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Better Bootstrap Confidence Intervals

BRADLEY EFRON*

We consider the problem of setting approximate confidence intervals for
a single parameter 6 in a multiparameter family. The standard approx-
imate intervals based on maximum likelihood theory, 0 * 629, can be
quite misleading. In practice, tricks based on transformations, bias cor-
rections, and so forth, are often used to improve their accuracy. The
bootstrap confidence intervals discussed in this article automatically in-
corporate such tricks without requiring the statistician to think them
through for each new application, at the price of a considerable increase
in computational effort. The new intervals incorporate an improvement
over previously suggested methods, which results in second-order cor-
rectness in a wide variety of problems. In addition to parametric families,
bootstrap intervals are also developed for nonparametric situations.

KEY WORDS: Resampling methods; Approximate confidence inter-
vals; Transformations; Nonparametric intervals; Second-order theory;
Skewness corrections.

1. INTRODUCTION

This article concerns setting approximate confidence in-
tervals for a real-valued parameter 6 in a multiparameter
family. The nonparametric case, where the number of
nuisance parameters is infinite, is also considered. The
word ‘‘approximate” is important, because in only a few
special situations can exact confidence intervals be con-
structed. Table 1 shows one such situation: the data (y;,
y,) are bivariate normal with unknown mean vector (7,
#,), covariance matrix = I the identity; the parameters of
interest are 8 = #,/n, and, in addition, & = 1/6. Fieller’s
construction (1954) gives central 90% interval (5% error
in each tail) of [.29, .76] for 6, having observed y = (8,
4). The corresponding interval for £ = 1/0 is the obvious
mapping ¢ € [1/.76, 1/.29].

Table 1 also shows the standard approximate intervals

0E[d + 629,80 + 62079, (1.1)

where 0 is the maximum likelihood estimate (MLE) of 6,
6 is an estimate of its standard deviation, often based on
derivatives of the log-likelihood function, and z* is the
100 - a percentile point of a standard normal variate. In
Table 1, a = .05 and z(® = —z(1"9 = —1.645.

The standard intervals (1.1) are extremely useful in sta-
tistical practice because they can be applied in an auto-
matic way to almost any parametric situation. However,
they can be far from perfect, as the results for ¢ show.
Not only is the standard interval for £ quite different from
the exact interval, it is not even the obvious transformation
[1/.73, 1/.27] of the standard interval for 6.

Approximate confidence intervals based on bootstrap
computations were introduced by Efron (1981, 1982a).
Like the standard intervals, these can be applied auto-
matically to almost any situation, though at greater com-
putational expense than (1.1). Unlike (1.1), the bootstrap
intervals transform correctly, so the interval for £ = 1/6
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in the Fieller example is obtained by inverting the end-
points of the interval for §. They also tend to be more
accurate than the standard intervals. In the situation of
Table 1 the bootstrap intervals agree with the exact inter-
vals to three decimal places. Efron (1985) showed that this
is no accident; there is a wide class of problems for which
the bootstrap intervals are an order of magnitude more
accurate than the standard intervals.

In those problems where exact confidence limits exist
the endpoints are typically of the form

6 + 8(z® + AP/Vn + BO/n + ),  (1.2)

where n is the sample size (see Efron 1985). The standard
intervals (1.1) are first-order correct in the sense that the
term 0 + &z asymptotically dominates (1.2). However,
the second-order term 8A(/V/n can have a major effect
in small-sample situations. It is this term that causes the
asymmetry of the exact intervals about the MLE as illus-
trated in Table 1. As a point of comparison the Student-¢
effect is of third-order magnitude, comparable with
6B®/n in (1.2). The bootstrap method described in Efron
(1985) was shown to be second-order correct in a certain
class of problems, automatically producing intervals of cor-
rect second-order asymptotic form § + &(z@ + AP/
\/ﬁ + )

This article describes an improved bootstrap method
that is second-order correct in a wider class of problems.
This wider class includes all of the familiar parametric
examples where there are no nuisance parameters and
where the data have been reduced to a one-dimensional
summary statistic, with asymptotic properties of the usual
MLE form (see Sec. 5).

