedules. Second, integer variables

are a well-known challenge for optimization. Branch and
Price (Barnhart et al. 1994) is a framework for solving
very large optimization problems that combines branch and
bound search with column generation to mitigate both of
these problems. This method operates on joint schedules
(and not marginal probabilities, like ERASER-C), so it is
able to handle arbitrary scheduling constraints directly.

An example of branch and price for our problem is shown
in Figure 1, with the root representing the original problem.
Branches to the left (gray nodes) set exactly one variable
ti in a to 1 and the rest to zero, resulting in a linear pro-
gram that gives a lower bound on the overall solution qual-
ity. Branches to the right fix variable ti to zero, leaving the
remaining variables unconstrained. An upper bound on so-
lution quality computed for each white node can be used to
terminate execution without exploring all of the possible in-
teger assignments. Solving the linear programs in each gray

First Node: all at ε [0,1]

First leaf: at1= 1, arest= 0
Second node: at1= 0, arest ε [0,1]

Second leaf: at1=0, at2=1,
arest=0

Third node: at1,at2= 0,
arest ε [0,1]

Last leaf: atT= 1, arest= 0

Upper Bound 1

UB1 >= UB2 >= … >= UBT
LB1, …, LBT: Not necessarily ordered

Upper Bound 2

Upper Bound 3

Upper Bound T

Lower Bound 1

Lower Bound 2

Lower Bound T
Column
Generation Node

ORIGAMI Node

Figure 1: Working of Branch and Price

node normally requires enumerating all joint schedules for
the defender. Column generation (i.e., pricing) is a tech-
nique that avoids this by iteratively solving a restricted mas-
ter problem, which includes only a small subset of the vari-
ables, and a slave problem, that identifies new variables to
include in the master problem to improve the solution.

Unfortunately, branch and price is not an “out of the
box approach” and it has only recently begun to be applied
in game-theoretic settings (Halvorson, Conitzer, and Parr
2009). We introduce a novel master-slave decomposition to
facilitate column generation for SPARS, including a network
flow formulation of the slave problem. We also show exper-
imentally that conventional linear programming relaxations
used for branch and bound perform poorly in this domain,
and we replace them with novel techniques based on fast al-
gorithms for security games without scheduling constraints.

ASPEN Column Generation
The linear programs at each leaf in Figure 1 are decomposed
into into master and slave problems for column generation
(see Algorithm 1). The master solves for the defender strat-
egy x, given a restricted set of columns (i.e., joint schedules)
P. The objective function for the slave is updated based on
the solution of the master, and the slave is solved to identify
the best new column to add to the master problem, using re-
duced costs (explained later). If no column can improve the
solution the algorithm terminates.

Algorithm 1 Column generation
1. Initialize P
2. Solve Master Problem
3. Calculate reduced cost coefficients from solution
4. Update objective of slave problem with coefficients
5. Solve Slave Problem
if Optimal solution obtained then

6. Return (x,P)
else

7. Extract new column and add to P
8. Repeat from Step 2

Master Problem: The master problem (Equations 3 to 8)
solves for the probability vector x that maximizes the de-
fender reward (Table 1 describes the notation). This mas-
ter problem operates directly on columns of P, and the

Table 1: Notation
Variable Definition Dimension

P Mapping between T and J |T | × |J |
x Probability Distribution over J |J | × 1
a Attack vector |T | × 1
d Defender Reward -
k Adversary Reward -
d Column vector of d |T | × 1
k Column vector of k |T | × 1
D Diag. matrix of U cd(t)− Uud (t) |T | × |T |
A Diag. matrix of U ca(t)− Uua (t) |T | × |T |
Uu
d Vector of values Uud (t) |T | × 1

Uu
a Vector of values Uua (t) |T | × 1

M Huge Positive constant -

coverage vector c is computed from these columns as Px.
Constraints 4–6 enforce the SSE conditions that the players
choose mutual best-responses, mirroring similar constraints
in ERASER-C. The defender expected payoff (Equation 1)
for target t is given by the tth component of the column vec-
tor DPx + Uu

d and denoted (DPx + Uu
d)t. Similarly, the

attacker payoff for target t is given by (APx + Uu
a)t. Con-

straints 4 and 5 are active only for the single target t∗ at-
tacked (at∗ = 1). This target must be a best-response, due
to Constraint 6.

max d (3)
s.t. d − DPx−Uu

d ≤ (1− a)M (4)
k − APx−Uu

a ≤ (1− a)M (5)
APx + Uu

a ≤ k (6)∑
j∈J

xj = 1 (7)

x,a ≥ 0 (8)

