
Abstract Effects and Proof-Relevant Logical Relations

Nick Benton
Microsoft Research, Cambridge, UK

nick@microsoft.com

Martin Hofmann
LMU, Munich, Germany

hofmann@ifi.lmu.de

Vivek Nigam
UFPB, João Pessoa, Brazil
vivek.nigam@gmail.com

Abstract
We give a denotational semantics for a region-based effect sys-

tem that supports type abstraction in the sense that only externally
visible effects need to be tracked: non-observable internal modifi-
cations, such as the reorganisation of a search tree or lazy initial-
isation, can count as ‘pure’ or ‘read only’. This ‘fictional purity’
allows clients of a module to validate soundly more effect-based
program equivalences than would be possible with previous seman-
tics. Our semantics uses a novel variant of logical relations that
maps types not merely to partial equivalence relations on values,
as is commonly done, but rather to a proof-relevant generalisation
thereof, namely setoids. The objects of a setoid establish that val-
ues inhabit semantic types, whilst its morphisms are understood as
proofs of semantic equivalence. The transition to proof-relevance
solves two awkward problems caused by naı̈ve use of existential
quantification in Kripke logical relations, namely failure of admis-
sibility and spurious functional dependencies.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Dynamic storage
management; F.3.2 [Logic and Meanings of Programs]: Seman-
tics of Programming Languages – Denotational semantics, Pro-
gram analysis; F.3.2 [Logic and Meanings of Programs]: Studies
of Program Constructs – Type structure

General Terms Languages, Theory

Keywords Type and effect systems, region analysis, logical rela-
tions, parametricity, program transformation

1. Introduction
The last decade has witnessed significant progress in modelling

and reasoning about the tricky combination of effects and higher-
order language features (first-class functions, modules, classes).
The object of study may be ML-like, Java-like, or assembly-like,
but the common source of trickiness is the way effectful opera-
tions may be partially encapsulated behind higher-order abstrac-
tions. Several closely-related problems have been addressed using
common techniques that include separation, Kripke logical rela-
tions and step-indexing. One is to devise models and reasoning
principles for establishing contextual (in)equivalences [18, 36]. A
second is to establish equivalence between high-level and low-level

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright c© 2014 ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535869

code fragments, e.g., for compiler correctness [5, 23]. A third is to
define Hoare-style logics for showing programs satisfy assertions
[38]. A fourth, which we address here, is to study type systems and
analyses that can characterize particular classes of behavior (such
as purity) and be used to justify equivalences more generically.

Effect systems [22] refine conventional types by adding infor-
mation capturing an upper bound on the effects expressions may
have. Several recent papers [3, 6, 7, 26, 41], have explored the
semantics of effect systems, with a focus not merely on showing
correctness of analyses, but on providing a rigorous account of the
conditions under which effect-dependent optimizations and refac-
torings are sound. An example is the commutation of stateful com-
putations M and N, subject to the condition that the sets of storage
locations potentially written by M and N are disjoint, and that nei-
ther potentially reads a location that the other writes.

We seek interpretations of effect-refined types (over an unre-
fined model) that can justify such equivalences. Indeed, it is the
interpretations, rather than rules for assigning such types to terms,
that we regard as primary. Types provide a common interface lan-
guage that can be used by clients in modular reasoning about
rewrites; types can be assigned to particular terms by a mixture of
more or less sophisticated inference systems, or by deeper semantic
reasoning about particular implementations.

A key notion in reasoning about encapsulated state is that of
separation: invariants depending upon mutually disjoint parts of
the store. Intuitively, if each function with direct access to a part
preserves the corresponding invariant, then all the invariants will be
preserved by any composition of functions. Disjointness is naı̈vely
understood in terms of sets of heap locations. A memory alloca-
tor, for example, guarantees that its own private data structures,
memory previously handed out to clients, and any freshly-allocated
block inhabit mutually disjoint sets of locations. Since the introduc-
tion of fractional permissions, work on separation logic often goes
beyond this simple model, introducing resources that are combined
with a separating conjunction, but which are not literally interpreted
as predicates on disjoint locations. Research on ‘domain-specific’
[28], ‘fictional’ [17, 25], ‘subjective’ [30], or ‘superficial’ [29] sep-
aration logics and type theories aims to allow custom notions of
separable resource to be introduced and combined modularly. This
paper presents a semantics for effect systems supporting fictional,
or ‘abstract’, notions of both effects and separation.

We have previously interpreted effect-refined types for stateful
computations as binary relations, defined via preservation of par-
ticular sets of store relations [7]. This already provides some ab-
straction. The semantics is extensional so, for example, a function
that reads a reference cell but doesn’t produce observably differ-
ent results depending on the value read can soundly be counted
as pure (contrasting with, for example, models of permissions that
instrument the concrete semantics). Such a semantics can also in-
terpret the ‘masking’ rule, allowing certain non-observable effects
not to appear in annotations [6]. But here we go further, gener-
alizing the interpretation of regions to, intuitively, partial equiva-

619

lence relations. This allows, for example, a lookup function for a
set ADT to be assigned a read-but-not-write effect, even though
the concrete implementation may involve non-observable writes to
rebalance an internal datastructure. Moving to PERs in this way
requires us to revisit the notion of separation, allowing types to
involve distinct regions whose concrete implementations overlap,
albeit non-observably, in memory.

Earlier models of dynamic allocation [6] have used Kripke log-
ical relations in which worlds are finite partial bijections between
locations, with region-colored links. Two computations c, c′ : H⇁
H × V, where H,V are sets of (partial) heaps and values, respec-
tively, are in the computation relation Tε~A�w, for world w, effect
ε and result type A when ∀h, h′, h1, h′1. h, h′ |= w ⇒ ∃w1 ≥ w.
h1, h′1 |= w1∧ (h, h1, h′, h′1,w,w1) ∈ ~ε� ∧ (v, v′) ∈ ~A�w1 where
c h = (h1, v) and c′ h′ = (h′1, v

′). Here, ~A�w1 is the (world-
dependent) logical relation at the result type and ~ε� the interpreta-
tion of the effect, which can be given in various ways, e.g., in terms
of binary relations on stores to be preserved. The notation h, h′ |= w
means that for each link (l, l′) ∈ w, l ∈ dom(h), l′ ∈ dom(h′).

However, generalizing such a logical relation from bijections to
PERs is surprisingly difficult. The problematic part is the existential
quantification over world extensions: ∃w1 ≥ w. This says that c and
c′ are related at world w if there is some future world w1, allowing
for the computations to perform allocations, at which the respective
final states and values are related. This pattern of quantification
occurs in many accounts of generativity, but the dependence of w1
on both h and h′ creates a difficulty when one generalizes from
bijections to PERs and tries to prove equivalences. Roughly, one
has to consider varying the initial heap in which one computation,
say c′, is started; the existential then supplies one with a different
extension that is not at all related, even on the side of c where the
heap stays the same, to the one with which one started. In the case
of bijections, the fact that h1 depends only on h (not on h′) allows
one to deduce sufficient information about the domain of w1 from
the clause h1, h′1 |= w1, but this breaks down in the more abstract
setting.

To fix this problem, we will essentially replace the existential
quantifier in the logical relation by appropriate Skolem functions,
explicitly enforcing the correct dependencies. In the language of
type theory, this amounts to replacing the existential with a Σ-type.
A statement like (c, c′) ∈ Tε~A� is no longer just a proposition, but
we rather have a “set of proofs” (p : c ∼ c′) ∈ Tε~A�, and our
constructions will explicitly maps proofs to proofs.

We have previously shown [4] how the formalism of setoids can
be used to make such intuitions both rigorous and more general.
That work, dealing with a version of Pitts and Stark’s ν-calculus,
used proof-relevant setoids to solve another problem associated
with the use of existential quantification: that it fails to preserve
admissibility of predicates and relations and so interacts badly with
general recursion. Here we show how that technology scales to a
much richer language and type system.

2. Motivating Examples
We will assign effect-refined types to terms in a fairly conven-

tional monadically-structured untyped metalanguage with higher-
order functions and dynamically allocated references to flat data.
The language is defined formally later on, but the following ex-
amples of the kind of equivalences and typings we will be able to
justify should be comprehensible.

Memoisation Let memo be the function
λ f .let x⇐ref(0) in let y⇐ref(f 0) in
λa.if a = !x then !y else let r⇐ f a in x := a; y := r; r

where t1; t2 = let ⇐ t1 in t2 is sequential composition and
= is equality on storable values. So, memo returns a memoized

version of its argument. Unlike previous models of effects, our
model justifies the typing memo : (int

∅
−→ int)

∅
−→ (int

∅
−→ int),

saying that if f is observationally pure, memo f , is too, and so
can participate in any program equivalence relying on purity. For
example, a client can deduce the observational equivalence of the
programs below purely on the basis of typing:

λy.letg⇐memo (λx.x + 1)in e ≡ letg⇐memo (λx.x + 1)in λy.e

Overlapping references Let p,p−1 implement a bijection Z →
Z × Z, then

vor := λ .let r⇐ref(0) in (λ .(p(!r)).1, λ .(p(!r)).2,
λn.let (x, y)⇐ p(!r) in r := p−1(n, y),
λn.let (x, y)⇐ p(!r) in r := p−1(x, n))

which multiplexes two abstract integer references onto a single
concrete one, can be given the type

τor := unit
alr1 ,alr2
−−−−−→ (unit

rdr1
−−→ int) × (unit

rdr2
−−→ int) ×

(int
wrr1
−−−→ unit) × (int

wrr2
−−−→ unit)

expressing that it allocates in two regions, r1 and r2, and returns a
tuple of functions, each of which reads or writes just one region.
This typing justifies, for example, permuting writes to the two
abstract references.

Set factory A more realistic example, for which we do not give
concrete code, is a function setfactory that generates mutable in-
teger sets. Calling setfactory allocates a new reference cell point-
ing to a linked list of integers (initially empty) and returns a triple
of functions (mem, add, rem) for testing membership of the repre-
sented set, adding a new integer to the set and removing an integer
from the set. The implementation of mem searches for its integer
argument in the linked list, but at the same time mutates the list by
removing duplicates and, just for fun, potentially relocating some
of the nodes. The other operations can potentially perform similar
optimizations.

We can justify the following semantic typing for setfactory:

setfactory : ∀r.unit
alr
−−→ (int

rdr
−−→ bool)×(int

rdr ,wrr
−−−−→ unit)×(int

rdr ,wrr
−−−−→ unit)

which expresses that setfactory allocates in some (possibly fresh)
region r and returns operations that, observably, only read r (the
first one) and/or write in r (the second and third one) even though,
physically, all three functions may read, write, and allocate concrete
locations.

Thus, these functions can participate in corresponding effect-
dependent program equivalences. For example, mem operations
may be swapped and duplicated.

