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1. Introduction and Preliminaries

Partial metric spaces were introduced by Matthews in
[9] as a part of the study of denotational semantics of
dataow networks. In fact, it is widely recognized that
partial metric spaces play an important role in constructing
models in the theory of computation [10,11,12,13,14].
Definition 1. [9] A partial metric on a nonempty set X is

afunction p: X xX — R suchthatforall x,y,ze X,

(pmsl) x=y < p(x,x)=p(x,y)=Pp(¥.y),

(pms2) p(x,x)< p(x,Y),

(pms3) p(x,y)=p(Yy.x),

(pms4) p(x,y)< p(x,z)+p(z.y)-p(z,2).

The pair (X, p) is called a partial metric space.

If p is a partial metric on X, then the function
p*:XxX > R* given by p°(x,y)=2p(xy)-p(xx)
—p(y,y)is a metric on X. Each partial metric p on X
inroduces a T topology 7, on X which has as a base the
family of open balls D, (x,&)={ce X : p(x.c)<p(xx)+s}

forall xe X and ¢ >0.
Definition 2. [9] Let (X, p) be a partial metric space, and

let {x,} be any sequencein X and x e X. Then

(a) a sequence {x,} is convergent to x with respect to
o, i limy e, p(Xn,X) = p(X,X);

(b) a sequence {x,} is a Cauchy sequence in (X, p) if

liMp m_se0 P(Xn, Xy ) existsand is finite;

(c) (X,p) is called complete if for every Cauchy
sequence {X,} in X there exists xe X such that
M moye P(Xn: Xm) = P(X,X).

In 2010, Romaguera proved in [4-Theorem 2.3] that a
partial metric space (X, p) is 0-complete if and only if

every p*-Caristi mapping on X has a fixed point. Since

then several papers have dealt with fixed point theory for
single-valued and multi-valued operators in O-complete
partial metric space (see [1-8] and references therein).

Definition 3. [4] Let (X, p) be a partial metric space. A
sequence {X,} in X is called a 0-Cauchy sequence if
liMp m—se0 P(Xn, X ) =0. The space (X, p) is said to be

0-complete if every 0-Cauchy sequence in X converges
with respect to T, to a point xe X such that

p(x,x)=0.

Remark 1. [15,16] Let (X, p) be a partial metric space.
If P(Xy.2)—> p(z,2)=0  as n— oo, then
P(Xn,Y)— P(z,y) as n—>wo forall ye X.

Lemma 1. [2] Let (X, p) be a partial metric space and

let {y,} beasequencein X such that

lim p(Yns1,¥n)=0. (1.1
n—o

If {y,n} is not 0-Cauchy sequence in (X,p), then
there exists £ >0 and two sequences {my} and {ny} of
positive integers such that m, > n, >k and the following

sequences tend to ¢ as k > o
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p(y2mk + Yony )! p(y2mk , y2nk+1)’
p(Yka_ll yan )’ p(yka_ll y2nk+1 )

Definition 4. [17] Let f and g be self maps of a set X. If
w= fx=gx for some xeX, then x is called a

coincidence point of f and g, and w is called a point of
coincidence of f and g. The pair f, g of self maps is weakly
compatible if they commute at their coincidence points.
Proposition 1. [17] Let f and g be weakly compatible self
maps of a set X. If f and g have a unique point of
coincidence w = fx = gx, then w is the unique common
fixed point of f and g.

(1.2

2. Main Results

Denote by W the set of functions y :[0,
satisfying the following conditions:

(wi) w is continuous nondecreasing;

(wii) w(t)<t forall t>0 and y (0)<0.