Slave Problem: The slave problem finds the best column
to add to the current columns in P. This is done using re-
duced cost, which captures the total change in the defender
payoff if a candidate column is added to P. The candidate
column with minimum reduced cost improves the objective
value the most (Bertsimas and Tsitsiklis 1994). The reduced
cost c̄j of variable xj , associated with column Pj, is given in
Equation 9, where w,y, z and h are dual variables of mas-
ter constraints 4, 5, 6 and 7 respectively. The dual variable
measures the influence of the associated constraint on the
objective, and can be calculated using standard techniques.

c̄j = wT (DPj) + yT (APj)− zT (APj)− h (9)

An inefficient approach would be to iterate through all of
the columns and calculate each reduced cost to identify the
best column to add. Instead, we formulate a minimum cost
network flow (MCNF) problem that efficiently finds the op-
timal column. Feasible flows in the network map to feasible
joint schedules in the SPARS problem, so the scheduling
constraints are captured by this formulation. For a SPARS
instance we construct the MCNF graph G as follows.

A source node sourceλ with supply rλ is created for each
defender type λ ∈ Λ. A single sink node has demand∑
λ∈Λ rλ. Targets in schedule s for resource λ are rep-

resented by pairs of nodes (asλ,t, bsλ,t) with a connecting
link (so each target corresponds to many nodes). For every
schedule sλ ∈ Sλ we add a path from the source to the sink:
〈sourceλ, as,ti1 , bs,ti1 , as,ti2 , . . . , bs,tiL , sink〉. The capaci-
ties on all links are set to 1, and the default costs to 0. A
dummy flow with infinite capacity is added to represent the
possibility that some resources are unassigned. The number
of resources assigned to t in a column Pj is computed as:
assigned(t) =

∑
s∈S flow[link(as,t, bs,t)]. Constraints are

added to G so assigned(t) ≤ 1 for all targets t.
A partial graphG for our earlier example is shown in Fig-

ure 2, showing paths for 3 of the 5 schedules. The paths
correspond to schedules {t1, t2}, {t2, t3} and {t1, t5}. The
supply and demand are both 3, corresponding to the number
of available FAMS. Double-bordered boxes mark the flows
used to compute assigned(t1) and assigned(t2). Every joint
schedule corresponds to a feasible flow in G. For example,
the joint schedule {{t2, t3}, {t1, t5}} has a flow of 1 unit
each through the paths corresponding to schedules {t2, t3}
and {t1, t5}, and a flow of 1 through the dummy. Similarly,
any feasible flow through the graphG corresponds to a feasi-
ble joint schedule, since all resource constraints are satisfied.

cap =1 cap =1

cap =1 cap =1

cap =1 cap =1

sink
demand = 3

source1
supply r1= 3

target t1 target t2

target t3

dummy target and path
cap = inf

target t5
Flow = 1

Flow = 1

Flow = 1

Figure 2: Example Network Graph

It remains to define link costs such that the cost of a flow
is the reduced cost for the joint schedule. We decompose c̄j
into a sum of cost coefficients per target, ĉt, so that ĉt can
be placed on links (as,t, bs,t) for all targets t. ĉt is defined
as wt.Dt + yt.At − zt.At where wt, yt and zt are tth com-
ponents of w,y and z. Dt is equal to U cd(t) − Uud (t) and
At = U ca(t)− Uua (t). The overall objective given below for
the MCNF problem sums the contributions of the reduced
cost from each individual flow and subtracts the dual vari-
able h. If this is non-negative, no column can improve the
master solution, otherwise the optimal column (identified by
the flow) is added to the master and the process iterates.

min
flow

∑
(as,t,bs,t)

ĉt.flow[(as,t, bs,t)]− h

Improving Branching and Bounds
ASPEN uses branch and bound to search over the space of
possible attacker strategies. A standard technique in branch
and price is to use LP relaxation, i.e. allow the integer vari-
ables to take on arbitrary values, to give an optimistic bound

on the objective value of the original MIP for each internal
node. Unfortunately, our experimental results show that this
generic method is ineffective in our domain. We introduce
ORIGAMI-S, a novel branch and bound heuristic for SPARS
based on ORIGAMI (Kiekintveld et al. 2009), which
is an efficient solution method for security games without
scheduling constraints and heterogeneous resources. We use
ORIGAMI-S to solve a relaxed version of SPARS, and inte-
grate this in ASPEN to give bounds and select branches.