Several authors have developed higher-order correct ap-
proximate confidence intervals based on Edgeworth ex-
pansions (Abramovitch and Singh 1985; Beran 1984a,b;
Hall 1983; Withers 1983), sometimes using bootstrap
methods to reduce the theoretical computations. There is
a close theoretical relationship between this line of work
and the current article (see, e.g., Remark G, Sec. 11).
However, the details of the various methods are consid-
erably different, and they can give quite different numer-
ical results. An important point, which will probably have
to be settled by extensive simulations, is which method,
if any, handles best the practical problems of day-to-day
applied statistics.

2. OVERVIEW

The standard interval (1.1) is based on taking literally
the asymptotic normal approximation

(0 - 6)/6 ~ N(0, 1), (2.1)
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Table 1. Central 90% Confidence Intervals for 6 = n,/n, and
¢ = 1/6, Having Observed (y,, ¥:) = (8, 4) From a
Bivariate Normal Distribution y ~ N,(q, I)

For 6 (RIL) For ¢ (RIL)
Exact interval (also bootstrap) [.29,.76] (1.21) [1.32,3.50] (2.20)
Standard approximation (1.1)  [.27,.73] (1.00) [1.08,2.92] (1.00)
MLE b=15 =2

NOTE: The exact intervals are based on Fieller's construction. R/L is the ratio of the right side
of the interval, measured from the MLE, to the left side. The exact intervals are markedly
asymmetric. The approximate bootstrap intervals of Efron (1982a) agree with the exact intervals
to three decimal places in this case.

with the estimated standard error & considered to be a
fixed constant. In certain cases it is well known that both
convergence to normality and constancy of ¢ can be dra-
matically improved by considering instead of f and 6 a
monotone tranformation ¢ = g(f) and ¢ = g(d). The
classic example is that of the correlation coefficient from
a bivariate normal sample, for which Fisher’s inverse hy-
perbolic tangent transformation works beautifully (see Ef-
ron 1982b).

The bias-corrected bootstrap intervals previously intro-
duced by Efron (1981, 1982a), called the BC intervals,
assume that normality and constant standard error can be
achieved by some transformation ¢ = g(8), = g(6), say

(¢ = ¢)/1~ N(-2,1), 22)

7 being the constant standard error of ¢. Allowing the bias
constant z, in (2.2) considerably improves the approxi-
mation in many cases, including that of the normal cor-
relation coefficient. Taking (2.2) literally gives the obvious
confidence interval (¢ + 7z,) = 7z(@ for ¢, which can then
be converted back to a confidence interval for 6 by the
inverse transformation § = g~(¢). The advantage of the
BC method is that all of this is done automatically from
bootstrap calculations, without requiring the statistician to
know the correct transformation g.

The improved bootstrap method introduced in this ar-
ticle, called BC,, makes one further generalization on (2.1):
it is assumed that for some monotone transformation g,
some bias constant z,, and some ‘“‘acceleration constant”
a, the transformation ¢ = g(f), ¢ = g(0) results in

(¢ — @)t~ N(—2¢04,0%), 0,=1+ap. (2.3)

Notice that (2.2) is the special case of (2.3), witha = 0.

Given (2.3), it is not difficult to find the correct confi-
dence interval for ¢ and then convert it back to an interval
for 6 by 6 = g '(¢). The BC, method produces this in-
terval for 0 automatically, without requiring any knowl-
edge of the transformation to form (2.3). This is the gist
of Lemma 1 in Section 3.

The difference between (2.2) and (2.3) is greater than
it seems. The hypothesized ideal transformation g leading
to (2.2) must be both normalizing and variance stabilizing,

whereas in (2.3) g need be only normalizing. Efron (1982b)

shows that normalization and stabilization are partially
antagonistic goals in familiar families such as the Poisson
and the binomial. Schenker’s counterexample to the BC
method (1985), which helped motivate this article, is based
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on a family (discussed in Sec. 3) for which (2.2) fails. The
main purpose of this article, to produce automatically in-
tervals that are second-order correct, generally requires
assumption (2.3) rather than (2.2).