Denote by @ the set of functions y :[0,
satisfying the following conditions:

(¢) o is alower semi-continuous functions;

(9i) e(t)<t forall t>0 and ¢(0)=0.
Theorem 1. Let (X, p) be a 0-complete partial metric

)= [0,)

oo)—)[O,oo)

spaces. Suppose mappings f,g: X — X satisfy

v (p(f 1)) <y (M(xy))-o(M(xy))
where v e ¥ and ¢ € ® and

(2.1

p(gx gy), p(ax fy).(ay, fy),

p(gx, fy)+ p(ay, X)
2

(2.2)

M (X, y) = max

for all x,y e X. If the range of g contains the range of f and

f (X) or g (X) is a closed subset of X, then f and g have a
unique point of coincidence in X. Moreover, if f and g are
weakly compatible, then f and g have a unique common

fixed pointzand p(v,v)=0= p(fz, fz) = p(gz, 9z).
Proof. First, we prove that f and g have a unique point of
coincidence (if it exists). If ¢, e X with fay =ga; =¢;
and ¢, € X with fa, =ga, =c,, we assume c1 6= c2.
Using (2.1) and (2.2), we have

v(p(e.c))=v (p( fay, fay))
p(9a1, 93, ), p(gay, fay), p(gay, faz ),
<w| max p(gal, fa2)+ p(gazy fal)
2
P(ga.ga,). P(gay, fay ). p(92;. 2y ),

—¢| MaXy p(gay, fa, )+ p(gay, fay)
2

p(c,C2), p(cr 1), p(c2.C2),

=y maxq p(cp,cy)+ p(Cy,cp)
2

p(c1.c2). p(cr.cr),

—¢| Max4 p(cy,c, )+ p(cy,0p)
2

o(p(c.cz)) (by (pms2))

p(cz.¢),

=y (p(c1,6))-
<y(p(e,c2)),

which is a contradiction. Thus p(c,c,), that is, ¢ =c,.
Thus, the point of coincidence of f and g is unique (if it
exists).

We construct a sequence {y,} < X as follows:

Let xgeX. Choose a point x e X such that
fXg = gXg = y;. This can be done, as the range of g

contains the range of f. Continuing in the same way,
having chosen x, e X, we get X, € X such that

X, = OXpa1 = Y (Say). Therefore, we get the sequence
{¥n}={9%ns1} such that fx, =

Consider the two possible cases:
(i) P(Yns1,Yn)=0 forsome neN.

0%y = Yp for all xeN.

In this case fx, =0gx, =Y, is a point of coincidence
and then the proof is finished.

(ii) P(Yns1:Yn)=0 forevery neN.

From (2.1) and (2.2), using properties of functions
and ¢, we obtain

'/’(p(Yn+1 Yn )):‘//(p( an+1, fXn ))

<y (M (X1 %)) = 2(M (Xn11: %))
<y (M (Xns1, %))
which implies that
P(Yns1s Yn ) SM (Xnga, Xn)-

Then, we have

M (Xn+1’ Xn)
P (%141, 9% )» P(Pns1s PXnaa)s P(9%n, ),

p(an+1, an)+ p(an, an+1)
2

p(yn, Yn—l)v p(yn'yn+l)' p(yn—l’ yn)'

p(yn:yn)+ p(yn—l’ yn+1)
2

p(yn: Yn—l)’ p(yn’ yn+1)’

P(Yn-, Yn)+ P(Yn: Yne1)
2

= max{p(yn, Yn-1), p(yn,yn+1)}-

= Mmax

= Mmax

< max

It P(Yn Yna) > P(YnoYnor),  then M (xq.,%,)
= p(Yn, Yns1) > 0. Furthermore, it implies that
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‘//( p(yn+ln Yn )) < ‘//( p(yn+ln Yn ))‘(0( p(yn+ln Yn ))
which is a contradiction. Therefore, we have
p(yn+1v Yn ) <M (Xn+1’ Xn ) < p(Yni yn—l)-

It follows from (2.3) that the
{P(9%n41,9%, )} is nonincreasing. Therefore,

(2.3)
sequence
lim p(Ynsz, Yn) = lim M (Xp,1,%,) = P 20.
n—oo n—oo
Letting n — oo in inequality

