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ABSTRACT
In this paper, we adopt a direct modeling approach to uti-
lize conversational gesture cues in detecting sentence bound-
aries, called SUs, in video taped conversations. We treat the
detection of SUs as a classification task such that for each
inter-word boundary, the classifier decides whether there is
an SU boundary or not. In addition to gesture cues, we also
utilize prosody and lexical knowledge sources. In this first
investigation, we find that gesture features complement the
prosodic and lexical knowledge sources for this task. By us-
ing all of the knowledge sources, the model is able to achieve
the lowest overall SU detection error rate.
Categories and Subject Descriptors: H.5.1 [Multime-
dia Information Systems] Audio and Video Input, H.5.5
[Sound and Music Computing] Modeling and Signal Analy-
sis, I.2.7 [Natural Language Processing] Dialog Processing
General Terms: Algorithms, Performance, Experimenta-
tion, Languages.
Keywords: multimodal fusion, gesture, prosody, language
models, sentence boundary detection, dialog.

1. INTRODUCTION
People, when understanding human-to-human communi-

cations, do not simply focus on words and their meaning.
They utilize everything they can in order to understand the
communication, including information from the visual do-
main such as other speakers’ gesture and gaze. Speech and
gesture are known to exhibit a synchronous relationship in
human communication [21, 22]; however, how this informa-
tion is synthesized to reach understanding is currently an
important unanswered question. Unlike words, which tend
to map more directly to a meaning, the intent of a gaze or a
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gesture is much harder to interpret. If we can better under-
stand how a multimodal language performance encodes its
meaning, that knowledge could be exploited to build a com-
puter model to support higher quality multimodal human-
to-computer exchanges. For example, there are a host of
reasons that a dialog participant will retract their hands
to their lap (e.g., completion of the gesture, completion of
an idea unit, giving up the floor, fatigue); if we can bet-
ter understand those reasons, our human-computer dialog
model should be more effective. In this investigation, we
will attempt to incorporate gestural information into a dia-
log processing task.

There are several ways to obtain gestural measurements.
The first involves the human coding of some intermediate
representation such as gesture stroke [25] or is based on
some pre-defined gesture syntax [15]. Though this method
may provide insight into the nature of gesture, it is very
time consuming to code and is subject to human error. The
second method uses highly accurate motion tracking equip-
ment such as a digital glove [13] to track the movements
of a hand (e.g., the location of a finger and its joints).
This method provides more accurate fine granularity fea-
tures; however, such equipment may affect the nature of the
conversational gestures and, more importantly, a conversa-
tional corpus recorded in this fashion is currently unavail-
able. The third method is to track hand motion directly
from the video; we use this method in this investigation.
To support the development and evaluation of multimodal
models, we have constructed a multimodal corpus of digi-
tal temporally synchronized video and audio recordings of
human monologs and dialogs [1]. This database can be uti-
lized to conduct a variety of measurement studies and to
develop computer models. An important focus of this paper
is on methods of fusing gesture and speech information in a
human communication task.

There has been a considerable amount of work on con-
structing computer models for the spoken language portion
of a human dialog. For example, Shriberg and Stolcke [31]
have pioneered the “direct modeling” approach to exploit
prosodic information in a variety of spoken language pro-
cessing tasks such as speaker recognition, topic segmenta-
tion, and sentence segmentation. An advantage of this ap-
proach is that no hand segmentation or intermediate label-
ing of the speech prosody is required. Instead the prosodic
features are extracted directly from the speech signal given
its time alignment to a human generated transcription or



to automatic speech recognition (ASR) output. A prosody
model is trained using these features, and this model is then
combined with a language model in the final system.

Computational models that integrate speech and visual
(e.g., gesture) features are in their infancy. Several mea-
surement studies have looked at the use of gesture within
human communication. Kendon [16, 8] found that the most
effortful part of a speech-accompanying gesture (called the
stroke phase) tends to occur together with or just before the
most prominent syllable of the speech. Chen et al. [10] have
conducted a measurement study on gesture patterns used
to mark speech repairs. Sharma et al. [30] combined an
HMM architecture for continuous gesture recognition with
keyword spotting to explore the relationship between ges-
ture and speech in videotaped weather forecasting narra-
tions. They demonstrated that the co-occurrence of different
gestures with a selected set of spoken keywords improves the
performance of their continuous gesture recognition system.
On the same task, Kettebekov et al. [17] used F0 to increase
robustness of their system. In a series of studies, Quek et al.
[24, 25, 27, 28] investigated the role of gesture for signaling
discourse structure. Several trackable gesture features were
investigated including hand position [24], hand symmetry
[28], and hand oscillation [27]. Chai et al. [9] used a graph-
matching algorithm to exploit semantic, temporal, and con-
textual constraints from pen based gesture and speech to
more effectively resolve different types of references. Al-
though each of these studies enhance understanding of mul-
timodal fusion, none of them have investigated whether a
direct modeling approach is effective.