Lazy Initialization The following definitions illustrate an ‘allocate-
on-write’ form of lazy initialization:

make = λ .ref(0)
getx = λp.if !p = 0 then 0 else !(!p.1)
gety = λp.if !p = 0 then 0 else !(!p.2)
setx = λp.λn.if !p = 0 then p := (ref(n), ref(0)) else !p.1 := n
sety = λp.λn.if !p = 0 then p := (ref(0), ref(n)) else !p.2 := n

We can introduce a new abstract type pointr1,r2 for which the fol-
lowing typings can be semantically justified:

make : unit
alr2
−−→ pointr1,r2

getx : pointr1,r2
rdr1
−−→ int gety : pointr1,r2

rdr2
−−→ int

setx : pointr1,r2
∅
−→ int

wrr1
−−−→ unit setx : pointr1,r2

∅
−→ int

wrr2
−−−→ unit

Observe that the allocation effects are flagged in the make function,
even though the physical allocations happen on demand, in the set

620

functions. Note also that semantic reasoning is necessary to justify
that these definitions are well-typed at all, as a point holds different
kinds of value at different times.

3. Syntax and Semantics
In this section we define the syntax and denotational semantics

of our untyped metalanguage for stateful computations. We also
give an effect-refined type system for this language that is parame-
terized by semantically-justified axioms. We omit the standard de-
tails of interpreting CBV languages via the metalanguage and of
adequacy, relating the operationally induced observational equiva-
lence to equality in the model.

Denotational Model A predomain is an ω-cpo, i.e., a partial
order with suprema of ascending chains. A domain is a predomain
with a least element, ⊥. Recall that f : A → A′ is continuous if
it is monotone x ≤ y ⇒ f (x) ≤ f (y) and preserves suprema of
chains, i.e., f (supi xi) = supi f (xi). Any set is a predomain with the
discrete order. If X is a set and A a predomain then any f : X → A is
continuous. A subset U of a predomain A is admissible if whenever
(ai)i is an ascending chain in A such that ai ∈ U for all i, then
supi ai ∈ U, too. If f : X × A→ A is continuous and A is a domain
then one defines f †(x) = supi f i

x(⊥) with fx(a) = f (x, a). One has,
f (x, f †(x)) = f †(x) and if U ⊆ A is admissible and f : X × U → U
then f † : X → U, too. We denote a partial (continuous) function
from set (predomain) A to set (predomain) B by f : A ⇁ B.

We assume two sets L and Vb modelling concrete locations, and
the R-values that can be stored in locations. We assume that R-
values include integers, written int(n) for some n ∈ Z, booleans,
written bool(b) for b ∈ B, locations loc(l) for some l ∈ L, and tuples
of R-values, written (v1, . . . , vn). We assume that it is possible to
tell whether a value is of that form and in this case to retrieve
the components. Heaps h ∈ H are finite maps from L → Vb. The
domain of a heap h is dom(h) ⊆ L. We write ∅ ∈ H for the empty
heap. If v ∈ Vb, l ∈ dom(h) then h[l7→v] is the heap that updates l to
contain v; new(h, v) yields a pair (l, h′) where l ∈ L and h′ ∈ H.

The following properties hold: dom(∅) = ∅, dom(h[l7→v]) =
dom(h), (h[l7→v])(l′) = if l = l′ then v else h(l′), and if new(h, v) =
(l, h′) then dom(h′) = dom(h) ∪ {l} and l < dom(h) and h′(l) = v.

Note that heaps and R-values are discrete predomains; we do
not here model higher-order store (storing objects with nontrivial
order, such as functions). Our stores are ‘flat’, like those of object-
oriented languages.

We define the predomain of values V and the domain of com-
putations C simultaneously as follows: C = H ⇁ H × V are par-
tial continuous functions from H to H × V, the bottom element be-
ing the everywhere undefined function. Values are defined as either
R-values, tuples of values or continuous functions from values to
computations: V ' Vb + fun(V→ C) +V∗. Such domain equations
can be solved by standard methods.

Syntax The syntax of untyped values and computations is:

v ::= x | () | c | (v1, v2) | v.1 | v.2 | rec f x = t
t ::= v | let x⇐ t1 in t2 | v1 v2 | if v then t1 else t2

!v | v1 := v2 | ref(v)

Here, x ranges over variables and constants c over constant sym-
bols, each of which has an associated interpretation VcW ∈ V; these
include numerals n with VnW = int(n), booleans, arithmetic opera-
tions, test functions to tell whether a value is an integer, a function,
a pair, or a reference, equality test for R-values, etc. rec f x = t
defines a recursive function with body e and recursive calls made
via f ; we use λx.t as syntactic sugar in the case when f < f v(t).
Finally, !v (reading) returns the contents of location v, v1 := v2
(writing) updates location v1 with value v2, and ref(v) (allocating)
returns a fresh location initialized with v. The metatheory is sim-

plified by using “let-normal form”, in which the only elimination
for computations is let, though we sometimes nest computations as
shorthand for let-expanded versions in examples.

The untyped denotational semantics of values VvW ∈ V → V
and terms VtW ∈ V → C is defined in usual way by inductive
clauses, which we omit here.

Types are given by the grammar

τ ::= unit | int | bool | A | τ1 × τ2 | τ1
ε
−→ τ2

where A ranges over user-specified abstract types. They will typi-
cally include region-indexed reference types such as intrefr and
also types like lists, sets, and even objects, again possibly refined
by regions. The metavariable ε represents an effect, that is a subset
of some fixed set of elementary effects about which we say more
later. The core typing rules for values and computations are shown
in Figure 1. The side condition on rule Dead requires us to ascertain
that t1 terminates for all inputs and heaps satisfying the contracts
specified in Γ, ε.

We assume an ambient set of typing axioms each having the
form (v, τ) where v is a value in the metalanguage and τ is a type
meaning that v is claimed to be of type τ and that this will be proved
“manually” using the semantics rather than using the typing rules.

We also assume an ambient set of equality axioms each having
the form (v, v′, τ) and asserting semantic equality of v and v′ at
type τ, again to be justified “manually”. We assume that whenever
(v, v′, τ) is an axiom so are (v, τ) and (v′, τ).

The equational theory can be classified in three different cate-
gories: basic, congruence and effect-dependent. An extract of the
basic and congruence equations are depicted in Figure 2. The the-
ory also includes all the usual beta and eta laws and commuting
conversions for conditionals as well as for let. We will give a se-
mantic interpretation of typed equality judgments which is sound
for observational equivalence.

As with typings, further equations involving effectful computa-
tions may be justified semantically in a particular model and added
to the theory. In particular, we can justify the soundness of four
effect-based equations, namely, dead, duplicated and commuting
computation, and pure lambda hoist also shown in Figure 2. The
core theory then allows one to deduce new semantic equalities from
already proven ones.

4. Abstract Locations
We now define the concept of an abstract location which gener-

alizes physical locations in that it models a portion of the store that
can be read from and updated. Such portion may comprise a fixed
set of physical locations or a varying such set (as in the case of a
linked list with some given root). It may also reside in just a part
of a physical location, e.g., comprise the two low order bits of an
integer value stored in a physical location. Furthermore, the equal-
ity on such abstract location may be coarser than physical equality,
e.g., two linked lists might be considered equal when they hold the
same set of elements, and there may be an invariant, e.g., the linked
list should contain integer entries and be neither circular nor aliased
with other parts of the heap. This then prompts us to model an ab-
stract location as a partial equivalence relation (PER) on heaps to-
gether with two more components that describe how modifications
of the abstract location interact with the heap as a whole. Thus, next
to a PER, an abstract location also contains a reflexive transitive re-
lation (“guarantee”) modelling its evolution by way of modifying
actions.

We will define a notion of when abstract locations are indepen-
dent, generalizing the traditional notion of separation. However,
there is some extra complexity due to the fact that whatever cus-
tom notions of equality and separation we introduce, we would like
them all to interact well with the underlying built-in allocator. A

621

Γ ` true : bool Γ ` false : bool Γ ` n : int
(v, τ) a type axiom

Γ ` v : τ Γ, x : τ ` x : τ
Γ ` v : τ

Γ ` v : τ & ∅

Γ ` v : τ1 × τ2

Γ ` v.i : τi

Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2) : τ1 × τ2

Γ ` v1 : τ1
ε
−→ τ2 Γ ` v2 : τ1

Γ ` v1 v2 : τ2 & ε

Γ, f :τ1
ε
−→ τ2, x:τ1 ` e : τ2 & ε

Γ ` rec f x = e : τ1
ε
−→ τ2

Γ ` e : τ & ε1 ε1 ⊆ ε2

Γ ` e : τ & ε2

Γ ` v : int Γ ` e1 : τ & ε Γ ` e2 : τ & ε

Γ ` if v then e1 else e2 : τ & ε

Γ ` e1 : τ1 & ε Γ, x:τ1 ` e2 : τ2 & ε

Γ ` let x⇐e1 in e2 : τ2 & ε

Γ ` t : τ & ε r < regs(Γ) ∪ regs(τ)
Γ ` t : τ & ε \ {rdr,wrr, alr}

Masking

Figure 1. Core rules for effect typing

Basic Equations (Extract)

Γ ` t : τ & ε
Γ ` t = t : τ & ε

Γ ` t = t′ : τ & ε
Γ ` t′ = t : τ & ε

Γ ` t = t′ : τ & ε Γ ` t′ = t′′ : τ & ε
Γ ` t = t′′ : τ & ε

Γ ` v = v′ : τ
Γ ` v = v′ : τ & ∅

Γ, ` v : τ1 × τ2

Γ ` v = (v.1, v.2) : τ1 × τ2

Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2).i = vi : τi

Γ, f : τ1
ε
−→ τ2, x:τ1 ` t = t′ : τ2 & ε

Γ ` (rec f x = t) = (rec f x = t′) : τ1
ε
−→ τ2

Γ, f : τ1
ε
−→ τ2, x:τ1 ` t : τ2 & ε Γ ` v : τ1

Γ ` (rec f x = t) v = t[v/x, (rec f x = t)/ f] : τ2 & ε

Γ ` v : τ1 & ε Γ, x : τ1 ` t : τ2 & ε

Γ ` let x⇐v in t = t[v/x] : τ2 & ε

Γ ` t1 : τ1 & ε Γ ` t2 : τ2 & ε Γ, x : τ2, y : τ1 ` t3 : τ3 & ε

Γ ` let x⇐ (let y⇐ t1 in t2) in t3 = let y⇐ t1 in let x⇐ t2 in t3 : τ3 & ε

(v, v′, τ) an equality axiom
Γ ` v = v′ : τ

Congruence Equations (Extract)

Γ ` v = v′ : τ1 × τ2

Γ ` v.i = v′.i : τi

Γ ` v = v′ : bool & ∅ Γ ` t1 = t′1 : τ & ε Γ ` t1 = t′1 : τ & ε

Γ ` if v then t1 else t2 = if v′ then t′1 else t′2 : τ & ε

Effect Based Equations

Γ ` t1 : τ1 & ε1 Γ ` t : τ & ε wrs(ε1) = ∅

Γ ` (let x⇐ t1 in t) = t : τ & ε
Dead, provided t1 terminates

Γ ` t1 : τ1 & ∅ Γ, x : X, y : τ1 ` t : τ & ε

Γ ` (λx.let y⇐ t1 in t) = (let y⇐ t1 in λx.t) : (X
ε
−→ τ) & ∅

Pure Lambda Hoist

Γ ` t1 : τ1 & ε1 Γ, x : τ1, y : τ1 ` t : τ & ε wrs(ε1) ∩ rds(ε1) = als(ε1) = ∅

Γ ` (let x⇐ t1 in let y⇐ t1 in t) = (let x⇐ t1 in t) : τ & ε ∪ ε1
Duplicated

Γ ` t1 : τ1 & ε1 Γ ` t2 : τ2 & ε2 Γ, x : τ1, y : τ2 ` t : τ & ε
rds(ε1) ∩ wrs(ε2) = rds(ε2) ∩ wrs(ε1) = wrs(ε1) ∩ wrs(ε2) = ∅