min k (10)
Ua(c) = Ac + Uu

a (11)
0 ≤ k−Ua(c) ≤ (1− q) ·M (12)

ct =
∑
s∈S c̃t,s ∀t ∈ T (13)∑

s∈Sλ

c̃Tλ(s),s ≤ rλ ∀λ ∈ Λ (14)

∑
t∈T

ct ≤ L ·
∑
λ∈Λ rλ (15)

c ≤ q (16)

q ∈ {0, 1}, c, ct,s ∈ [0, 1] ∀t ∈ T, s ∈ S (17)
The ORIGAMI-S model is given in Equations 10–17. It

minimizes the attacker’s maximum payoff (Equations 10–
12). The vector q represents the attack set, and is 1 for
every target that gives the attacker maximal expected pay-
off (Equation 12). The remaining nontrivial constraints re-
strict the coverage probabilities. ORIGAMI-S defines a set
of probabilities c̃t,s that represent the coverage of each target
t in each schedule s ∈ Sλ. The total coverage ct of target
t is the sum of coverage on t across individual schedules
(Equation 13). We define a set Tλ which contains one target
from each schedule s ∈ Sλ. The total coverage assigned
by resource type λ is upper-bounded by rλ (Equation 14),
analogous to the constraint that the total flow from a source
in a network flow graph cannot be greater than the available
supply. Total coverage is also bounded by multiplying the
number of resources by the maximum size of any schedule
(L) in Equation 15. The defender can never benefit by as-
signing coverage to nodes outside of the attack set, so these
are constrained to 0 (Equation 16).

ORIGAMI-S is solved once at the beginning of ASPEN,
and targets in the attack set are sorted by expected defender
reward. The maximum value is an initial upper bound on
the defender reward. The first leaf node that ASPEN evalu-
ates corresponds to this maximum valued target (i.e, setting
its attack value to 1), and a solution is found using column
generation. This solution is a lower bound of the optimal so-
lution, and the algorithm stops if this lower bound meets the
ORIGAMI-S upper bound. Otherwise, a new upper bound
from the ORIGAMI-S solution is obtained by choosing the
second-highest defender payoff from targets in the attack
set, and ASPEN evaluates the corresponding leaf node. This
process continues until the upper bound is met, or the avail-
able nodes in the search tree are exhausted.

Theorem 1 The defender payoff, computed by ORIGAMI-
S, is an upper bound on the defender’s payoff for the corre-
sponding SPARS problem. For any target not in the attack

set of ORIGAMI-S, the restricted SPARS problem in which
this target is attacked is infeasible.

Proof Sketch: ORIGAMI and ORIGAMI-S both min-
imize the maximum attacker payoff over a set of feasible
coverage vectors. If there are no scheduling constraints,
this also maximizes the defender’s policy (Kiekintveld et al.
2009). Briefly, the size of the attack set in the solution is
maximized, and the coverage probability on each target in
the attack set is also maximal. Both of these weakly improve
the defender’s payoff because adding coverage to a target is
strictly better for the defender and worse for the adversary.

ORIGAMI-S makes optimistic assumptions about the
coverage probability the defender can allocate by taking the
maximum that could be achieved by any legal joint schedule
and allowing it to be distributed arbitrarily across the targets,
ignoring the scheduling constraints. To see this, consider the
marginal probabilities c∗ of any legal defender strategy for
SPARS. There is at least one feasible coverage strategy for
ORIGAMI that gives the same payoff for the defender. Con-
straints 13 and 17 are satisfied by c∗, because they are also
constraints of SPARS. Each variable c̃Tλ(s),s in the set de-
fined for Constraint 14 belongs to a single schedule associ-
ated with resource type λ, and at most rλ of these can be se-
lected in any feasible joint schedule, so this constraint must
also hold for c∗. Constraint 15 must be satisfied because it
assumes that each available resource covers the largest pos-
sible schedule, so it generally allows excess coverage prob-
ability to be assigned. Finally, constraint 16 may be violated
by c∗ for some target t. However, the coverage vector with
coverage identical to c∗ for all targets in the ORIGAMI-S
attack set and 0 coverage outside the attack set has identical
payoffs (since these targets are never attacked).