In this paper, we use a direct modeling approach to incor-
porate gesture features into a natural conversational mul-
timodal model for detecting sentence boundaries in video-
taped conversations. This research is highly related to one of
the goals of the DARPA EARS program [2]– to enrich speech
recognition output by automatically adding metadata events
(such as sentence boundaries, disfluencies, and speaker la-
bels). The basic idea is that, although current speech recog-
nition systems output a stream of words, the addition of
structural information such as punctuation should aid the
human comprehension of the output while enabling more ef-
fective downstream natural language processing (e.g., some
systems expect sentences as input). Additionally, this infor-
mation can be helpful for speech recognition, since language
models generally use linguistic segments to rescore utterance
hypotheses [11]. For this first experiment on direct model-
ing of gesture, we focus on sentence boundaries since they
are fairly frequent in a conversational corpus. This is impor-
tant since the size of our multimodal corpus is quite small
relative to the metadata corpora available within the EARS
program.

Sentence boundaries in spontaneous speech are not as well
defined as in written text. The sentence unit investigated
in the EARS program is called an SU; see [35] for an an-
notation specification of SUs. An SU typically expresses a
speaker’s complete thought or idea unless there is some dis-
ruption. Sometimes the unit is semantically complete but
smaller than a sentence (e.g., a noun phrase in response to
a question). An SU can be an entire well-formed sentence, a
phrase, or a single word. SU detection algorithms have uti-
lized several types of knowledge [18, 19], in particular, tex-
tual and prosodic information. Textual information is based
on the words in the transcription generated either by a hu-
man or by an ASR system. Prosodic information involves
the “rhythm” and “melody” of speech, which provides com-
plementary information to the words in the speech for SU
detection and so can add robustness against ASR errors.

These previous investigations have been restricted to au-
dio information sources; however, SU events in human con-

versations typically occur in an environment in which other
modalities such as vision (e.g., gesture, facial expression, and
body posture) can be used. McNeill proposes that when
visual cues are generated by the same thought processes
that produce an utterance, that they function together to
serve the communication process with each source carry-
ing some aspect of the original thought [22]. If such is the
case, we would expect both speech and gesture cues to work
together to signal SU boundaries. In this paper, we investi-
gate whether visual cues from videotaped human-to-human
dialogs contribute to SU detection accuracy beyond lexical
and prosodic features.

The rest of the paper is organized into several sections.
In section 2, we briefly describe the multimodal data used
in this investigation. In section 3, we describe the model
for each knowledge source and discuss model combination
strategies. Finally section 4 describes the experimental setup
and discusses the experimental results.

2. WOMBAT DATA AND ANNOTATION
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(a) Speaker lifted two
hands from lap close the
begining of SU

(b) (c)

(d) (e)

(f) Speaker retracted
two hands on lap close
to the end of SU

Figure 1: Temporally aligned audio and video fea-
tures for a portion of the multimodal data set (be-
tween 96.5 and 100 seconds of the wd20-subj set; see
Table 1) with the following transcript: anda we need
to decideb who’s doingc whatd and what equipmente

we’re gonnaf bring to scare them[SU]. From top to
bottom, the features are: (1) the speech waveform,
which is marked with six time points indicated in
the transcript. Note that video frames for these
points appear in the lower part of the figure. (2)
pitch (F0). (3) the left hand’s (LH) 3D position (X
is a solid line, Y dashed, and Z dotted). All posi-
tions are normalized to [0,1]. (4) the right hand’s
(RH) 3D position. (5) normalized Effort. A solid
line indicates the LH and a dashed line the RH. (6)
Hold, such that a non-zero value indicates a gesture
Hold and a zero value indicates hand movement.



Human dialogs were videotaped using a set of cameras
that were both temporally and spatially calibrated [1] and
audio recorded using unidirectional boom mounted micro-
phones. These dialogs were recorded in a somewhat noisy
laboratory environment and contain frequent speech over-
lap. In each session, a subject and interlocutor pair who
knew each other sat next to each other facing a model of
a town (see the keyframes in Figure 1). The subject was
shown the following script describing the task to be accom-
plished:

A family of intelligent wombats has taken up residence

in an abandoned movie theater in the town of Arlee. You

and your assistant need to catch the wombats so that you

can send them back to Australia. You will be taking the

train to Arlee, so be ready to get off at the station right

after you pass a church on your right. When you get

off the train, go around the station and cut through the

adjacent park to meet your assistants: pass between the

two trees and you should reach the house number 33.