Γ ` (let x⇐ t1 in let y⇐ t2 in t) = (let y⇐ t2 in let x⇐ t1 in t) : τ & ε1 ∪ ε2 ∪ ε
Commuting

Figure 2. Basic, congruence, and effect based equational theory

π · l = π(l) π · (a1, a2) = (π · a1, π · a2)
π · (L ⊆ L) = {π(l) | l ∈ L} dom(π · h) = π · (dom(h))
(π · h)(l) = π · (h(π−1(l))) π · R = {~h | π−1 · ~h ∈ R}
π · (h1, . . . , hn) = (π · h1, . . . , π · hn)

Figure 3. Action of permutations

freshly allocated concrete cell should be independent of any exist-
ing abstract locations, for example, and abstract locations should
not be sensitive to the behaviour of the underlying allocator. Were
we working in a lower-level language (in which the allocator is just
another piece of code to be verified), we would hope that concrete
locations could be treated as a special case of abstract ones, but
this seems to require a notion of when one notion of location is an
abstraction of another (Jensen and Birkedal have taken some steps
along such a path [25]). Instead, we here bake in compatibility with
the underlying allocator using nominal ideas

Following Gabbay and Pitts [21], we write perm(L) for the
group of permutations of L and define an action π · − of permu-
tations π ∈ perm(L) for values, stores, sets of locations, and re-
lation on stores. Table 3 contains the most important cases: Note
that permutations act differently on sets of locations and on sets /
relations on heaps. In the sequel we call “object” anything that the

permutations act on, i.e. locations, values, stores, etc. For example,
a list of heaps ~h is in the relation π · R iff the list of heaps obtained
by undoing the permutation (π−1 · ~h) is in the relation R. We define
the set of fixpoints of a permutation π as fix(π) = {l | π(l) = l}.
For an object x, a support of x is a set of locations L such that
fix(π) ⊇ L⇒ π · x = x. Gabbay and Pitts show [21] that if an object
has a finite support then it has a (unique) least support, which we
write supp(x).

It is clear that stores, values, and finite sets of locations always
have a finite support. A store relation having a finite support is
called finitely supported. For example, the predicate P on stores
asserting that there is a linked list starting at location X has support
{X}. Note that although a linked list in h witnessing that h ∈ P
may have a large ‘footprint’, the support still is just {X} because the
internal nodes of such a linked list will be consistently renamed by
the permutation action.

Definition 4.1 (Abstract Location). An abstract location l (on the
chosen set H) consists of the following data:
• a non-empty, finitely supported, partial equivalence relation

(PER) lR on H modelling the “semantic equality” on the bits
of the store that l uses (a “rely-condition”);
• a finitely supported transitive relation lG modelling what bits of

the store “writes to l” leave intact (a “guarantee condition”).

622

That is, if (h, h1) ∈ lG then h1 might arise by writing to l in h
and all possible writes are specified by lG;

subject to the conditions, where π is a permutation and h : lR is
shorthand for (h, h) ∈ lR:
1. if fix(π) ⊇ supp(lR) then h : lR ⇒ (h, π · h) ∈ lR.
2. if h : lR then (h, h) ∈ lG;
3. if (h, h1) ∈ lG then h : lR and h1 : lR;
4. lR; lG ⊆ lG; lR, that is, if (h, h′) ∈ lR and (h, h1) ∈ lG, then there

exists h′1 such that (h′, h′1) ∈ lG and (h1, h′1) ∈ lR.
5. if h : lR and h1 ⊇ h then (h1, h) ∈ lR thus lR “looks” no further

than the currently allocated portion of the heap.
6. if h : lR and (h]h′, h′1) ∈ lG, then ∃h1.(h, h1) ∈ lG∧h′1 = h1]h′.

Condition 1 asserts that semantic equality is closed under relo-
cation. It rules out relations that stipulate equality of internal point-
ers (not to fixed ones which would enlarge the support, but between
h and h′). Conditions 5 and 6 ensure that relies and guarantees in-
teract well with future extensions of the heap, preserving and being
independent of fresh locations.

We write h l
∼ h′ to denote (h, h′) ∈ lR; h

l
−→ h1 to denote (h, h1) ∈

lG. We also use the notation supp(l) for supp(lR) ∪ supp(lG).
If π is a permutation we define π · l = (π · lR, π · lG); it is easy to

see that π · l is an abstract location and fix(π) ⊇ supp(l)⇒ π · l = l.
Furthermore, for any π and π′ such that π|supp(l) = π′|supp(l), one

has π · l = π′ · l. This makes the following definition possible:

Definition 4.2 (relocation of abstract locations). Let l be an ab-
stract location and u : supp(l)→ L be injective. Then u·l is defined
as π · l for some π extending u. We have supp(u · l) = u(supp(l)).

For an example, consider the following abstract location setX ,
with support {X}, implementing the set example introduced above:

setRX = {(h, h′) | If h and h′ contain a linked list starting from X
and these lists contain the same set of integers.}

setGX = {(h, h1) | h : lRX , h1 : lRX and ∀l.l ∈ dom(h) \ F(h, X)⇒ h(l) = h1(l)}

where F(h, X) is the set of the locations in h reached by the linked
list starting from X. The rely set, setRX , specifies that two heaps are
equivalent when linked lists denote the same set of integers. The
guarantee, setGX , specifies that a write to this abstract location may
not change concrete locations not in the linked list.

Note, in particular, how this example validates condition Def-
inition 4.1(1): We can relocate one of the two linked lists without
compromising relatedness in setRX provided we leave the entry point
X fixed. If one tried to modify our abstract location to relate linked
lists with the exact same footprint, then property 1 would fail.

Definition 4.3 (Separated Heap). Let l1, l2, . . . , ln be abstract lo-
cations. A heap h is separated with respect to l1, l2, . . . , ln, written
sep(h, {l1, l2, . . . , ln}), if for all 1 ≤ i ≤ n. h : lRi and for all j , i and

for any heap h1 such that h
li
−→ h1, we have h

l j
∼ h1 and, coinduc-

tively, sep(h1, {l1, l2, . . . , ln}).

Definition 4.4 (Independence). Abstract locations l1, l2, . . . , ln are
independent, written ⊥({l1, l2, . . . , ln}), if h1 : l1, . . . , hn : ln, then
there exists h, where sep(h, {l1, l2, . . . , ln}) and h li

∼ hi for 1 ≤ i ≤ n.

The definition of independence implies that quotienting by the
intersection of the PERs yields a product of the individual quo-
tients. As the separated heap h as defined above is unique up to ∼
(with respect to l1, . . . , ln), we use the notation h1 ⊕ h2 ⊕ · · · ⊕ hn to
denote a canonical separated heap.

Returning to the setfactory example, consider two sets setX and
setY , where X and Y are the concrete locations where the linked
lists implementing, respectively, setX and setY start. If X and Y are
different, we use coinduction to show setX and setY are independent,
using the following set as the witnessing co-inductive hypothesis

for the separated heaps requirement:

Pset = {h | ∃h1, h2.(h = h1] h2) ∧

([X 7→ nil]
setX
−−−→ h1) ∧ ([Y 7→ nil]

setY
−−−→ h2)}.

This set contains the disjoint unions of any evolution of the linked
lists pointed by the concrete locations X and Y .

The following lemma will be helpful for relocating abstract
locations and asserting independence.

Lemma 4.5. If supp(l1) ∩ supp(l2) = ∅, then l1⊥l2.
Proof Let h1 : l1 and h2 : l2. Let L1 = dom(h1) and L2 =
dom(h2). Choose permutations π1 and π2 such that π1·L1∩π2·L2 = ∅
and fix(πi) ⊇ supp(lRi). Define the pasted heap h1 ⊕ h2 by

(h1 ⊕ h2)(l) =


(π1 · h1)(l), if l ∈ π1 · L1
(π2 · h2)(l), if l ∈ π2 · L2
undefined otherwise

Thus, in particular, dom(h1 ⊕ h2) = π1 · L1] π2 · L2.
From Def. 4.1(1) we know (h1, π1 · h1) ∈ lR1 . We also have

(h1, π
−1
1 · (h1 ⊕ h2)) ∈ lR1 by Def. 4.1(5), thus (π1 · h1, h1 ⊕ h2) ∈ lR1 so

we can conclude by transitivity. The remaining properties are left
to the reader. �

Definition 4.6. If l1, l2 are independent, we form a joint location
l1 ⊗ l2 specified as follows:
• (l1 ⊗ l2)R = {(h, h′) | (h, h′) ∈ lR1 ∩ l

R
2 and sep(h, {l1, l2}) and

sep(h′, {l1, l2})}
• (l1 ⊗ l2)G = (lG1 ∪ l

G
2)∗ restricted to (l1 ⊗ l2)R;

Lemma 4.7. If l1 and l2 are independent abstract locations, then
the joint location l1 ⊗ l2 is an abstract location.

Lemma 4.8. Let l1 and l2 be independent abstract locations. Then
(l1 ⊗ l2)G ⊆ lG1 ; lG2 ; (l1 ⊗ l2)R.

Lemma 4.9. ⊥({l1, l2, l3}) if and only if l2⊥l3 and l1⊥(l2 ⊗ l3).

Definition 4.10. Let 1 be the abstract location as follows, 1R =
H×H and (h, h′) ∈ 1G if and only if h = h′. Notice that supp(1) = ∅.

Lemma 4.11. l1⊥l2 if and only if and l2⊥l1. Moreover, 1 ⊗ l = l.

Remark 4.12. Motivated by the axioms of separation algebras
[13] one might conjecture that ⊗ is cancellative, i.e. that l1⊗l = l2⊗l
implies l1 = l2. However, for the above definitions, this does not
generally hold.

4.1 Examples of Abstract Locations
Besides abstraction locations for sets of integers used above, we

illustrate other instances of abstract locations:

Single Integer For our simplest example, consider an abstract
location lX , parametric with respect to X as follows:

int
R
X = {(h, h′) | h(X) = n ∧ h′(X) = n′ ⇒ int(n) = int(n′)}

int
G
X = {(h, h1) | h : intRX , h1 : intRX and ∀l ∈ L.l , X ⇒ h(l) = h1(l)}

Two heaps are in its rely relation if the values stored in X are
the same; and its guarantee is to leave all other concrete locations
alone.

It is also the case that intX and intY are independent, i.e.,
intX⊥intY . This is witnessed by the following co-inductive hypoth-
esis to show the separateness condition of heaps with respect to
these locations, similar to the one used before for the showing the
independence of setX and setY

Pint = {h | ∃h1, h2.(h = h1]h2)∧([X 7→ 0]
intX
−−−→ h1)∧([Y 7→ 0]

intY
−−→ h2)}.