Experimental Results
Comparison on FAMS domain: We compare the run-
time performance of ASPEN, branch and price without the
ORIGAMI-S heuristic (BnP) and ERASER-C. For this ex-
periment we generate random instances of FAMS prob-
lems (Kiekintveld et al. 2009) with schedules of size two,
with one departure flight and one arrival flight drawn from
disjoint sets (for correct operation of ERASER-C). We vary
the number of targets, defender resources, and schedules.

ERASER-C outputs a coverage vector c, so to obtain a
probability distribution x over joint schedules J we need an
additional method. Instead, we modify our column genera-
tion approach, using a revised master problem with the ob-
jective of minimizing the difference Px−c. The slave prob-
lem remains unchanged. In our results, we present runtimes
for ERASER-C that include the generation of a joint distri-
bution in order to provide a fair comparison with ASPEN.

All experiments were based on 15 sample games, and
problem instances that took longer than 30 minutes to run
were terminated. Results varying the number of defender
resources are shown in Figure 3(a). The y-axis shows the
runtime in seconds on the logarithmic scale. The x-axis
shows the number of resources. ASPEN is the fastest of
the three algorithms. The effectiveness of the ORIGAMI-
S bounds and branching are clear in the comparison with

standard BnP method. Since ASPEN solves a far more gen-
eral set of security games (SPARS), we would not expect
it to be competitive with ERASER-C in its specialized do-
main. However, ASPEN was 6 times faster than ERASER-C
in some instances. This improvement over ERASER-C was
an unexpected trend, and can be attributed to the number
of columns generated by the two approaches (Table 2). We
observe similar results in the second and third data sets pre-
sented in Figures 3(b) and 3(c).

Table 2: Number of columns: 200 targets, 600 schedules

Resources ASPEN ERASER-C BnP (max. 30 mins)
10 126 204 1532
20 214 308 1679
30 263 314 1976
40 227 508 1510
50 327 426 1393

Table 3: Number of columns: 200 targets, 1000 schedules

Resources 3 Tar. / sch. 4 Tar. / sch. 5 Tar. / sch.
5 456 518 658

10 510 733 941
15 649 920 1092
20 937 1114 1124

ASPEN on Large SPARS Instances: We also evaluate
the performance of ASPEN on arbitrary scheduling prob-
lems as the size of the problem is varied to include very
large instances. No comparisons could be made because
ERASER-C does not handle arbitrary schedules and the only
correct algorithms known, DOBSS (Paruchuri et al. 2008)
and BnP, do not scale to these problem sizes. We vary the
number of resources, schedules, and targets as before. In ad-
dition, we vary the number of targets per schedule for each
of the three cases to test more complex scheduling problems.
Figure 3(d) shows the runtime results with 1000 feasible
schedules and 200 targets, averaged over 10 samples. The
x-axis shows the number of resources, and the y-axis shows
the runtime in seconds. Each line represents a different num-
ber of schedules per target. The number of joint schedules in
these instances can be as large as 1023 (

(
1000
10

)
≈ 2.6×1023).

Interestingly, the runtime does not increase much when the
number of resources is increased from 10 to 20 when there
are 5 targets per schedules. Column 4 of Table 3 illustrates
that the key reason for constant runtime is that the average
number of generated columns remains similar. Similarly, for
a fixed number of resources, we observe an increase in run-
time for more complex schedules that corresponds with an
increase in the number of columns generated. The other two
experiments, Figure 3(e) and 3(f) also show similar trends.

Conclusions
We present a branch and price method, ASPEN, for solving
large-scale Stackelberg security games with arbitrary con-
straints. ASPEN incorporates several novel contributions,
including a decomposition of SPARS to enable column gen-
eration and the integration of ORIGAMI-S to substantially

1	

10	

100	

1000	

1	 2	 3	 4	 5	 R
u
n
+
m
e
	 (
in
	 s
e
cs
)	
[l
o
g
-‐s
ca
le
]	

Number	 of	 Resources	

Comparison	 (200	 Targets,	 600	 schedules)	

ERASER-‐C	

BnP	

ASPEN	

(a) Resources

1	

10	

100	

200	 400	 600	 800	 1000	 R
u
n
+
m
e
	 (
in
	 s
e
cs
)	
[l
o
g
-‐s
ca
le
]	

Number	 of	 Schedules	

Comparison	 (200	 Targets,	 10	 Resources)	

ERASER-‐C	

BnP	

ASPEN	

(b) Schedules

1	

10	

100	

1000	

200	 400	 600	 800	 1000	 R
u
n
+
m
e
	 (
	 in
	 s
e
cs
)
	 [
lo
g
-‐s
ca
le
]	