Then go next door and ask the neighbors in 35 (you’ll

notice the road construction in front of the house) to

assist you. The movie theater is across the intersecting

street. One of you should go in the front entrance and

scare the wombats out the back entrances. With the help

of the people in 33 and 35, you should be able to snare

the wombats as they exit the rear entrance. Explain the

task to your assistant and decide on who does what, and

what equipment you will need to bring with you.

The subject first explained the situation to the interlocutor
using the town model, and then together they developed a
plan.

Data was recorded with a 5-DV camera, 2-microphone
setup (1 pair of stereo cameras aimed at each subject and in-
terlocutor, 1 zoomed camera to capture detailed head/gaze
information, 1 microphone for each subject and interlocutor
fed into different channels of one of the cameras to provide
audio separation). We used off-the-shelf consumer-grade
miniDV 30 frames-per-second cameras in progressive scan.
Using a five foot-wide prism with a known constellation of
points, we are able to obtain points with typical average
errors within 1 mm in x and y and about 1.5 mm in z (to-
ward the cameras). The maximal errors are within 4 mm.
This has been sufficient for measurements involving conver-
sational gesture interaction. The audio for each participant
was digitally recorded using a Shure Sm94 unidirectional
boom mounted microphone that was placed at a distance of
approximately eight inches from the subjects’ mouths. The
video and audio were time synchronized using a movie clap-
per device. The video was digitized on an SGI workstation
and saved in SGI MPEG format. The audio was initially
sampled at 44.1KHz and then downsampled to 14.7KHz
for analysis.

All videos were processed using a fuzzy image processing
approach, known as Vector Coherence Mapping, that was
used to track the hand motion [23]. VCM applies spatial
coherence, momentum (temporal coherence), speed limit,
and skin color constraints in the vector field computation
by using fuzzy combination strategies, and produces good
results for hand gesture tracking. An iterative clustering
algorithm was applied that minimizes spatial and temporal
vector variance to extract moving hands. The positions of
the hands in the stereo images were used to produce 3D mo-
tion traces describing the gestures. Three gesture features
were extracted for each hand of a speaker: 3D hand posi-
tion, Hold (a state when there is no hand motion beyond
some adaptive threshold (see [14]); a motion energy-based
detector was used to locate places where there was low mo-
tion energy [6]), and Effort (analogous to the kinetic energy
of hand movement [6]).

A transcript of each conversation side of each dialog was
prepared, and it was force aligned to the audio and then
hand adjusted by an experienced speech scientist using the
Praat tool [3]. The time aligned transcription was also
annotated with SUs using version 5.0 of the EARS Sim-
ple Metadata Annotation Specification [35]. SU boundaries
were marked by the second and third author using both the
recorded speech and its transcription. All disagreements in
annotation were resolved by discussion.

For this experiment, we chose to use three data files from
our digital wombat video corpus for which the percentage
of hold is lower than 90%, which we call the KDI data set.
Table 1 indicates the duration of each data file in seconds (s)
along with the number of words spoken and SUs produced.
It also indicates the right hand’s (RH) hold percentage for
each set.

Speaker Dur. (s) # Words # SUs RH Hold %
wd01-subj 509 1243 116 65.23
wd20-subj 727.24 1255 228 80.82
wd20-int 727.24 1453 250 79.76

total 3951 594

Table 1: Characteristics of the KDI data set used in
this experiment.

3. MULTIMODAL MODELS
We treat SU detection as a classification task such that

for each inter-word boundary, the classifier decides whether
there is an SU end boundary or not. The SU boundary de-
cision is based on three somewhat independent knowledge
sources: prosodic, textual, and gestural cues. We believe
that the combination of these three sources should improve
the overall accuracy of the system relative to each source
alone or in pairwise combinations. Following the direct mod-
eling approach, we utilize the time alignment of words to the
speech and visual signals to obtain prosodic and gestural
features. All features are extracted with respect to windows
around a word boundary; hence, no hand labeling of gesture
or prosodic cues is required. Figure 1 depicts a variety of
temporally synchronized multimodal features for a portion
of the KDI data set.