Overlapping references Recall the overlapping references exam-
ple introduced earlier. Let X be the concrete location encoding a

623

pair of values. We define abstract locations fstX and sndX by:

fst
R
X = {(h, h′) | h(X) = (a1, a2) ∧ h′(X) = (a′1, a

′
2) ∧ a1 = a′1}

sndRX = {(h, h′) | h(X) = (a1, a2) ∧ h′(X) = (a′1, a
′
2) ∧ a2 = a′2}

fst
G
X = {(h, h1) | h : fstRX , h1 : fstRX and

∀l ∈ L.l , X ∧ h(X) = (a1, a2) ∧ h1(X) = (a′1, a
′
2)⇒

h(l) = h1(l) ∧ a2 = a′2}
sndGX = {(h, h1) | h : sndRX , h1 : sndRX and

∀l ∈ L.l , X ∧ h(X) = (a1, a2) ∧ h1(X) = (a′1, a
′
2)⇒

h(l) = h1(l) ∧ a1 = a′1}

The rely of fstX (respectively, sndX) specifies that two heaps h and
h′ are equivalent whenever they both store a pair of values in X and
the first projections (respectively, second projection) of these pairs
are the same. The guarantee of fstX (respectively, sndX) specifies
that it keeps all other locations alone and does not change the
second projection (respectively, first projection) of the pair stored
at location X.

By using a coinduction hypothesis for separated heaps similar
to the ones used above, it is straightforward to verify that fstX and
sndX are independent, although they share the concrete location X.

Lazy Initialization Recall the Lazy Initialization example intro-
duced earlier. Let X be the concrete location used to store the data
that is initialized. We define the following abstract location para-
metric on i ∈ {1, 2}:

lazy(i)R
X = {(h, h′) | h(X) = 0⇒ initial(h′, X) and

h′(X) = 0⇒ initial(h, X) and
h(X) = (a1, a2) ∧ h′(X) = (a′1, a

′
2)⇒ h(ai) = h′(a′i)}

lazy(i)G
X = {(h, h1) | h : lRX , h1 : lRX and h1(X) = 0⇒ h(X) = 0 and

h(X) = (a1, a2) ∧ h1(X) = (a′1, a
′
2)⇒

∀l.l < {X, ai, a′i } ⇒ h(l) = h1(l)}

where initial(h, X) is the predicate h(X) = 0 ∨ (h(X) = (a1, a2) ∧
h(a1) = 0 = h(a2)).

The rely specifies that two heaps are equivalent when either X
is in the initial, uninitialized, state in both of them, as specified
by the predicate initial, or X in both heaps points to a pair of
references, the i-th of which also contain the same values. The
guarantee condition specifies that X in an updated heap is 0 only
if it was so before, and moreover all locations not used in the rely
are left unchanged.

5. Setoids
Abstract locations capture the invariants that we will use to

build our model. The ‘big picture’ is that types are modelled as
functors from a category of worlds into a category of setoids,
with terms being interpreted as natural transformations. Worlds
will comprise independent abstract locations, whilst setoids are
predomains augmented with a proof-relevant notion of equality.
In this section, we define the category of setoids more precisely.
Section 6 then explains the structure of the category of worlds and
setoid-valued functors.

While we assume that the reader is familiar with some notions
of category theory, such as functor, natural transformation, and
cartesian closure [31], we review some basic concepts and notation
here. We compose morphisms in the usual applicative order, thus,
if f : A → B and g : B → C then g f : A → C. A morphism u in
a category C is a monomorphism if ux = ux′ implies x = x′ for all
morphisms x, x′.

A commuting square xu = x′u′ of morphisms is a pullback if
whenever xv = x′v′ there is unique t such that v = ut and v′ = u′t.
A pair of morphisms u, u′ with common domain is a span, a pair of
morphisms x, x′ with common codomain is a co-span. A category
has pullbacks if every co-span can be completed to a pullback
square.

We define the category of setoids as the exact completion of the
category of predomains, see [10, 14]. We recall here the elementary
description using the language of dependent types given in an
earlier paper et al. [4].

Definition 5.1. A setoid A consists of a predomain |A| and for any
two x, y ∈ |A| a set A(x, y) of “proofs” (that x and y are equal). The
set of triples {(x, y, p) | p ∈ A(x, y)} must itself be a predomain and
the first and second projections must be continuous. Furthermore,
there are continuous functions rA : Πx ∈ |A|.A(x, x) and sA :
Πx, y ∈ |A|.A(x, y) → A(y, x) and tA : Πx, y, z.A(x, y) × A(y, z) →
A(x, z), witnessing reflexivity, symmetry and transitivity; note that
no equations between these are imposed.

In the above definition, continuity of a dependent function such
as t(−,−) means the following: If (xi)i and (yi)i and (zi)i are as-
cending chains in A with suprema x, y, z, and pi ∈ A(xi, yi) and
qi ∈ A(yi, zi) are proofs such that (xi, yi, pi)i and (yi, zi, qi)i are
also ascending chains, with suprema (x, y, p) and (y, z, q), then
(xi, zi, t(pi, qi)) is an ascending chain of proofs (by monotonicity
of t(−,−)) and its supremum is (x, z, t(p, q)).

If p ∈ A(x, y) we may write p : x ∼ y or simply x ∼ y. We also
omit | − | wherever appropriate.

Setoids based on types rather than predomains have been used
to provide extensional equality in intuitionistic type theory [2].

Definition 5.2. A morphism from setoid A to setoid B is an equiv-
alence class of pairs f = (f0, f1) of continuous functions where
f0 : |A| → |B| and f1 : Πx, y ∈ |A|.A(x, y) → B(f0(x), f0(y)). Two
such pairs f , g : A → B are identified if there exists a continuous
function µ : Πa ∈ |A|.B(f (a), g(a)).

Morphisms are composed in the obvious way to form the cate-
gory of setoids. In the sequel we tend to omit |−| and 0, 1-subscripts
where appropriate, thus writing x(a) for x0(a) or a ∈ A or even a : A
for a ∈ |A| etc.

We remark that one could also choose not to identify ∼-equal
morphisms. We decided to make the identification because standard
category-theoretic concepts like cartesian closure, pullbacks, etc.
then apply directly, rather than only holding up to ∼.

The following is folklore, see also [10].

Proposition 5.3. The category of setoids is cartesian-closed. The
cartesian product A × B of setoids A, B has components |A × B| =
|A|×|B| and (A×B)((a, b), (a′, b′)) = A(a, a′)×B(b, b′). The ordering
is given component-wise.

The underlying predomain of the function space of A ⇒ B
of setoids A, B is given by the set of representatives (f0, f1) of
morphisms from A to B ordered component- and point-wise. Given
two such elements f = (f0, f1) and g = (g0, g1) a proof µ : f ∼ g
in A ⇒ B is a continuous function establishing equality of f and g
qua morphisms from A to B as in Definition 5.2.
Proof The verification of the cartesian product is straightfor-
ward. The application morphism ap from (A ⇒ B) × A to B
has components given by ap0((f0, f1), a) = f0(a) and ap1(µ, p) =
f1(p); µ(a′) where µ : f ∼ g and p : a ∼ a′. Note that we have
f1(p) : f0(a) ∼ f0(a′) and µ(a′) : f0(a′) ∼ g0(a′).

Conversely, if h : C × A → B is a morphism represented by
(h0, h1) we define λ(h) : C → A ⇒ B by (λh)0(c) = (f0, f1) where
f0(a) = h0(c, a) and f1(p) = h1(rC(c), p). We also put (λh)1(p :
c ∼ c′)(a) = h1(p, rA(a)). If (h′0, h

′
1) is another representative of

h witnessed by a proof µ then λc.λa.µ(c, a) witnesses equality
of the so constructed abstraction. The remaining verifications are
direct. �

Proposition 5.4. The category of setoids has pullbacks.
Proof To construct a pullback of x : A → B and x′ :
A′ → B pick representatives (x0, x1) and (x′0, x

′
1) and take the low

624

point of the pullback U to be given by |U | = {(a, a′, p) | a ∈
A, a′ ∈ A′, p ∈ B(x(a), x′(a′))} and then U((a, a′, p), (a1, a′1, p1)) =
A(a, a1)×A(a′, a′1). The ordering is component wise. The morphism
u : U → A is defined by u0(a, a′, q) = a and u1(p, p′) = p. The
remaining definitions and verifications are straightforward. Note,
however, that when proving the uniqueness of fill-ins to establish
the pullback property we make use of the fact that pointwise ∼-
equal morphisms are identified. �

Definition 5.5. A setoid D has a least element if |D| has a least
element ⊥ and there is also a least proof ⊥ ∈ D(⊥,⊥).

Proposition 5.6. For each D with least element there is a mor-
phism YD : (D⇒ D)→ D such that the following hold:

• YD = ap〈idD⇒D,YD〉 (so YD(f) is a fixpoint of f).
• Suppose that both D,D′ have least elements and u : D → D′

satisfy u0(⊥) = ⊥. Let D⇒D←g X →g′ D′⇒D′ be the pullback
of u(−) : D⇒D → D⇒D′ and u(−) : D′⇒D′ → D⇒D′.
So, intuitively, X contains pairs (f , f ′) with f : D ⇒ D,
f ′ : D′ ⇒ D′ and u f = f ′u. Then uYDg = YD′g′. Intuitively, this
means that if u f = f ′u and u(⊥) = ⊥ then u(YD(f)) = YD′ (f ′).

Proof Given f ∈ D ⇒ D construct the least fixpoint of f0 as
supi f i

0(⊥). The passage from f to the least fixpoint being continu-
ous this defines the first part of YD, i.e., (YD)0(f) = supi f i

0(⊥). As
for the proof component assume that p : f ∼ f ′. By repeatedly in-
voking p we then get a family of proofs pi : f i

0(⊥) ∼ f ′i0 (⊥). Using
the fact that r(⊥) is the least proof we can then show by induction
on i that this family of proofs is increasing and its supremum sat-
isfies supi pi : YD(f) ∼ YD(f ′). Thus, we put (YD)1(p) = supi pi
which again is continuous.

It is obvious from the construction as a least fixpoint that the
required fixpoint equation is indeed satisfied. As for the second
one pick u : D ⇒ D′and assume f : D ⇒ D and f ′ : D′ ⇒ D′
and a proof p : u f ∼ f ′u. Now, by repeatedly invoking p we get
an increasing family of proofs pi : u f i(⊥) ∼ f ′(u(⊥)) = f ′(⊥)
whose supremum witnesses u(YD(f)) ∼ YD′ (f ′). This establishes
the claim. �

6. Worlds and Setoid-Valued Functors
We now organize abstract locations into a category that will in-

dex the meanings of types and terms in a functor category seman-
tics [33, 39]. Our category is morally similar to that of finite sets
and injections, which has been used in other work [6, 39]. The dif-
ference is that objects are now sets of mutually independent abstract
locations and morphisms are slightly more complicated in that they
allow relocation of abstract locations. Furthermore, locations are
grouped into regions allowing one to approximate them statically.

We begin with some more notational preliminaries. Write ^x x′
u u′

or w ^x x′
u u′w

′ (when w(′) = dom(x(′))) for a pullback square with
morphisms x, u, x′, u′. We call the common codomain of x and x′
the apex of the pullback written w, while the common domain of
u, u′, the low point of the square, is written w. A pair of morphisms
u, u′ with common domain is a span, a pair of morphisms x, x′
with common codomain is a co-span. A category has pullbacks if
every co-span can be completed to a pullback square. A pullback
square w ^x x′

u u′w
′ with apex w is minimal if whenever there is another

pullback w ^
x1 x′1
u u′w

′ over the same span and with apex w1, then there
is a unique morphism t : w→ w1 such that x1 = tx and x′1 = tx′.