It is not surprising that a theory based on (2.3) is usually
more accurate than a theory based on (2.1). In fact, ap-
plied statisticians make frequent use of devices like those
in (2.3), transformations, bias corrections, and even ac-
celeration adjustments, to improve the performance of the
standard intervals. The advantage of the BC, method is
that it automates these improvements, so the statistician
does not have to think them through anew for each new
application.

The bootstrap was originally introduced as a nonpara-
metric Monte Carlo device for estimating standard errors.
The basic idea, however, can be applied to any statistical
problem, including parametric ones, and does not neces-
sarily require Monte Carlo simulations. We will begin our
discussion of the BC, method by considering the simplest
type of parametric problem: where the data consists only
of a single real-valued statistic 6 in a one- parameter family
of densities fo(6), say 6 ~ fo, and where we want a con-
fidence interval for 6 based on 6.

Sections 3, 4, and 5 describe the BC, method in this
simple setting, show how to calculate it from bootstrap
computations, and demonstrate that it gives second-order
correct intervals for 6 under reasonable conditions.

Of course there is no need for the bootstrap in the simple
situation  ~ f,, since then it is usually quite easy to
calculate exact confidence intervals for 6. There are three
reasons for beginning the discussion with the simple sit-
uation: (a) it makes clear the logic of the BC, method; (b)
it makes possible the comparison of BC, intervals with
exact intervals, exact intervals usually not existing in com-
plicated problems; (c) it then turns out to be quite easy
to extend the BC, method to complicated situations, where
it is more likely to be needed.

The simple situation § ~ f, can be made more compli-
cated, and more realistic, in two ways: the data can cpnsist
of a vector y instead of a single summary statistic 4, and
the parameter can be a vector ) instead of a single un-
known scalar 6. Section 6 considers multiparameter fam-
ilies f,(y), where we wish to set an approximate confi-
dence interval for a real-valued function 6 = t(yq).

Our approach is to reduce the problem back to the
simple situation. The data vector y is replaced by an ef-
ficient estimator § of 0, perhaps the MLE, and the mul-
tiparameter family f, is replaced by a least favorable one-
parameter family. All of the calculations are handled au-
tomatically by the BC, algorithm. For a class of examples,
including the Fieller problem of Table 1, the BC, method
automatically produces second-order correct intervals, but
a proof of general second-order correctness does not yet
exist for multiparameter situations.

Section 7 returns to the original nonparametric setting
of the bootstrap: the data y is assumed to be a random
sample x;, x,, . . . , x, from a completely unknown prob-
ability distribution F. We wish to set an approximate con-
fidence interval for § = #(F), some real-valued function
of F. The BC, method extends in a natural way to the
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nonparametric setting. In the case where 6 is the expec-
tation, theoretical analysis shows the BC, intervals per-
forming reasonably. Except for the case of the expecta-
tion, not much is proved about nonparametric BC, intervals,
though the empirical results look promising. Section 8 de-
velops a heuristic justification for the nonparametric BC,
method in terms of the geometry of multinomial sampling.

In the simple situation § ~ f, the parametric boot-
strap distribution 6* ~ f; can often be written down ex-
plicitly, or at least approximated by standard parametric
devices such as Edgeworth expansions. The number of
bootstrap rephcatlons of §*, to use the terminology of
previous papers, is then, effectively, infinity. For more
complicated situations like the nonparametric confidence
interval problem, Monte Carlo sampling is usually needed
to calculate the BC, intervals. How many bootstrap rep-
lications are necessary? The answer, on the order of 1,000,
is derived in Section 9. This compares with only about 100
bootstrap replications necessary to adequately calculate a
bootstrap standard error. Bootstrap confidence intervals
require a lot more computation than bootstrap standard
errors, if second-order accuracy is desired.

To get the main ideas across, some important technical
points are deferred until Sections 10-12.