The schematic diagram in Figure 2 adapted from [31] de-
picts our approach for combining lexical, prosodic, and ges-
tural knowledge sources. Because the audio and video sig-
nals are time synchronized, the word time marks obtained
by forced alignment of a speech transcript with the audio
can be used to synchronize both the audio and gesture fea-
tures with word boundaries. To model prosody and gesture,
each word boundary has a corresponding vector of features.
Given that E denotes the word boundary class sequence (SU
or not), W denotes the corresponding word sequence, and F
and G denote the corresponding prosodic and gestural fea-
tures, the goal is to estimate P (W,F, G, E) and then choose
the boundary classifications that have the highest probabil-
ity given the observed words and multimodal features:

arg max
E

P (E|W, F, G) = arg max
E

P (W,F, G, E)

P (W,F, G, E) = P (W,E)P (F, G|W, E)

≈ P (W,E)P (F, G|E)

= P (W,E)P (E|F, G)P (F, G)/P (E)

A language model is used to determine P (W,E). P (F, G|W, E)
is approximated by making the simplifying assumption that
the gesture and prosody features of a boundary depend only
on the boundary class. Although this assumption is not al-
ways true (e.g., the phonetic makeup of a word can affect
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Figure 2: A schematic diagram of our system.

prosodic features), this independence assumption is a rea-
sonable practicality. In the final step, we use Bayes rule
to make use of a decision tree gesture and prosody model,
which provides P (E|F, G). Since P (F, G) is a constant, we
can ignore it when carrying the maximization.

Let Wi denote the the ith word, Ei denote the boundary
event after Wi, and Fi and Gi denote Wi’s prosodic and
gestural features, respectively. Then prosody and gesture
can be modeled by constructing separate decision tree clas-
sifiers that output posterior probability estimates P (Ei|Fi)
and P (Ei|Gi), respectively, with the posterior probability
P (Ei|Fi, Gi) obtained as follows:

P (Ei|Fi, Gi) ≈ λPDT (Ei|Fi) + (1 − λ)PDT (Ei|Gi) (1)

Note that λ is set to a fixed value of 0.5 in these experi-
ments since there is only the small amount of multimodal
data available. It is also possible to train a single decision
tree that uses both prosodic and gestural features to obtain
P (Ei|Fi, Gi) directly. As shown in Figure 2, both of these
options are evaluated in this paper.

To calculate the argmax, we use the forward-backward al-
gorithm for HMMs [29]. Training of the HMM is supervised
since the SU-labeled data described in Section 2 is used.
There are two sets of parameters to estimate. The state
transition probabilities are estimated using a hidden event
N-gram language model [34] described in the next subsec-
tion. The second set of HMM parameters are the obser-
vation likelihoods estimated given the prosodic and gesture
features.

3.1 The SU Language Model (LM)
Words are a very useful knowledge source for the sentence

segmentation task. These can be obtained from automatic
recognition or from human transcripts. For this first investi-
gation applying the direct modeling approach to gesture, we
use human transcripts rather than ASR output. We chose
to do so for several reasons. First, the focus of this paper is
on the impact of gesture features in the sentence boundary
task. Second, there is only a small amount of multimodal
data and it was recorded in a noisy environment quite chal-
lenging for ASR (in insufficient quantities to train an ASR
system). Third, if gesture is able to add beyond these other
sources even when the other sources are perfect, this makes
a strong case for the impact of gesture. Finally, previous

studies involving SU detection in speech have shown that
insights gained using human-generated transcripts general-
ize well to the ASR transcript case [18].

The word-level information is incorporated using a hidden-
event word language model [31] that models the joint dis-
tribution of the SU event sequence E and the word string
W , P (W,E). This word/event LM is trained from the tran-
scriptions, hand-labeled with the SU events. The N-gram
LM parameter estimation optimizes the joint likelihood of
P (W,E).

In addition to the word-based hidden event LM, we also
trained several class-based hidden event LMs. We used two
different types of classes, part of speech (POS) tags and a
set of automatically induced classes. The POS tagging of
the word stream, obtained using the TnT tagger [4] trained
using the Switchboard Treebank data, supports generaliza-
tions based on syntactic structure and smooths possibly un-
dertrained word-based probability estimates. The automati-
cally induced classes, obtained using the algorithm described
in [5] from bigram word distributions, similarly supports
generalization based on word usage patterns. Parameters
for these class-based hidden event LMs are estimated from
the joint class and event sequence C1 E1 C2 E2 ... Ci Ei ...
Cn En. Linear interpolation is used to combine the proba-
bilities from these LMs as in [18].

3.2 The Prosody Model
To model the prosody of sentence boundaries, we extract

prosodic features around each word boundary, based on forced
alignments of the transcripts to the audio. These features
capture duration, pitch, and energy patterns in regions very
near the word boundaries [32]. A crucial aspect of many of
these features is that they are highly correlated (e.g., de-
rived from the same raw measurements via various normal-
izations), real-valued (non-discrete), and in some cases un-
defined (e.g., unvoiced speech regions have no pitch). The
prosodic features are modeled by a decision tree classifier
that outputs posterior probability estimates P (Ei|Fi), where
Ei is the boundary event after Wi, and Fi is the correspond-
ing prosodic feature vector. By using a decision tree as the
probabilistic classifier, we can automatically select features
that are most relevant to the task. Furthermore, the decision
tree makes no assumptions about the shape of feature distri-
butions and offers the distinct advantage of interpretability.