(p(yn+1 yn)) ( (Xn+1lxn)) ( (Xn+1’xn))

we obtain y/(p) ( ) ( )and p =0. Thus

lim p(Yns1, Yn) = (2.4)
n—o

We next prove that {fx,}={gx,1}={y,} is a
0-Cauchy sequence in the space (X, p). It is sufficient to

show that {fx,,} is a 0-Cauchy sequence. Suppose the

opposite. Then using Lemma 1, we see that there exist
£>0 and two sequences {my} and {n} of positive

integers and sequences
P(Y2mk s Yany ) p(y2mk ' y2”k+l)’ (2.5)
P(Y2mk,1: Yony ) p(yzmkfl, Yar ) |

all tend to ¢, when k — . Using (2.1) and (2.2), we
get that

l//( p(yzmk ' y2nk+1)) - '//( p( fXka : fXZ"k+1))

p(gXka ’ ngnk+l)v p(gXka ' fXka )'
<y| max p(gX2“k+1' fxznk+1)'

p(Pomy» Ponysq )+ P(@Ponyqr Pomy )
2

p(gXka OX2n 4 ) p(gxzmk » Do )
—p| max p(gX2”k+1’ fXan+1)'

p(gXka ) fXan+1 )+ p(gXanJrl7 fXka )
2

p(yka,l ' y2nk )l p(yka,ll y2mk )’
p(y2nk Vo )

p(Yka_l! Yan+1)+ p(yznk » Pom, )
2

P(Yome 1 Yon, )+ P(Yamy 1 Yom )

~p| max< p(Yan : Yony oy ) 2.6

p(yka_ll y2nk+1)+ p(yan ’ fXka )
2

Using (2.4) and (2.5), we obtain

p<y2mk_1’ Yony )' p(yka_leka )'
max p<y2nk ' y2nk+1)’

p(yka,ll y2nk+1)+ p(yan ’ 1:Xka )
2

&7 as ko o,

Letting k — oo in (2.6), we get that v (¢) <y (&) —o(¢&)
which is a contradiction if &£ > 0.

This show that { fx,,} is a 0-Cauchy sequence in the
space (X,p) and {fx,} is a 0-Cauchy sequence in the
space (X, p).

If g(X) is closed in (X, p) then there exist z,ve X
such that v=gz and

lim p(y,,v)= lim p(yn,¥m)=p(v,v)=0.
n—oo n,m-—oo

Now, putting x=x,, y=1, gz=v and

Yo = X, = 0%y in (2.1) and (2.2) we have

'//(p( X, fz))

P(9%.92), P(9%n, B, ), P(02, f2),
p

Sl// max p(gxn’fz) (gzl fxn) (27)

2
), P(9%n, %0 ),
)+ p(9z, fx,)

p(9%n, 0 p(gz, f2),

—py| Maxy p(gx,, fz

Letting k — oo in (2.7) and by Remark 1, we obtain
v(p(oz f2))<w(p(9z f2))-o(p(g2 f2))

This implies p(gz, fz)=0, that is, gz = fz. Hence, f

and g have a unique point of coincidence. By Proposition
1, f and g have a unique common fixed point.

When f (X)) is closed setin (X, p) the proof similar.
Corollary 1. Let (X
spaces. Suppose mapping f : X — X satisfy

v (p(f 1)) <y (M(xy))-o(M(xy))
where w e ¥ and ¢ € ® and

,p) be a 0-complete partial metric

2.8
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P(xy), p(x ), p(Y, fy),
M (X, y)=max p(x, fy)+p(y, )
2

(2.9)

for all x,y e X. Then f has a unique fixed point ve X
and p(v,v)=0.
Proof. Taking g = Iy (the identity mapping of X), along

the lines of the proof of Theorem 1, we get the desired
results. In view of the analogy, we skip the details of the
proof.

Corollary 2. Let (X, p) be a O-complete partial metric
spaces. Suppose mappings f,g: X — X satisfy

P(fx, fy)<M(x,y)—p(M(x.y)) (2.10)
where ¢ € ® and
p(gx,9y), p(gx, ), p(ay, fy),
M (x,y) = max p(ox, fy)+ p(ox, fx) (2.11)

2

for all x,y e X. If the range of g contains the range of f

and f (X) or g (X) is a closed subset of X, then f and g have
a unique point of coincidence in X. Moreover, if f and g
are weakly compatible, then f and g have a unique
common fixed point z and

p(v,v)=0=p(fz fz) = p(9z,02).