Lemma 6.1. If a category C has pullbacks and w ^x x′
u u′w

′ with apex
w is a minimal pullback then the morphisms x and x′ are jointly
epic, that is, if f x = gx and f x′ = gx′ then f = g.

For illustration purposes, we notice that the category of fi-
nite sets and injections has pullbacks and in it every span can be
completed to a minimal pullback. Indeed, if u : U → A and

u′ : U → A′ then the apex of the minimal pullback can be cho-
sen as A \ Img(u) + A′ with + denoting disjoint union.

Definition 6.2 (Category of worlds). Assume given an infinite set
Regs of region names. The category of worlds W is defined as
follows:
• An object (written w and called a world) comprises a finite set

of mutually independent abstract locations written dom(w) and
a function tagging each abstract location in w with a region
from Regs; we write w(r) for the set of abstract locations in w
tagged with r. We define supp(w) =

⋃
l∈dom(w) supp(l).

• Let w and w′ be two worlds. A morphism from w to w′ is given
by an injective function u : supp(w) → supp(w′) such that for
each l ∈ dom(w) we have u · l ∈ dom(w′) (cf. Def. 4.2) and
moreover, if l ∈ w(r) then u · l ∈ w′(r).
• We write I(w,w′) for the set of morphisms u : w → w′ that are

set-theoretic inclusions. Note that u · l = l in this case.
• The empty world is denoted ∅, i.e. dom(∅) = ∅.

For example, a morphism between {intX} → {intY , setZ} (region
tags omitted) is given by the injective function that simply maps the
concrete location X to the concrete location Y .

The abstract locations grouped together in one region represent
all the stateful components, be they physical locations or more
complex updatable data structures, that belong to that region. Static
effect annotations amalgamate possible side effects on any of those
components as effects on the region.

The notion of morphism presented here is the simplest possible
one that allows us to justify interesting effect-dependent equiva-
lences. There are more general notions of morphism that allow one
to justify equivalences relying on representation independence, e.g.
ones resulting from replacing intX by sndY in a program.

It is also possible to define the category of worlds differently
by combining all the abstract locations contained in a given region
using the ⊗-operation. A world then becomes a function assigning
to each region a single ‘large’ abstract location, possibly the trivial
one. The presence of a morphism from one world to another then
has to imply that the abstract locations attached to a region grow
properly, i.e., go from l to an abstract region isomorphic to l ⊗ l′,
which can be elegantly captured by adapting Oles’s [33] idea of
morphisms between store shapes, which has later been popularized
as lenses in the context of bidirectional synchronization [20].

We reluctantly decided, for reasons of space and simplicity,
against using these more general notions of worlds and morphisms
here, but plan to discuss them in an extended version of the paper.

The following is proved just as in the case of finite sets and
injections.

Proposition 6.3. In the category W all morphisms are monomor-
phisms; W has pullbacks and all spans in W can be completed to
minimal pullbacks.

Moreover, these pullbacks and minimal pullbacks can be chosen
in such a way that if one of the two given maps is an inclusion then
the one parallel to it is also an inclusion.

If u : w → w1 and x : w1 → w2 then we can find w′1
and u′ : w → w′1 and x′ : w′1 → w2 so that w1 ^

x x′
u u′w

′
1 is a

minimal pullback and if one of u, x is an inclusion then the opposite
morphism can be chosen as an inclusion as well.

The world w′1 in the last clause comprises the locations in w and
those in w2 that are not in w1. Intuitively, if w = A, w1 = A + B,
w2 = A + B + C then w′1 = A + C.

6.1 Setoid-valued functors
A functor A from a category of worlds W to the category of

setoids comprises as usual for each w ∈ W a setoid Aw and for
each u : w→ w′ a morphism of setoids Au : Aw→ Aw′ preserving
identities and composition. If u : w → w′ and a ∈ Aw we may

625

write u.a or even ua for Au(a) and likewise for proofs in Aw. Note
that (uv).a = u.(v.a).

Definition 6.4. We call a functor A pullback-preserving (p.p.f.) if
for every pullback square w ^x x′

u u′w
′ with apex w and low point w the

diagram below is a pullback in the category of setoids.

Aw

Aw

88

Aw′
ff

Aw

ee 88

Given our characterization of pullbacks in the category of se-
toids (Prop. 5.4), this condition is equivalent to the existence of a
continuous function of type

Πa ∈ Aw.Πa′ ∈ Aw′.Aw(x.a, x′.a′)→
Σa ∈ Aw.Aw(u.a, a) × Aw′(u′.a, a′)

which amounts to saying that if two values a ∈ Aw and a′ ∈ Aw′ are
equal in a common world w, then this can only be the case because
there is a value in the “intersection world” w from which both a and
a′ arise. The witness a is unique up to ∼. More importantly, even,
two values cannot suddenly become equal just because we move to
another world. Even though pullback preservation is not formally
needed in the proofs of any of the subsequent results it simplifies
the intuition considerably.

Lemma 6.5. If A is a p.p.f. and u : w → w′ and a, a′ ∈ Aw
then there is a continuous function Aw′(u.a, u.a′) → Aw(a, a′).
(There is also a continuous function in the other direction just by
functoriality.)

Note that the ordering on worlds and world morphisms is dis-
crete so that continuity only refers to the Aw′(u.a, u.a′) argument.

Definition 6.6 (Morphism of functors). If A, B are p.p.fs., a mor-
phism from A to B is a natural transformation from A to B. Thus,
concretely, a morphism is an equivalence class of pairs e = (e0, e1)
of continuous functions where e0 : Πw.Aw→ Bw and

e1 : Πw.Πw′.Πx : w→ w′.Πa ∈ Aw.Πa′ ∈ Aw′.
Aw′(x.a, a′)→ Bw′(x.e0(a), e0(a′)).

Two such morphisms e, e′ are equal if there exists a continuous
function µ : Πw.Πa ∈ Aw.Bw(e(a), e′(a)).

These morphisms compose in the obvious way and so the p.p.f.s
and morphisms between them form a category.

Theorem 6.7. The category of p.p.f.s is cartesian-closed and has
pullbacks. If A, B are p.p.f. then (A × B)w = Aw × Bw and |(A ⇒
B)w| contains pairs (f0, f1) as follows: f0(u) ∈ |Aw1 ⇒ Bw1| for
each w1 and u : w→ w1. If u : w→ w1 and v : w1 → w2 then

f1(u, v) ∈ (Aw1 ⇒ Bw2)([Av⇒ Bw2] f0(vu), [Aw1 ⇒ Bv] f0(u))

where
[Av⇒ Bw2] : (Aw2 ⇒ Bw2)→ (Aw1 ⇒ Bw2)
[Aw1 ⇒ Bv] : (Aw1 ⇒ Bw1)→ (Aw1 ⇒ Bw2)

are the obvious composition morphisms.
A proof in (A ⇒ B)w((f0, f1), (f ′0 , f ′1)) is a function g that for

each u : w→ w1 yields a proof g(u) ∈ (Aw1 ⇒ Bw1)(f0(u), f ′0(u)).
The order on objects and proofs is pointwise as usual.
Moreover, if D is a p.p.f. with the property that Dw has a least

element ⊥w for each w and whenever u : w→ w1 then u.⊥w = ⊥w1
then there is a morphism YD : (D ⇒ D) → D satisfying the same
properties as those asserted in Prop. 5.6.
Proof This is a special case of the construction of a functor
category with respect to an internal category (here the category

of worlds viewed as discrete setoids, thus internal to the category
of setoids). One mimics the standard constructions for set-valued
functors taking care to keep representatives of morphisms distinct
as we did in the construction of the function space of setoids.

The existence of the fixpoint operator does not seem to be
known but follows by applying the same method. The rather fine-
grained specification of the fixpoint operator on the level of setoids
is needed here so that we can assure naturality of YD and YD(f). �

Heaps as a setoid We will now equip heaps with a world-
dependent setoid structure singling out the separated ones (for a
particular world) and setting equality to be induced by the ambient
rely relations.

Definition 6.8. If w is a world then the setoid Sw is defined
by |Sw| = {h ∈ H | ∀l ∈ w.h : lR ∧ sep(h, dom(w))} and
Sw(h, h′) = {?} ⇐⇒ ∀l ∈ w.h l

∼ h′ and Sw(h, h′) = ∅
otherwise, where sep(h, dom(w)) is the separated heap with respect
to the locations in dom(w) (see Definition 4.3).

If u : w → w′ and h ∈ Sw′, then we define h.u ∈ Sw to be
π−1 · h for some π extending u. This is well-defined up to ∼.

In this way, S becomes a contravariant functor from the cate-
gory of worlds to the category of setoids.

Lemma 6.9 (Pasting Lemma). Let w ^x x′
u u′w

′ be a minimal pullback
with apex w. Let h ∈ Sw and h′ ∈ Sw′ such that h.u ∼ h′.u′. Then
there exists a heap h1 ∈ Sw, unique up to ∼, such that h1.x ∼ h and
h1.x′ ∼ h′.

Corollary 6.10. Let u : w → w′ be a morphism and h ∈ Sw and
h′ ∈ Sw′. There exists h1 unique up to ∼ such that h1.u ∼ h and
h1.u′ ∼ h′.u′ where w ^u 0

0 u′w1 is a minimal pullback with low point
∅, the empty world.

Intuitively, h1 is obtained by overwriting the w-part of h′ ac-
cording to h.

Heap Relations

Definition 6.11. A relation R on S consists of a subset Rw ⊆

Sw × Sw for each w, such that if (h, h′) ∈ Rw and u : w0 → w
then (h.u, h′.u) ∈ Rw0, and if p : h ∼ h1 and p′ : h′ ∼ h′1 then
(h1, h′1) ∈ Rw, as well.

The elementary effects track reading, writing, and allocating at
the level of regions and are as follows: wrr (writing within region r),
rdr (reading from within region r), and alr (allocating within region
r). Each elementary effect ε is associated with a set R(ε) of relations
on S as follows:

R ∈ R(rdr) ⇐⇒ (h, h′) ∈ Rw⇒ ∀l ∈ w(r).h l
∼ h′

R ∈ R(wrr) ⇐⇒ (h, h′) ∈ Rw⇒ ∀l ∈ w(r).∀h1, h′1.h1
l
∼ h′1 ⇒

h
l
−→ h1 ∧ h′

l
−→ h′1 ⇒ (h1, h′1) ∈ Rw

R ∈ R(alr) ⇐⇒ (h, h′) ∈ Rw⇒
∀w1.∀u ∈ I(w,w1).(w1 \ w) ⊆ w1(r)⇒
∀h1, h′1 ∈ Sw1.[h1.u ∼ h ∧ h′1.u ∼ h′ ∧
(h1, h′1) ∈

⋂
l∈w1\w l

R]⇒ (h1, h′1) ∈ Rw1

Thus, R(rdr) is the set of relations R for which R-related heaps
contain “equal” (in the sense of lR) values for all abstract locations
in region r; a relation R ∈ R(wrr) is oblivious to (preserved by)
“equal” writes to any abstract location in r; and a relation R ∈ R(alr)
is oblivious to extensions of the current world provided that they
only add abstract locations in region r, that the initial contents of
these newly allocated locations are “equal” in the sense of (−)R,
and that nothing else is changed.