We briefly describe the prosodic features we investigate and
how they are computed.

• Duration Features

Pause duration after each word boundary is extracted
based on the alignment of human transcriptions or
recognition output. We also include the duration of
the pause preceding the word before the boundary, to
reflect whether speech right before the boundary is just
starting up or is a continuation of previous speech.
Phone durations are also computed. One possible in-
dicator of an SU boundary in speech is preboundary
lengthening, which typically affects the nucleus and
coda of syllables. To capture such lengthening, we
measure vowel and rhyme duration. We extract fea-
tures such as the duration of the last vowel or the
stressed vowel in a multisyllabic word, as well as their
normalization.

• F0 Features

To obtain F0 features, we first use an autocorrelation-
based pitch tracker (get f0 function in the ESPS pack-
age) to calculate frame-level F0 estimates. These raw
F0 values are then post-processed to remedy some track-
ing errors, to use speaker-dependent parameters, and
to simplify the F0 features. For each speaker, the F0
distribution is fitted to a lognormal tied mixture model
(LTM) [33], whose mixture weights are found using an
expectation maximization (EM) algorithm. The model
returns an estimated pitch baseline value, which rep-
resents the lowest non-halved pitch value that we use
for pitch normalization. We also apply a median filter
to smooth voicing onsets for which the pitch tracker
is unreliable. The frame level F0 values are then styl-
ized to simplify tonal contours, shapes, and slopes. A
piecewise linear fit (PWL) algorithm based on [33] is
used to create line estimates for the median-filtered
F0 values. On a particular voiced region, the PWL al-
gorithm attempts to fit lines by minimizing the mean
squared error between the linearized pitch estimates
and the raw F0 values using a greedy algorithm. Using
the stylized pitch contour, we compute several differ-
ent types of F0 features:

Range features: These features reflect the pitch range
of a single word or window relative to the speaker-
specific baseline F0 value computed in the LTM model.
These include the minimum, maximum, mean, and last
F0 values for each word boundary, excluding values
which are unvoiced, halved, or doubled. These features
are normalized by baseline F0 values using a linear
difference, log difference, and log ratio. It is expected
that speakers are more likely to fall near the bottom
of their pitch range at a phrase, sentence, or topic
boundary.

Movement features: These features are obtained from
the stylized F0 contours for the voiced regions of the
word preceding and the word following a boundary.
Examples of such movement features are the minimum,
maximum, and mean F0 values, and the starting or
ending stylized F0 values, using various normalization
methods.

Slope features: The stylized pitch values generate pitch
slope within a word or a predefined length of window.
We also consider the slope across a boundary to cap-
ture local pitch variation. A continuous trajectory is
more likely to correlate with non-boundaries; whereas,
a broken trajectory tends to indicate a boundary of
some type.

• Energy Features

Speakers tend to start an utterance loudly and ta-
per off over time. We first generate the frame level
RMS energy values (using the ESPS package), and
then compute the minimum, maximum, and the mean
RMS values over the word and over the voiced frames.
As in stylized F0 processing, the raw energy values are
fit to a linear model to capture the slope change of en-
ergy. We also compute the difference of energy values
across a word boundary.

• Additional Features

We include additional features, such as turn-related
features and gender features, that may interact with
aforementioned prosodic features (e.g., F0 features).
Like all the prosodic features, these features can be
automatically extracted from the speech data, using
gender detection or speaker segmentation techniques.
Turn-related features include whether or not there is a
speaker change at a boundary, the time elapsed from
the start of a turn, and the turn count within the cur-
rent conversation.

3.3 The Gesture Model
Gestures are often decomposed into four phases: prepara-

tion, stroke, hold and retraction. Since gesture and speech in
a coherent communication stem from the same mental pro-
cess, one might expect a variety of useful gesture patterns
that signal the beginning and ending of an SU (e.g., a hand
retraction near the end of an SU, which marks the end of a
thought or idea, as in Figure 1). In fact, using VisSTA, a
multimodal signal visualization tool [26], we have observed,
for example, that speakers often lift their hands from a rest
position (e.g., on their lap) into the gesture space at the be-
ginning of an SU and then retract their hands back to the
area of rest near the SU end. There have been some past
attempts to automatically segment gestures into phases [36],
but these methods have not been found to be highly accu-
rate for natural gestures. Human segmentation of gesture
phase is also possible and potentially helpful; however, in
this paper, we investigate whether, as in the prosody model,
we can automatically extract and utilize vectors of gesture
features to increase the accuracy of SU detection. There-
fore, we obtain gesture features directly from measurements
obtained from the video corpus without consideration of ges-
ture phase.