Proof. To prove the above corollary it suffices to take
w(t)=t in Theorem 1.

Corollary 3. Let (X; p) be a O-complete partial metric
spaces. Suppose mapping f : X ! X satisfy

p(fx fy)<M(x,y)-p(M(xY)) (2.12)
where ¢ € ® and
p(x.y), p(x ), p(y, fy),
M (x,y)=maxq p(x, fy)+ p(y, fx) (2.13)

2

for all x,y e X. Then f has a unique fixed point v e X
and p(v,v)=0.
Proof. Taking g =1y in Corollary 2, we have desired

results.
Corollary 4. [2] Let (X,p) be a 0O-complete partial

metric spaces. Suppose mappings f,g: X — X satisfy

p(fx fy)<kM (xy) (2.14)
where k €[0,1) and

p(gx.gy), p(gx fx), p(ay, fy),
M (x,y) = max p(ox, fy)+ p(ay, fx) (2.15)

2

for all x,y e X. If the range of g contains the range of f
and f(X) or g(X) is a closed subset of X, then f and g
have a unique point of coincidence in X. Moreover, if f

and g are weakly compatible, then f and g have a unique
common fixed point z and p(v,v)=0=p(fz, fz)

= p(9z,92).

Proof. To prove the above corollary it suffices to take
¢(t)=(1-k)t in Corollary 2.

Corollary 5. Let (X, p) be a 0-complete partial metric
spaces. Suppose mapping f : X — X satisfy

p(fx fy)<kM (x,y) (2.16)
where k €[0,1) and
p(xy), p(x ), p(y, fy),
M (x,y) = max p(x fy)+p(y, fx) 2.17)

2

for all (x,y)e X. Then f has a unique fixed point v e X
and p(v,v)=0.
Corollary 6. [18] Let (X,p) be a O-complete partial

metric spaces. Suppose mapping f: X — X and there
5

exist nonnegative constants bi satisfying Zbi <1 such
i=1
that, for each x,y e X
P(fx fy) <b p(x,y)+byp(x, ) +bsp(y, fy)
+byp(x, fy)+bsp(y, fx).
Then f has a unique fixed point ve X and p(v,v)=0.

Corollary 6 is a simple consequence of Corollary 5.
Corollary 7. Let (X, p) be a O-complete partial metric

(2.18)

spaces. Suppose mapping f : X — X satisfy

p(fx, fy)<kp(x,y)
for each x,ye X and ke[0,1). Then f has a unique

(2.19)

fixed point ve X and p(v,v)=0.

Proof. It follows from Corollary 6.

Conclusion 1. 1. Our theorems and corolaries which
include the corresponding results announced in Boyd and
Wong [19] (1969), Rhoades [20] (1977) as special cases
fundamentally improve and generalize the results of
Ahmad et al. [2] (2012) and Radenovi¢ [18] (2013).

2. Taking by =by =b; =0 and b2+b3:ie[0,%j in

Corollary 6, we obtain extension of Kannan Theorem on a
0-complete partial metric spaces.

3. Taking by=bs=0 and b +by+b3[0,1) in
Corollary 6, we obtain extension of Reich Theorem on a
0-complete partial metric spaces.

4. Taking by =b, =b; =0 and b4:b5:/le[0éj in

Corollary 6, we obtain extension of Chatterjea Theorem
on a 0-complete partial metric spaces.
Now, we give a example which illustrate Theorem 1.

Example 1. Let X ={0,1,2,3},and le p: X > X > R"
be defined by p(xy)=max{x y}+|x—y| for all
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X,y € X. Then, (X
space. Define f,g: X — X

,p) is a 0-complete partial metric

f0=0,f1=0,f2=0,f3=1
g0=0,91=1,92=2,93=3.