3. BOOTSTRAP CONFIDENCE INTERVALS FOR
SIMPLE PARAMETRIC SITUATIONS

We first consider the simple situation g ~ - fo, where we
have a one-parameter family of densities fo(0) for the real-
valued statistic §. We wish to set a confidence interval for
0 having observed only 6. The statistic § estimates 6. Later
we will make specific assumptions about the properties of
6 as an estimator of —essentially that 6 behaves like the
MLE asymptotically, though § may be some first-order
efficient estimator other than the MLE.

By definition, the parametric bootstrap distribution in
this simple situation is

6* ~ f5. (3.1)

In other words it is the distribution of the statistic of in-
terest when the unknown parameter 6 is set equal to the
observed point estimate 6. We also need to define the cdf
of the bootstrap distribution

G(s) = f " fi(0Mdd* = Prif* <5 (3.2)
The integral is replaced by a summation in discrete fam-
ilies. The goal of bootstrap theory is to make inferential
statements on the basis of the bootstrap distribution. In
this article the inferences are approximate confidence in-
tervals for 6.

Example (chi-squared scale family). Suppose that

0 ~ 6(x%/19), (3.3)
the example considered in Schenker (1985). Then
Fo(0) = (010352500 for § >0
[c =9.5°5/T'(9.5)]. (3.4)
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Having observed 6, the bootstrap distribution 6* ~ 0
(x%/19) has density c(6* /0)856‘95(‘7"") for §* > 0. The
bootstrap cdf is G(s) = I,5(9.5s/0), where I,s indicates
the incomplete gamma function of degree 9.5.

Now suppose that for a family 6 ~ f, there exists a
monotone-increasing transformation g and constants z, and
a such that

N A

¢ =g(0), ¢ =2z (3.5)
satisfy
d=¢ +0Z-2), Z~N01 (3.6
with
o, =1+ ag. (3.7)

This is of form (2.3), with ¢ = 1. [Eq. (2.3) can always
be reduced to the case T = 1; see Remark A, Sec. 11.]
We will assume that ¢ > —1/aif a > 0in (3.7), so g, >
0, and likewise ¢ < —1/a if a < 0. The constant a will
typically be in the range |a| < .2, as will z,.

Let ® denote the standard normal cdf, and let G~!(a)
denote the 100 - « percentile of the bootstrap cdf (3.2).

Lemma 1. Under conditions (3.5)-(3.7), the correct
central confidence interval of level 1-2« for 0 is

0 € [GH(@(z[a]), G(D(2[L — aD)],  (3.8)
where

(zg + 29)
1 - a(zy + z®)’

z[a] = zy +

and likewise for z[1 — a].

The proof of Lemma 1, at the end of this section, makes
clear that interval (3.8) is correct in a strong sense: it is
equivalent, under assumptions (3.5)—(3.7), to the usual
obvious interval for a simple translation problem. Given
the bootstrap cdf G(s) and values of z, and a derived from
bootstrap calculations as in the following sections, we can
form interval (3.8), (3.9) for § whether or not assumptions
(3.5)-(3.7) apply. This by definition is the BC, interval
for 6.

If 2y and a equal 0, then z[a] = z and (3.8) becomes
0 € [G(a), G~'(1 — a)]. In this case we just use the ob-
vious percentiles of the bootstrap distribution to form
an approximate confidence interval for 6, an approach
called the percentile method in Efron (1981, 1982a). In
general z, and a do not equal zero, and formulas (3.8),
(3.9) make adjustments to the percentile method that are
necessary to achieve second-order correctness.

Continuing example (3.3), the theory of Efron (1982b)
shows that for the chi-squared scale family we can find a
transformation g very nearly satisfying (3.5)—(3.7). Schenker
(1985) proved the same result by a different method. The
constants

(3.9)

= .1082, a = .1077 (3.10)

and the transformation g appropriate to family (3.3) are
derived in Section 10 and Remark E of Section 11. Simple
ways of approximating z, and a for general families ¢ ~
fo are given in Section 4.
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Line 2 of Table 2 shows the central 90% BC, interval,
a = .05, for family (3.3), with G(s) = I,5(9.5s/6) and z,
and a as in (3.10). The exact confidence interval is § €
[190/,%1-9, 196/ %], where x% is the 100 - « percentile
point of a x%g distribution. Notice how closely the BC,
endpoints match those of the exact interval (see line 1).
The standard interval (1.1) is quite inaccurate in this case.