To model gesture, we extract gestural features around
each word boundary, based on forced alignments of a tran-
script to the audio, which is time synchronized to the video.
These features can be modeled by a decision tree classi-
fier that outputs posterior probability estimates P (Ei|Gi),
where Ei is the boundary event after Wi, and Gi is the
corresponding gesture feature vector. Given our corpus, we
use VCM to obtain the raw gesture features. Although this
algorithm can provide 3D hand position, Hold, and Effort,
we focus on the latter two features. Given the size of our
corpus, the data sparsity of 3D hand position precludes its
use in this initial study. In future work, we plan to investi-
gate clustering techniques on 3D hand position to identify
rest positions and gesture space positions. Hence, gestural
features Gi at each inter-word boundary consists of a vector
of numerical features reflecting Effort and Hold of the right
and left hand of each communicant in our corpus.

• Hold Features

Since audio pause duration has proven to be an ef-
fective feature in spoken SU detection [32], one might
expect that the gestural correlate of a pause, namely a



Hold would be highly informative. Therefore, we de-
fine two features concerning the Hold duration around
an inter-word boundary.

Hold overlap around an inter-word boundary: The ra-
tio of Hold frames within the time interval marked by
the beginning of the first word in an adjacent word
pair up to the end of the second word.

Hold overlap with pauses: The ratio of Hold frames
that overlap with an audio pause at an inter-word
boundary is a potentially helpful combined prosody-
gesture feature [12].

• Effort Features

Using VisSTA, we have observed a common pattern of
gesture phase changes around SU boundaries. Since
Effort, the velocity of hand motion, is expected to
change around transitions in gestural phase, one would
expect that these features might be helpful for SU de-
tection. Therefore, a series of gestural features are de-
fined related with Effort around an inter-word bound-
ary. Note that Effort values are normalized given the
value range of the conversant so that the range is be-
tween 0.0 and 1.0.

intra-window features: We calculate sets of features
relative to a time window preceding or following a
given inter-word boundary since gestures may slightly
precede or follow a boundary. Two types of windows
are used: the first is based on the duration of the pre-
ceding (or following) word, and the second on a fixed
time window preceding or following the boundary. We
set the time interval for the second type of window to
0.5 seconds in order to reflect the fact that gestures
have a larger time granularity than a typical word’s
duration1. For each window type and perspective, we
calculate the minimum, maximum, and average nor-
malized Effort.

inter-window features: We also calculate sets of fea-
tures concerning the change in Effort between each
pair of adjacent windows, i.e., between the values ob-
tained for the window preceding and following an inter-
word boundary. For example, minmax is the absolute
difference between minimum Effort of the interval pre-
ceding the boundary and maximum Effort of the inter-
val following it. Note that minmin, minave, avemin,
aveave, avemax, maxmin, maxave, and maxmax are
derived similarly.

4. SU DETECTION EXPERIMENT

4.1 Setup
As the KDI data set is of limited size, for the non-visual

component models, our models may be better trained by
utilizing the larger dataset that is available for the spo-
ken SU boundary detection problem, namely the conver-
sational telephone speech (CTS) dataset drawn from the
Switchboard corpus that was annotated by LDC according
to DARPA Rich Transcription for use in the Fall 2003 evalu-
ation. This set contains about 40 hours of conversations that
can be used to train the language model, as well as a conver-
sational prosody model. There is some similarity between

1This window size contains around fifteen gesture values. A
smaller window would contain fewer values, which could lead
to poorer estimates of the maximum and minimum. Note
this 0.5 sec window is slightly longer than the window used
in prosodic modeling (0.2 sec). Future research will consider
the impact of window size.

the CTS corpus and KDI multimodal corpus. First, they
both involve conversational speech. Also these corpora have
a similar SU percentage; 14% of the word boundaries are
SU boundaries in CTS compared to 15% in the multimodal
set. However, there are also some differences since the KDI
multimodal corpus involves two people speaking face-to-face
solving a problem; whereas, the CTS set involves telephone
conversations between two people who are unknown to each
other discussing a particular topic.