Finally, R(ε) for a set of effects ε is defined as follows:

R(ε) =
⋂
ε∈ε

R(ε).

626

As in our earlier work [7], the key idea is that computations with
effect ε will preserve all the heap relations that are preserved by all
the operations allowed by ε. The larger the set of operations, the
fewer relations need be preserved.

Definition 6.12 (Monad). Let A be a p.p.f. and ε an effect. A p.p.f.
TεA is defined as follows:
• (Objects) Elements of (TεA)w are pairs (c0, c1) of partial func-
tions where

c0 : Sw ⇁ Σw1.I(w,w1) ×Sw1 × Aw1

and c1 is as follows. If R ∈ R(ε) and (h, h′) ∈ Rw then c1(R, h, h′)
either is undefined and c0(h) and c0(h′) are both undefined or else
c1(R, h, h′) is defined and then c0(h) and c′0(h′) are both defined,
say c0(h) = (w1, u, h1, a) and c0(h′) = (w′1, u

′, h′1, a
′). In this

case, c1(R, h, h′) returns a pair (^x x′
v v′ , p) where w1 ^

x x′
v v′w

′
1 such

that xu = x′u′. Furthermore, p ∈ Aw(x.a, x′.a′) and, finally,
(h1.v, h′1.v

′) ∈ Rw where w and w are low point and apex of ^x x′
v v′ .

• (Proofs) Proofs only look at the (−)0 components. Let c =
(c0,) ∈ TεAw and c′ = (c′0,) ∈ TεAw, then a proof in
(TεA)w(c, c′) is a partial (continuous) function µ, such that for
a given h ∈ Sw:
1. if µ(h) is undefined, then c0(h) and c′0(h) are both undefined;
2. if µ(h) is defined, then c0(h) = (w1, u, h1, a) and c′0(h) =

(w′1, u
′, h′1, a

′) are both defined. In this case, µ(h) returns a
tuple (^x x′

v v′ , q) satisfying xu = x′u′, q ∈ Aw(x.a, x′.a′) and
h1.v ∼ h1.v′ in Sw, with w and w apex and low point of ^x x′

v v′ .
• (Order) The order between computations is given point-wise:
(c0, c1) ≤ (c′0, c

′
1) if and only if for any h ∈ Sw we have c0(h) ≤

c′0(h), which is defined as follows: for all h ∈ Sw if c0(h) is
defined so is c′0(h). Moreover, if both c0(h) and c′0(h) are defined as
c0(h) = (w1, u1, h1, a1) and c′0(h) = (w′1, u

′
1, h

′
1, a

′
1), then w1 = w′1,

u1 = u′1, h1 = h′1 and a1 ≤ a′1. Finally, if c1(R, h, h′) and c′1(R, h, h′)
are defined returning (^

x1 x′1
v1 v′1

, q) and (^
x2 x′2
v2 v′2

, q′), then ^
x1 x′1
v1 v′1

= ^
x2 x′2
v2 v′2

and q ≤ q′.1
• (Morphism part) Let x : w → w′ be a morphism and c =
(c0, c1) ∈ TεAw. We are going to describe the first component of
(c′0,) = TεAx(c). Given h ∈ Sw′ write c0(h.x) = (w1, u, h1, a).
Should this application be undefined so is c′0(h). Now, using Propo-
sition 6.3, complete u, x to a minimal pullback square ^x′ u′

u x with
u′ : w′ → w′1 where w′1 is the apex of this pullback.

Now, obtain h′ ∈ Sw′ from h by overwriting with h1.u using
Corollary 6.10. Then paste h1 and h′ (note that h1.u ∼ h′.u by
construction) using Lemma 6.9 to yield the desired heap h′1 ∈ Sw′1.
We then put c0(h) = (w′1, u

′, h′1, x
′.a).

We omit the remaining components and verifications.

The proof of the following is tedious but straightforward and
will be given in an extended version of this paper.

Theorem 6.13. Tε is the functor part of an effect-indexed strong
monad [8, 43].

This theorem means in particular, that each Tε is a monad on the
category of p.p.f. i.e., for each A there are natural transformation
ηA : A→ TεA and µA : TεTεA→ TεA subject to the usual laws and
whenever ε1 ⊆ ε2 then there is a morphism Tε1 A → Tε2 A which
interacts with the monad data in the expected sense.

Illustration Assume an initial heap h, where h(X) 7→ [1, 2, 3]
and h(Y) 7→ [3, 2, 1], that is, h points to the lists [1, 2, 3] and
[3, 2, 1] from concrete locations X and Y , respectively. Moreover,
let c(h) = (w1, u, h1, (3,Y)) and c′(h) = (w′1, u

′, h′1, (3,Z)), where

1 Strictly speaking, q ≤ q′ needs to be a tuple with the objects they are
proving the equality of.

h1(X) 7→ [1, 2, 3, 4]; h1(Y) 7→ [3, 2, 1, 0]; and h1(Z) = [4, 2], while
h′1(X) 7→ [4, 3, 2, 1]; h′1(Z) 7→ [3, 2, 1, 3, 2, 1, 0]; and h′1(W) = [0, 0].
We can show that c and c′ are equal when given h. The proof is
illustrated by the diagram below, where an arrow labeled with ⊆
denotes an inclusion and an arrow labeled with a mapping, e.g.,
Z 7→ Y , denotes the corresponding renaming.

w = {setX , setY }u

u′

��

w = {setX , setZ}
Z 7→Y

tt
⊆

**
w1 = {setX , setY , setZ}

⊆

**

w′1 = {setX , setZ , setW }
Z 7→Y

tt
w = {setX , setY , setZ , setW }

Here, it is easy to check that h1 and h′1 are equal when taken to the
world w, as the concrete locations X in h1 and h′1 and Y in h1 and Z
in h′1 point to lists containing the same set of elements: {1, 2, 3, 4}
and {0, 1, 2, 3}, respectively. Notice that the abstract locations setZ ∈
w1 and setW ∈ w′1 are not taken into account. Moreover, the value
(3,Y) is also equivalent to (3,Z) when taken to the world w, as the
morphism w′1 → w renames Z to Y , while the morphism w1 → w
is an inclusion.

We see here that the use of setoids rather than plain sets or
predomains is crucial. The proofs in TεA are clearly relevant as they
explain in what way the abstract locations correspond to each other.
Likewise, the elements of |TεA| contain more information that the
mere computation, i.e., the evolution of the heap. Namely, the world
extension w1 will typically contain new abstract locations with new
contracts that can be arbitrarily complicated. Thus, it would not be
possible to replace TεA with a simple logical predicate on actual
computations.

7. Proof-relevant Logical Relations
The structure identified so far allows us to interpret our effect

type system and the equational theory in the category of p.p.f.

Definition 7.1 (type interpretation). A type interpretation consists
of an assignment of a p.p.f. ~A� to each basic type A.

Given a type interpretation we can then assign a p.p.f. ~τ� to
each type the essential clause being ~τ1

ε
−→ τ2� = ~τ1�⇒ Tετ2. We

also interpret a typing context Γ as the cartesian product over its
bindings: ~Γ� =

∏
x∈dom(Γ)~Γ(x)�.

Lemma 7.2 (masking). Let r be a region. For world w define w−r
by removing all locations in r. If type τ does not contain r then
for each world w the morphism u.(−) : ~τ�w−r → ~τ�w where
u : w−r→ w is the obvious inclusion is an isomorphism.

Definition 7.3 (axiom interpretation). An axiom interpretation
consists of an element x(v,τ) ∈ |~τ�∅| (empty world) for each type
axiom (v, τ) and of an element p(v,v′ ,τ) ∈ ~τ�∅(x(v,τ), x(v′ ,τ)) for each
equality axiom (v, v′, τ).

Given an axiom interpretation (and a type interpretation) and a
well-typed term Γ ` e : τ & ε we define a morphism

~Γ ` e : τ & ε� : ~Γ�→ Tε~τ�

using the fact that all the typing rules are reflected in the seman-
tics: cartesian closure takes care of application and abstraction and
variable management. The fixpoint morphism YD takes care of re-
cursive definitions; the indexed monadicity of Tε takes care of the
rules associated with “let” and effect propagation. Lemma 7.2, fi-

627

nally, takes care of the masking rule. If Γ ` v : τ because of the ax-
iom (v, τ) then we put ~Γ ` v : τ�(γ) = x(v,τ) (constant morphism).

Effects Given a set of effects ε, we write rds(ε) = {r | rdr ∈ ε},
wrs(ε) = {r | wrr ∈ ε}, als(ε) = {r | alr ∈ ε} and regs(ε) =
rds(ε)∪wrs(ε)∪als(ε). Moreover, the set nwrs(ε) = regs(ε)\wrs(ε).
We also introduce the following piece of notation for h, h′ ∈ Sw:

h ∼rds(ε,w) h′ ⇐⇒ ∀l ∈ w(rds(ε)).h l
∼ h′

h ∼nwrs(ε,w) h′ ⇐⇒ ∀l ∈ w(nwrs(ε)).h l
∼ h′

which specifies that the heaps h and h′ are equivalent on all the
abstract locations l in regions associated to read effects in ε and on
the not write locations, respectively.

Lemma 7.4. Let Γ ` e : τ & ε. Let w ^x x′
v v′w

′ be a pullback square,
γ ∈ ~Γ�w, γ′ ∈ ~Γ�w′ be contexts, such that µγ : x.γ ∼ x.γ and
c = ~Γ ` e : τ & ε�w(γ) ∈ TεAw and c′ = ~Γ ` e : τ & ε�w′(γ′) ∈
TεAw′ be computations, such that µ : x.c ∼ x′.c′. Let h ∈ Sw, h′ ∈
Sw′ be heaps, such that h.v ∼rds(ε,w) h′.v′. Then c(h) and c′(h′) co-
terminate. Moreover, if they do terminate and c(h) = (w1, u1, h1, a1)
and c′(h′) = (w′1, u

′
1, h

′
1, a

′
1), then the following diagram exists, in

particular, the dashed arrows, where the following is satisfied

w
x))

u1 // w1
x1

##
w

w

v
<<

v′ %%

// w1

v1

;;

v′1

%%

w1

w′
x′

@@

u′1

// w′1
x′1

99

1. x1.a ∼ x′1.a
′, w � w ⊗ q, w′ � w ⊗ q′, w1 � w ⊗ q ⊗ q1,

w′1 � w ⊗ q′ ⊗ q′1, for some q1 and q′1;
2. for all l ∈ w, we have either: h.v l

∼ h1.u1.v and h′.v′ l∼ h′1.u
′
1.v
′

(remain equivalent) or h1.u1.v1
l
∼ h′1.u

′
1.v
′ (equally modified);

3. if l ∈ w(nwrs(ε)), then h.v l
∼ h1.u1.v and h′.v′ l∼ h′1.u

′
1.v
′.