Number	 of	 Targets	

Comparison	 (1000	 schedules,	 10	 Resources)	

ERASER-‐C	

BnP	

ASPEN	

(c) Targets

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

5	 10	 15	 20	

Ru
n.

m
e	
(in

	 se
co
nd

s)
	

Number	 of	 Resources	

Scale-‐up	 (200	 Targets,	 1000	 schedules)	

2	 Targets/Schedule	
3	 Targets/Schedule	
4	 Targets/Schedule	
5	 Targets/Schedule	

(d) Resources

0	

5000	

10000	

15000	

20000	

25000	

50	 500	 1000	 1500	 2000	

Ru
n)

m
e	
(in

	 se
co
nd

s)
	

Number	 of	 Schedules	

Scale-‐up	 (200	 Targets,	 10	 Resources)	

2	 Targets/Schedule	
3	 Targets/Schedule	
4	 Targets/Schedule	
5	 Targets/Schedule	

(e) Schedules

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

50	 100	 150	 200	

Ru
n.

m
e	
(in

	 se
co
nd

s)
	

Number	 of	 Targets	

Scale-‐up	 (1000	 schedules,	 10	 resources)	

2	 Targets/Schedule	
3	 Targets/Schedule	
4	 Targets/Schedule	
5	 Targets/Schedule	

(f) Targets

Figure 3: Runtime Results

speed up the branch and bound search. Experimental results
show that ASPEN is competitive with ERASER-C for the
restricted class of games where ERASER-C is applicable.
More importantly, ASPEN solves far more general instances
of scheduling problems where ERASER-C and other exist-
ing techniques fail. ASPEN is also substantially faster than
a standard implementation of branch and price for this do-
main. This work contributes to a very new area of work
that applies techniques used in large-scale optimization to
game-theoretic problems—an exciting new avenue with the
potential to greatly expand the reach of game theory.

Acknowledgements
We would also like to thank Jason Tsai and the reviewers
for their comments and suggestions. This research was sup-
ported by the United States Department of Homeland Secu-
rity through the Center for Risk and Economic Analysis of
Terrorism Events (CREATE) under grant number 2007-ST-
061-000001. F. Ordóñez would also like to acknowledge the
support of Fondecyt, through Grant No. 1090630.

References
Barnhart, C.; Johnson, E.; Nemhauser, G.; Savelsbergh, M.;
and Vance, P. 1994. Branch and price: Column generation
for solving huge integer programs. In Operations Research,
volume 46, 316–329.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In AAMAS, 500–503.
Bertsimas, D., and Tsitsiklis, J. N. 1994. Introduction to
Linear Optimization. Athena Scientific.

Breton, M.; Alg, A.; and Haurie, A. 1988. Sequential Stack-
elberg equilibria in two-person games. Optimization Theory
and Applications 59(1):71–97.
Conitzer, V., and Sandholm, T. 2006. Computing the opti-
mal strategy to commit to. In ACM EC-06, 82–90.
Halvorson, E.; Conitzer, V.; and Parr, R. 2009. Multi-step
multi-sensor hider-seeker games. In IJCAI, 336–341.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Tambe, M.; and
Ordonez, F. 2009. Computing optimal randomized resource
allocations for massive security games. In AAMAS, 689–
696.
Korzhyk, D.; Conitzer, V.; and Parr, R. 2010. Complex-
ity of computing optimal stackelberg strategies in security
resource allocation games. In AAAI, to appear.
Leitmann, G. 1978. On generalized Stackelberg strategies.
Optimization Theory and Applications 26(4):637–643.
Paruchuri, P.; Pearce, J. P.; Marecki, J.; Tambe, M.; Or-
donez, F.; and Kraus, S. 2008. Playing games with secu-
rity: An efficient exact algorithm for Bayesian Stackelberg
games. In AAMAS-08, 895–902.
Pita, J.; Bellamane, H.; Jain, M.; Kiekintveld, C.; Tsai, J.;
Ordez, F.; and Tambe, M. 2009. Security applications:
Lessons of real-world deployment. In SIGECOM Issue 8.2.
Tsai, J.; Rathi, S.; Kiekintveld, C.; Ordez, F.; and Tambe, M.
2009. IRIS a tool for strategic security allocation in trans-
portation networks. In AAMAS-09 (Industry Track), 37–44.
von Stengel, B., and Zamir, S. 2004. Leadership with com-
mitment to mixed strategies. Technical Report LSE-CDAM-
2004-01, CDAM Research Report.