The small size of the KDI set precludes its use for LM
training; hence, only the CTS data is used to train the hid-
den event language model (denoted LMCTS). The word,
POS, and automatically induced class based LMs are all
trained using the NIST 2003 Rich Transcription (RT03)
CTS training data set. We also utilized a word-based hid-
den event LM that was trained using the sentences and
SU boundaries in the Switchboard Penn Treebank (which
is marked with metadata according to Meteer’s specification
[20]). This second word-based model was added because the
RT03 CTS set is somewhat small. The LMs are combined
via linear interpolation, and the weights are optimized us-
ing the development set from the RT-03F MDE evaluation.
We also train two different prosody models, one on the CTS
data (denoted PCTS) and one on the KDI dataset described
in Table 1 (denoted PKDI); however, due to the need for
visual features, we train the gesture model only on the KDI
set (denoted GKDI). The weight for combining the LM with
the CTS prosody model was set using the development set
from the RT-03F MDE evaluation. The same weight is used
to combine the LM with the KDI prosody and gesture mod-
els, as well as their combinations.

A standard CART style decision tree is used to train PCTS

since there is sufficient data to use this method. In con-
structing the gesture and prosody models using the KDI
data, we chose to use Bayesian option style trees [7]. Op-
tion trees extend Bayes trees by growing many different trees
and storing them in a compact form. They are a general-
ization of the standard tree where options are included at
each point. At each interior node, instead of there being
a single test and subtrees for its outcomes, there are sev-
eral optional tests with respective subtrees. The resultant
structure, which looks like an and-or tree, is a compact way
of representing many different trees that share common pre-
fixes. Option trees are grown using an N-ply lookahead such
that the best few tests are grown as optional tests at the
node. Although this method is more time and memory in-
tensive, the improvement in prediction accuracy for a very
small data set can be quite significant [7].

To evaluate our model, we use 10-fold cross validation
in training and testing. For the prosody and gesture mod-
els, in order to address the imbalanced data problem (since
there are many fewer SU events than nonevents at interword
boundaries), we use a downsampled training set in which SU
and non-SU have equal prior probabilities. Additionally,
we employ ensemble bagging to reduce the variance of the
prosodic classifier for the non-SU class. In this method sev-
eral random downsampled training sets are generated, and
each is resampled multiple times and corresponding classi-
fiers are combined via bagging [19]. This has been found to
improve the performance of the prosody model on the CTS
SU task [19], so we also use the method for our prosody and
gesture models. Note that the test portion of each fold rep-
resents the true distribution of SU and non-SU boundaries2.

To evaluate the performance of our models, we use the
Error Rate metric defined by NIST for the DARPA EARs

2The posterior probabilities provided by the decision tree
models are normalized to reflect the distribution of SU/non-
SU boundaries in the training set.



metadata evaluation for comparison with the literature. To
calculate the SU Error Rate, the estimated SU string is
compared with the gold standard SU string to determine
the number of misclassified boundaries per SU. Since SU
boundaries may be incorrectly deleted or inserted, we also
provide the Insertion Rate and Deletion Rate to determine
whether there are different patterns of insertions and dele-
tions among the different models. The Insertion Rate is the
number of incorrect insertions of an SU in the estimated SU
string that does not appear in the gold standard per SU
boundary; whereas, the Deletion Rate is the number of in-
correct deletions of an SU that appears in the gold standard
string per SU boundary. The three metrics appear below:

1. Error Rate = (# Deletion + # Insertion)/ # SUs in
the reference

2. Insertion Rate = # Insertion/ # SUs in the reference

3. Deletion Rate = # Deletion/ # SUs in the reference

4.2 Results and Discussion
The performance of each of the individual knowledge source

models and their combination appears in Table 2. The first
four lines in the table show the performance using each
knowledge source individually, that is the hidden event LM
trained on the CTS data (LMCTS), the prosodic model
trained on the CTS data (PCTS), the prosodic model trained
on the KDI data (PKDI), and the gesture model trained on
the KDI model (GKDI). For comparison, the last line shows
a baseline indicating the error that would be obtained by al-
ways selecting the majority class (i.e., non-SU). Note that
the models that are trained using CTS data essentially ig-
nore the KDI training data in each fold and simply gen-
eralize what they have learned from the CTS set to the
KDI set. Each individual knowledge source performs bet-
ter than the baseline in both deletion and in overall error
rate. The prosody model trained from KDI data has a lower
deletion rate and overall error rate compared to the prosody
model trained from CTS data. This suggests that the use of
prosody in the KDI dataset may be slightly different than in
the CTS set. It should be noted that the prosody models for
this task have a higher error rate than has been found in re-
lated research on SU detection in speech. This is most likely
due to the fact that the KDI corpus was recorded in a fairly
noisy environment with boom microphones that pick up the
speech of both subjects. The language model has the highest
overall error rate; however, as we will see this information
adds significantly to the model combination performance.
The gesture model trained on the KDI set has a slightly
greater deletion and insertion error rate than the prosody
model trained on the same set; however, its deletion rate is
much lower than the prosody model trained on CTS. The
gesture error rate does not differ significantly from either
prosody model using the sign test.