4. if als(ε) = ∅, then there exists a morphism c? ∈ ~Γ� → Tε~τ�,
such that c? ∼ c and if c?(w)(γ)h = (w?, u?, h?, a?) then
w? � w (no world extension is needed);

5. www1w1 and ww′w1w′1 are pullbacks.

Proof The proof that the values are equal in w1 follows directly
from the definition of computations and effects.

For the item 2, we use the following relation R defined as
follows for all worlds w1, such that u : w→ w1:
{(h1, h′1) | h1.u ∼rds(ε,w) h′1.u ∧ ∀l ∈ w.(h1.u

l
∼ h ∧ h′1.u

l
∼ h′) ∨ h1.u

l
∼ h′1.u}

Otherwise, for the worlds w2 not reachable from w, the relation Rw2
is the trivial set. Notice that R ∈ R(ε) and it is contravariant. The
claim then follows directly by using the morphism from w→ w1.

The proof of item 3 follows in a similar fashion, but we use the
following relation:
{(h1, h′1) | h1.u ∼rds(ε,w) h′1.u ∧ h1.u ∼nwrs(ε,w) h}

And we use a similar relation for showing that h′ and h′1.u
′ agree

on the not written locations w(nwrs(ε)).
For item 4, first, we show that w(r) and w(r) are equal up to

renaming for all regions r < als(r) by using the following relation
Rq for some world q:
{(h1, h′1) | h1 ∼ h′1 ∧ ∀r < als(ε).#r(q) ≤ #r(w)}

where #r denotes the number of abstract locations colored with r.
Clearly, R ∈ R(ε) as ε does not contain any allocation effects. Thus,
the number of locations in w? is the same as the locations in w, by
using the pullback w1 ^

1 x
v 1w?. This gives us one direction, while the

other direction is obtained by the universal property of pullbacks.
Given this property, one can easily construct the function c?. �

Theorem 7.5 (Equational soundness). Assume an ambient inter-
pretation of types and axioms. If Γ ` e = e′ : τ & ε then the mor-
phisms ~Γ ` e : τ & ε� and ~Γ ` e′ : τ & ε� are equal morphisms.

Proof By induction on derivations. The core rules are direct from
the category-theoretic structure identified so far. The effect-specific
rules are nontrivial; however given Lemma 7.4, their proofs follow
essentially the same reasoning as in existing literature [6, 41]. As
for the axiom rule we argue as follows.

If Γ ` v = v′ : τ using the axiom (v, v′, τ) then we have
~Γ ` v : τ�(γ) = x(v,τ) and ~Γ ` v′ : τ�(γ) = x(v′ ,τ) and the constant
function λγ.p(v,v′ ,τ) is continuous and thus establishes the desired
equality. �

8. Observational equivalence
We will now relate semantic equality to observational equiva-

lence. So far, a trivial model that identifies everything could also
have been used to “justify” our rules. Doing this, however, requires
a loose relationship between the setoid interpretation and the com-
putational meanings of raw terms which will be given by a realiz-
ability relation.

Definition 8.1. For each type τ, effect ε, and world w we define
admissible relations
τW⊆ V × |~τ�W| and
τ&ε

W ⊆ C × |Tε~τ�W| as
follows:
• If c ∈ C then c
τ&ε

w (c0, c1) means that for each h ∈ Sw
one has c(h) defined iff c0(h) defined and if c(h) = (h1, a) then
c0(h) = (w1, u, h1, a) (same h1) and h1 ∈ Sw1 and a
τw1

a.

• If fun(f) ∈ V and (f0, f1) ∈ |~τ1
ε
−→ τ2�w| then f
τ1

ε
−→τ2

w (f0, f1)
iff whenever u : w → w1 is an inclusion and a
τ1

w1
x then

f (a)
τ2&ε
w1

f0(x).
• η
Γ

w γ ⇐⇒ η(x)
Γ(x)
w γ(x) for all x ∈ dom(Γ).

Lemma 8.2. The
 relations are indeed admissible and are stable
under inclusion; that is whenever v
X

w x and u : w → w′ is an
inclusion then v
X

w1
u.x holds.

The following soundness property of
 is proved by straightfor-
ward induction on typing derivations.

Theorem 8.3 (Fundamental Lemma). Assume that the interpreta-
tion of types and axioms is chosen such that for all type axioms
(v, τ) one has v
τ

∅
x(v,τ). Whenever Γ ` e : τ & ε and η
Γ

w γ then
~e�η
τ&ε

w ~Γ ` e : τ�w(γ).

Definition 8.4 (Observational equivalence). Two value expressions
v, v′ where ` v : τ and ` v′ : τ are observationally equivalent at
type τ if for all f such that ` f : τ

ε
−→ unit (“observations”) it is

the case that ~ f v�∅ is defined iff ~ f v′�∅ is defined. (∅ stands for
empty heap and environment).

It is easy to extend this definition to open terms and computation
expressions by closing up with lambda abstractions. Intuitively,
observationally equivalent expressions, can be replaced by one
another in any context without compromising observable behavior.
To see this, one can build observations f from such a context by first
λ-abstracting its hole and then adding at the end a wrapper function
that tests for some observable feature of the end result signaling
failure of the test by nontermination.

Theorem 8.5 (main result). If ` v = v′ : τ then v and v′ are
observationally equivalent.

Proof If f is an observation then by the congruence rules we
get ` f v = f v′ : τ so, by Theorem 7.5 we find ~` f v� =
~` f v′�, thus in particular ~` f v�∅∅ (empty world, empty heap) is
defined iff ~` f v′�∅∅ is defined. Now, if ~ f v�∅ is defined then by
Theorem 8.3 and the definition of
we can conclude that ~` f v�∅∅

628

is defined so, using Theorem 8.3 again we get that ~ f v′�∅ is
defined. �

9. Applications
In this section we give some concrete instantiations of our

framework in the form of axioms and their semantic justifications.
We do so in more detail for the Overlapping References example
shown in Section 2, and in less detail for the other examples.

Overlapping References Recall value vor and type τor from Sec-
tion 2 (two overlapping references). In order to justify the axiom
(vor, τor) we have to construct a semantic object xor ∈ ~τor� such
that vor

τor
∅

xor which we will now do.
Given world w we put xor(w)(?) = (c0, c1), where c0 and c1 are

defined as follows (? ∈ ~unit�w):

c0(h) = (u : w→ w1, h1, (g1, g2, s1, s2))

where new(h, 0) = (X, h1), that is, h1 is obtained from h by allocat-
ing a concrete location X; w1 is the world obtained by extending
w with the abstract locations fstX and sndX defined in Section 4.1,
where the former is marked with region r1 and the latter with re-
gion r2; finally, (g1, g2, s1, s2) are the corresponding semantic ob-
jects that get and set values to the projections of pairs stored in X,

e.g., g1 ∈ ~(unit
rdr1
−−→ int)�w1 is the semantic counter part of the

function getting the first projection of the pair stored in X, defined
in a similar way as we do for xor.

Note that vor

τor
∅

xor in particular requires that the new heap
returned by c0 agrees with the one returned by vor and, more
generally, we are forced to follow the computational behavior of
vor in xor. We are free, though to choose the semantic components
such as world extensions and, later, pullbacks.

The object c1, now, is defined as follows: Assume that R ∈
R({alr1, alr2}) is a heap relation and two heaps h, h′ ∈ Sw that
are related, i.e., (h, h′) ∈ R. Moreover, assume that c0(h) = (u :
w → w ⊗ fstX ⊗ sndX , h1, (g1, g2, s1, s2)) and c0(h′) = (u : w →
w ⊗ fstX′ ⊗ sndX′ , h′1, (g

′
1, g

′
2, s
′
1, s
′
2)), where the former allocates X,

while the latter allocates X′. Note that everything terminates in this
example. Now c1(R, h, h′) returns the pullback w1 ^X 7→X′ 1

1 X 7→X′w
′
1,

where X is mapped to X′. It is easy to check that h1 and h′1
are related in R when taken to the pullback’s low point and that
(g1, g2, s1, s2) and (g′1, g

′
2, s
′
1, s
′
2) are equal in its apex.

Note that once this typing has been justified all equations deriv-
able from it are automatically sound for observational equivalence.
Thus, in particular, writes to the two “overlapping reference” com-
mute.

Set factory Let w be a world and h ∈ Sw. Suppose that h1 arises
from h by allocating a fresh set data structure, e.g., a linked list,
with entry point X. Let setX be the abstract location describing this
fresh data structure.

Now for any chosen region r we can add setX to r to yield a
new world w1. The function setfactory0(w)(h) then returns w1 and
a tuple of semantic functions for reading, membership, removal of
which we only sketch reading here: If u : w1 → w2 and h1 ∈ Sw1
and i ∈ Z then the reading function looks up i in the data structure
starting at the entry points X in h1 (note that h1 ∈ Sw asserts
that this data structure exists and is well-formed. The returned
(abstract) store h2 might not be the same as h because internal
reorganizations, e.g., removal of duplicates, might have occurred,
but no world extension is needed and h1 ∼ h2 holds. This together
with the fact that the outcome only depends on the setRX equivalence
class (in the proof-relevant sense) justifies a read-only typing for
reading.

Memoization For the simple memo functional from Section 2 we
produce just as in the previous example a fresh abstract location l

whose specification looks only at the two newly allocated concrete
locations, say lx, ly, where the first stores the argument value i and
the second the integer value f (i) where f is the pure function
to be memoised. The location’s l rely specifies that two heaps
are equivalent when the values stored in lx and ly are the same:
(h, h′) ∈ lR ⇐⇒ h(lx), h′(lx) ∧ h(ly), h′(ly). We see in Lemma 7.4
that if a function is semantically pure (empty effect) then there is
a world- and heap-independent function describing its action. Thus
the memo functional may be considered pure.

9.1 State Dependent Abstract Data Types
Although our focus is on effect-dependent equivalences that

can be derived from refined typings using our equational rules,
we are able to justify some of the well-known tricky examples
from the literature on proving equivalences in ML-like languages
without effect annotations. Our guarantee conditions here act like
the transition system components of the worlds used by Ahmed et
al. [1, 19].

Awkward Example The first example is the classic awkward
example [34]. Consider the following two programs:

e1 = let x⇐ref(0)inλ f .x := 1; f (); !x and e2 = λ f . f (); 1.
Intuitively, e1 and e2 are equivalent as they both return the value
1, although e1 uses a fresh location to do so. We can formally
prove the equivalence as follows: Assign the region where x is
allocated as r. If f has the type unit

ε
−→ unit with effects ε, then

e1 has type (unit
ε
−→ unit)

rdr ,wrr
−−−−→ int & ε, alr, while e2 has type

(unit
ε
−→ unit)→ int & ε. Notice that εmay contain rdr or wrr or

both. Moreover, assume that an abstract location in region r looks
at a single concrete location l:
lR = {(h, h′) | h(l) = h′(l)}
lG = {(h, h1) | h1(l) = 1 ∧ ∀l′ , l.h(l′) = h1(l′)}

Notice that it is correct to assign e1 a write effect in region r, as
it writes the value 1 to the location assigned to x.