Take y (t)=t and ¢(t)=

We distinguish five cases:

Case l: If x=0andy=0)or(x=0andy=1)or (x =
Oandy=2)or(x=21andy=1)or (x=1andy = 2) or
(x=2andy = 2), we have

w(p(fx fy))=0<y (M(xy))-

where

p(gx.gy). p(ax fx), p(ay, fy),
(x.y) .

% for each t > 0.

o(M(xy))

=maxs p(gx, fy)+ p(ay, fx)
2

Case 2: If x=0and y = 3, we have

w(p(f0,f3))=p(0,1)=2

and
v (M(0,3))-9(M(0.3))
{ p(g0,93), p(g0, f0), p (g3,f3),}
= max )

(90, f3)+p(g3,f0

2
. {(9093) (gO,fO),p(gB,f3),}

p
(90, f3)+p(g3,f0)
2

- max{p(O,S)’ p(0,0), p(3,1),w}

_%max{p(O,S), p(0,0), p(3,1),

= max 605ﬁ —lma 605£}
2 2 2
=6-3=3.
Hence,

w(p(f0,f3))=2<y(M(0,3))-¢
Case 3: If x=1and y = 3, we have

w(p(fL£3))=p(01)=2

p(0,1)+ p(3,0)}
2

(M(0:3))=3

and

v (M(L3))-0(M(13))

p(gl f1),p (g3,f3),}
)

p(9L93).
=maxy p(gl, f3)+p(g3 f1

2
. { p(gl g3), (gl,fl),p(gS,fS)}
—=max p

p
(91, £3)+p(93, 1)
2

- max{P(1,3)v p(1.0), p(s,g,M}

p(L1)+ p(3,0)}
2

_%max{p(l,S),p(l,O)np(S*l)'

= max 525E —lmax 525E
2 2 2

Thus,

N ol

o(M(13))=

w(p(fLf3))=2<y(M(13))-
Case 4: If x =2 and y = 3, we have
w(p(f2 f3))=p(0.1)=2
and
w(M(2.3)-0(M(23))
. { p(92,93),p(92 12),p (gB,f3),}
=ma )

(92, f3)+p(g3,f2

2
. { p(92,93), (g2,f2),p(93,f3),}

p
(92, 13)+p(g3 f2)
2
- max{p(2,3)i p(2,0), p(3,1),w}
_%max{p(2,3)'p(2,0), p(3,1),w}

= max 445ﬂ —lmax 445ﬁ
2 2 2
_5-2_2
2 2
Thus,

w(p(f2,13))=2<y(M(2,3))-p(M (2,3)):%.

Case 5: If x =3 and y = 3, we have
w(p(f3,13))=p(L1)=1
and

w(M(33))-9(M(33))
p(g3, 13),p(93, f3),}
)

p(93,93),
=maxy p(g3, f3)+p(g3 3

2
) { p(93,93), (g3,f3),p(93,f3),}
——MmaX p

p
(93, 3)+p(93, 3)
2

p(3.1)+ p(3,1)}

:max{p(3,3), p(31),p(31), 5
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(631052, p(o0) 202

= max 3,5,5,E —lmax 3,5,5,E
2 2 2

Thus,

w(p(f3 3))=1<y(M(33))-9(M (3,3)):%

It is obvious that all the condition of Theorem 1 is
satisfied. Therefore, we apply Theorem 1 and f and g have
a unique common fixed point, i.e. 0.

The following is a example which illustrate our results
and that the generalizations are proper.

Example 2. Let X =[0,1]NQ, and let p: XxX > R"
be defined by p(x,y)=max{x,y} for all x,y e X. Then,
(X, p) is a 0-complete partial metric space, but it is not
complete partial metric space. Define f,g: X — X by

0 if x=1 {1 it x=1
fx =

X . and gx= .
c otherwise X otherwise.

Then all the conditions of Theorem 1 are satisfied with
w(t)=t and ¢7(t)=é and f and g have a unique

common fixed point, i.e. 0.
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