The next three lines (five through seven) in the table show
the performance of several combinations of the prosody and
gesture models. We combine the separately trained prosody
and gesture models using linear interpolation with a weight
of 0.5 for each source3. We also trained a single decision
tree that more tightly integrates the prosodic and gesture
features on the KDI data. All of the interpolated models
have a lower error rate than the respective prosody and ges-
ture models alone, largely due to a reduction in the deletion
rate. PKDI + GKDI has a significantly lower error rate than
GKDI , suggesting that the prosody model adds information

3We chose to simply average here rather than tune the
weight since there is insufficient data to use as a heldout
set.

that is complementary to the gesture model. One might
expect that the tight integration of the prosody and ges-
ture features in a single decision tree (i.e., P,GKDI) would
obtain the best performance; however, the error rate is far
worse than PKDI + GKDI . This result may indicate that
the gesture and prosody features are redundant or too highly
correlated for tight integration; however, it is far more likely
that the different time granularities of the prosody and ges-
ture features prevent them from combining well in a single
model.

The eighth through the tenth lines in the table shows the
impact of combining the LM with each of the individual
prosody and gesture models. In all cases, the deletion rate
drops, the insertion rate increases, and the overall error rate
decreases significantly. As in prior studies investigating SU,
the LM adds an important information source for detecting
a sentence boundary. What is quite striking in this study
is that, despite the fact that the LM was trained on a dif-
ferent corpus and performs more poorly than the other sin-
gle knowledge source models, it is an important knowledge
source in the combination models. Lines 11-13 in the ta-
ble show the performance when each of the combination
prosody/gesture models is combined with the LM. Overall,
the three-way model combinations give a lower overall error
rate than the single and pair-wise combinations. Note that
adding LMCTS to each of the combined prosody/gesture
models also significantly lowers error rate. LMCTS + PKDI

+ GKDI achieves a lower overall error rate than the pairwise
combination of the gesture or prosody model with the LM
(i.e., LMCTS + PKDI and LMCTS + GKDI); however, the
differences are not statistically significant.

Model Deletion Insertion Error
LMCTS 49.16 17.51 66.67
PCTS 47.31 9.76 57.07
PKDI 38.89 14.31 53.20
GKDI 40.40 17.68 58.08

PCTS + GKDI 44.61 10.61 55.22
PKDI + GKDI 37.21 14.31 51.52

P,GKDI 40.24 14.78 54.71
LMCTS + PCTS 24.75 21.21 45.96
LMCTS + PKDI 21.21 22.90 44.11
LMCTS + GKDI 24.24 21.38 45.62

LMCTS + PCTS + GKDI 23.03 21.55 44.61
LMCTS + PKDI + GKDI 20.03 22.05 42.09

LMCTS + P,GKDI 20.88 22.22 43.10
Baseline 100 0 100

Table 2: Results for SU detection using gesture,
prosody, and language models, alone or in combina-
tion. An error baseline obtained by always assum-
ing a boundary is a member of the majority class
appears in the last row of the table.

This investigation highlights the importance of using mul-
tiple knowledge sources to detect sentence boundaries in hu-
man dialogs. It also highlights the value of a direct modeling
approach for constructing a model of conversational gesture.
The gesture model improves upon the baseline and does not
perform significantly better or worse than any of the other
single knowledge source models. Furthermore, we find that
gesture is complemented by the prosodic and lexical knowl-
edge sources for this task. By using all three knowledge
sources, the model is able to achieve the lowest overall error
rate. This result has implications for the annotation of SU
boundaries in multimodal corpora. Although we annotated
the SU boundaries using only the transcriptions and au-
dio files to prevent any positive bias toward gesture for this
study, it is likely that annotators would effectively utilize



the visual information provided by gesture as an additional
cue for the presence of an SU boundary.

In future work, we will investigate a wider variety of ges-
ture features. For example, since it is common for speakers
to retract their hands to their laps when they complete an
idea unit, we plan to incorporate 3D hand position into the
model. To use this cue effectively, we will investigate au-
tomatic methods of identifying the location of the lap. We
also plan to increase the size of our multimodal corpus. One
way to do this most easily with existing data is to evaluate
the impact of using completely unsanitized visual features
(currently, the tracked hand position is lightly human cor-
rected which limits the amount of available data). We are
also beginning to collect a meeting room corpus using Vicon
data capture, which will make extraction of gesture features
both fast and reliable. Finally, we will expand our work to
other multimodal human communication tasks. A strong
motivation for using the direct modeling approach is that
in many cases we can utilize the same extracted features
to attack a number of interesting problems such as topic
boundary detection.
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