For proving the equivalence of e1 and e2, assume a world w and
a heap h. Let ~e1�wh = (w]w1]wr, u1, h1, a1) and ~e2�wh = (w]
w1, u1, h2, a2). We construct a pullback square w]w1]wr^w]w1
such that the values a1 and a2 are equal in its apex and h1 and h2 are
equal in its low point. Since wrr is in the effects of e1, we have that
a1 = 1. We also have a2 = 1 trivially. Hence a1 and a2 are equal
in the apex of the pullback square w]w1]wr^w]w1. Similarly,
h1 when taken to the low point of the square, that is, where the
locations in wr are forgotten, the resulting heap is equivalent to h2.

Modified Awkward Example Consider now the following variant
[1, 19] of the awkward example:

e1 = let x⇐ref(0) in λ f .x := 0; f (); x := 1; f (); !x
e2 = λ f . f (); f (); 1.

The difference is that in the first program x is first assigned 0 and
the call-back function is used twice. Interestingly, however, our
solution for the Awkward example still works just fine. We can
prove semantically that the type of the program e1 has the same type
as before in the Awkward example, where the only writes allowed
on the abstract location assigned for x is to write the concrete
location to one. Then the reasoning follows in a similar way.

Callback with Lock Example We prove the equivalence of the
following programs [1, 19]:

e1 = let b⇐ref(true) in let x⇐ref(0) in
〈λ f .if !b then (b := false;

f (); x :=!x + 1; b := true) else (), λ .!x〉
e2 = let b⇐ref(true) in let x⇐ref(0) in

〈λ f .if !b then (b := false;
let n⇐ !x in f (); x := n + 1; b := true) else (), λ .!x〉.

Both programs produce a pair of functions, one that increments the
value stored in x and the second that returns the value stored in
x. They use the boolean reference b as lock in the incrementing

629

function. In particular, once this function is called the value in b is
set to false and only after the call-back is called and the value in x
is incremented is b set again to true. However, the implementation
of the increment function is different. While e1 invokes the call-
back f () and then increments the value in x, e2 remembers (in n)
the value of x before the call-back and then uses n to update the
value stored in x.

Assume that x and b are allocated in the same location (l) in the
region r. We show that these programs are equivalent in the type

((unit
ε
−→ unit)

ε,wrr ,rdr
−−−−−−→ unit) × (unit

rdr
−−→ unit) & alr, where ε

may contain the effects wrr, rdr. In particular, the location l looks at
two concrete locations lb and lx (storing x and b):
lR = {(h, h′) | h(lb) = h′(lb) ∧ h(lx) = h′(lx)}
lG = {(h, h1) | h(lb) = false⇒ h1 = h and

(h(lb) = true ∧ h1(lx) = i ∧ h1(lx) = j)⇒
[(h1(lb) = true) ∧ (j ≤ i) ∧ (∀l′ < {lx, lb}.h(l′) = h1(l′))]}

First, notice that indeed the two programs above have the effect wrr.
The increment of x is allowed by lG, as b is initially true. To show
that the two programs above are equivalent, we show that the value
stored in x before and after the call back is called remains the same.
This is the case, as even if the callback function has a write effect
in the region r, i.e., wrr ∈ ε, it cannot change the value of x. This is
because when the function is called, the value stored in b is false,
meaning that the heap remains the same.

Despite the above, the model as presented here does not directly
justify equivalences involving representation independence, e.g.,
that our overlapping references vor are observationally equivalent
to an implementation that really allocates two integer references.
Generalizing world morphisms as discussed after Def. 6.2 does
allow many such equivalences to be proved, though a parametric
variant, along the lines of that described by Stark [39], would be
more powerful still.

10. Related and Future Work
We have shown Proof-Relevant Logical Relations, introduced

in our previous work [4], can be used to justify nontrivial effect-
dependent program equivalences. For the first time it was possible
to combine effect-dependent program equivalences with hidden in-
variants allowing “silent modifications” that do not count towards
the ascription of an effect. Earlier accounts of effect-dependent pro-
gram equivalences [3, 6, 7, 26, 41] do not provide such possibilities.

Bisimulation An alternative approach to proving ‘difficult’ con-
textual equivalences is to use techniques based on bisimulation
[27]. While bisimulation has been applied to typed calculi [24, 40]
the strength of the method lies in being able to deal with fancy
computation rules and fairly simple types and contracts rather than
well-understood computation rules (call-by-value lambda calculus
in our case) and fancy types and contracts. Indeed, we believe that
something like our abstract locations and the proof-relevant world
extensions would also suggest itself in a bisimulation-based ap-
proach to the equivalences studied here.

Model Variables Proof-relevant logical relations or rather the sets
|Aw| where A is a semantic type bear a vague relationship with
the model variables [15] from “design by contract” [32] and more
generally data refinement [16]. The commonality is that we track
the semantic behavior of a program part with abstract functions on
some abstracted set of data that may contain additional information
(the “model”). The difference is that we do not focus on particu-
lar proof methods or specification formalisms but that we provide
a general, sound semantic model for observational equivalence and
program transformation and not merely for functional correctness.
This is possible by the additional, also proof-relevant part of the
semantic equality proofs between the elements of the models. We

also note that our account rigorously supports higher-order func-
tions, recursion, and dynamic allocation.

Separation Logic Our abstract locations draw upon several
ideas from separation logic [37], in particular the conditions on
rely/guarantee assumptions from [42]. Intriguingly, we did not
need something resembling the “frame rule” although perhaps the
Π-quantification over larger worlds in function spaces plays its
role.

Our use of pullback-preserving functors is motivated by FM-
sets [21] or rather the Schanuel topos to which they are equivalent.
Pitts’s [35] gives a comprehensive account. The way in which
we work with both permutation actions and functors has some
precedent [9], but does feel slightly awkward: it really ought to be
possible to combine the two structures into one.

We would like to define a stylized format that allows one to
discharge semantic proof obligations in some cases without having
to go down to the low-level semantic definitions. We noted that
private transitions [1] serve a similar purpose and might perhaps
suggest a possible approach in our case, too.

We would also like to be able to store values with proof-relevant
equality, which would allow a stratified form of higher-order store
[12]. Unrestricted higher-order store requires circular definitions of
worlds, which has previously been addressed using, for example,
metric spaces [11].

Acknowledgments We thank Lennart Beringer and Andrew
Kennedy for fruitful discussions. Nigam was supported by CAPES
/ CNPq and DAAD.

References
[1] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representa-

tion independence. In POPL, 2009.

[2] G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. J. Funct.
Program., 13(2):261–293, 2003.

[3] N. Benton, L. Beringer, M. Hofmann, and A. Kennedy. Relational se-
mantics for effect-based program transformations: higher-order store.
In PPDP, 2009.

[4] N. Benton, M. Hofmann, and V. Nigam. Proof-relevant logical rela-
tions for name generation. In TLCA, 2013.

[5] N. Benton and C.-K. Hur. Biorthogonality, step-indexing and compiler
correctness. In ICFP, 2009.

[6] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational
semantics for effect-based program transformations with dynamic al-
location. In PPDP, 2007.

[7] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading,
writing and relations. In APLAS, volume 4279 of LNCS, 2006.

[8] N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to
Java bytecodes. In ICFP, 1998.

[9] N. Benton and B. Leperchey. Relational reasoning in a nominal
semantics for storage. In TLCA, volume 3461 of LNCS, 2005.

[10] L. Birkedal, A. Carboni, G. Rosolini, and D. S. Scott. Type theory via
exact categories. In LICS, 1998.

[11] L. Birkedal, K. Stovring, and J. Thamsborg. The category-theoretic
solution of recursive metric-space equations. Theor. Comp. Sci.,
411:4102–4122, 2010.

[12] G. Boudol. Typing termination in a higher-order concurrent imperative
language. Inf. Comput., 208(6), 2010.

[13] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS, pages 366–378, 2007.

[14] A. Carboni, P. J. Freyd, and A. Scedrov. A categorical approach to
realizability and polymorphic types. In MFPS, LNCS 298, 1987.

[15] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. H. Edwards. Model
variables: cleanly supporting abstraction in design by contract. Softw.,
Pract. Exper., 35(6):583–599, 2005.

630

[16] W. P. de Roever and K. Engelhardt. Data Refinement: Model-oriented
Proof Theories and their Comparison. Cambridge University Press,
1998.

[17] T. Dinsdale-Young, P. Gardner, and M. J. Wheelhouse. Abstraction
and refinement for local reasoning. In VSTTE, volume 6217 of LNCS,
2010.

[18] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical
relations. Logical Methods in Computer Science, 7(2), 2011.

[19] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state
and control effects on local relational reasoning. In Proc. ICFP, ACM,
pages 143–156, 2010.

[20] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bi-directional tree transformations: a lin-
guistic approach to the view update problem. In POPL, pages 233–
246, 2005.

[21] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[22] D. K. Gifford and J. M. Lucassen. Integrating functional and impera-
tive programming. In LISP and Functional Programming, 1986.

[23] C.-K. Hur and D. Dreyer. A Kripke logical relation between ML and
assembly. In POPL, 2011.

[24] C.-K. Hur, D. Dreyer, G. Neis, and V. Vafeiadis. The marriage of
bisimulations and kripke logical relations. In J. Field and M. Hicks,
editors, POPL, pages 59–72. ACM, 2012.

[25] J. B. Jensen and L. Birkedal. Fictional separation logic. In ESOP,
volume 7211 of LNCS, 2012.

[26] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In POPL, 2012.

[27] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In POPL, 2006.

[28] N. Krishnaswami, L. Birkedal, and J. Aldrich. Verifying event-driven
programs using ramified frame properties. In TLDI, 2010.

[29] N. Krishnaswami, A. Turon, D. Dreyer, and D. Garg. Superficially
substructural types. In ICFP, 2012.

[30] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-
grained concurrency. In POPL, 2013.

[31] S. Mac Lane. Categories for the Working Mathematician. Graduate
Texts in Mathematics. Springer, 2nd edition, Sept. 1998.

[32] B. Meyer. Applying ”design by contract”. IEEE Computer,
25(10):40–51, 1992.

[33] F. Oles. A Category-Theoretic Approach to the Semantics of Program-
ming Languages. PhD thesis, CMU, 1982.

[34] A. Pitts and I. Stark. Operational reasoning for functions with local
state. In Higher order operational techniques in semantics, pages 227–
273. Cambridge University Press, 1998.

[35] A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science,
volume 57 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2013.

[36] A. M. Pitts and I. D. B. Stark. Observable properties of higher-order
functions that dynamically create local names, or what’s new? In
MFCS, volume 711 of LNCS, 1993.

[37] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS, 2002.

[38] J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare
triples and frame rules for higher-order store. Logical Methods in
Computer Science, 7(3), 2011.

[39] I. Stark. Names and Higher-Order Functions. PhD thesis, U. Cam-
bridge, 1994.

[40] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. In POPL, 2005.

[41] J. Thamsborg and L. Birkedal. A Kripke logical relation for effect-
based program transformations. In ICFP, 2011.

[42] V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, volume 4703 of LNCS, 2007.

[43] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Log., 4(1):1–32, 2003.

631

	Introduction
	Motivating Examples
	Syntax and Semantics
	Abstract Locations
	Examples of Abstract Locations

	Setoids
	Worlds and Setoid-Valued Functors
	Setoid-valued functors

	Proof-relevant Logical Relations
	Observational equivalence
	Applications
	State Dependent Abstract Data Types

	Related and Future Work