Suppose that we set a = 0 in (3.9), so z[a] = 2z +
2@, Interval (3.8) with this definition of z[@] and z[1 —
a] is called the BC interval, short for bias-corrected boot-
strap interval, in Efron (1981, 1982a). In other words, BC
= BC,, with a = 0. The constant z, is easier to obtain
than the constant a, as discussed in the next section, which
is why the BC interval might be used. Line 3 of Table 2
shows that for family (3.3) the BC interval is a definite
improvement over the standard interval but goes only about
half as far as it should toward achieving the asymmetry of
the exact interval.

The Fieller situation of Table 1 is an example of a class
of multiparameter problems for which a = 0, so the BC
and BC, intervals coincide. Efron (1985) showed that the
BC intervals are second-order correct for this class, as
discussed in Section 6. In general problems the full BC,
method is necessary to get second-order correctness, as
shown in Section 5.

Bartlett (1953) and Schenker (1985) discussed problem
(3.3). The BC, method can be thought of as a computer-
based way to carry out Bartlett’s program of improved
approximate confidence intervals without having to do his
theoretical calculations.

Proof of Lemma 1. We begin by showing that the BC,
interval for ¢ based on ¢ is correct in a certain obvious
sense: notice that (3.6), (3.7) give

1+ ad} ={1 + agf{l + a(Z - zy)}. (3.11)

Taking logarithms puts the problem into standard trans-
lation form,

=0+ W, (3.12)
= log{l + a¢}, ¢ = log{l + a¢}, and W = log{l +
a(Z — z,)}. This example was discussed more carefully in
Sections 4 and 8 of Efron (1982b), where the possibility
of the bracketed terms in (3.11) being negative was dealt
with. Here it will cause no trouble to assume them positive
so that it is permissible to take logarithms. In fact the
transformation to (3.12) is only for motivational purposes.
A quicker but less informative proof of Lemma 1 is pos-
sible, working directly on the ¢ scale.

Table 2. Central 90% Confidence Intervals for § Having Observed

6 ~ 0x3%/19
RIL
1. Exact [6310 1880] 2.38
2. BC, (a = .1077) [.6306, 1.884] 2.37
3. BC (a = 0) [.5804, 1.694] 1.64
4, Standard (1.1) [.4660, 1.530] 1.00
5. Nonparametric BC, [.6400, 1.680] 1.88

NOTE: The BC, interval, with a = .1077, the correct value, is nearly identical to the exact
interval. The BC interval, @ = 0, is only a partial improvement over the standard interval. The
nonparametric BC, interval is discussed in Section 7.
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The translation problem (3.12) gives a natural central
1 — 2a interval for { having observed (,

(el - wia, { — wa, (3.13)

where w® is the 100 - « percentile point for W, Pr{W <
W@} =

We will use the notation #[«] for the a-level endpoint
of a confidence interval for a parameter §. For instance
(3.13) says that {[a] = £ — w9, {[1- o] = ¢ — w,
The interval (3.13) can be transformed back to the ¢ scale
by the inverse mappings ¢ = (¢f — 1)/a, ¢ = (& — 1)/
a, (Z — z,) = (¢" — 1)/a. Alittle algebraic manipulation
shows that the resulting interval for ¢ has a-level endpoint

. (@)
dlal = ¢ + 04 _(Z;(j - 1@) L (314
The cdf of ¢ according to (3.6) is P((s — ¢)/as + z),

so the bootstrap cdf of ¢*, say H, is H(s) = d((s — ¢)/
0; + 2o). This has inverse H™(a) = ¢ + o;{® () -
2o}, which shows that H~1(®(z[«a])) equals (3.14) [see def-
inition (3.9)]. In other words, the BC, interval for ¢, based
on ¢, coincides with the correct interval (3.14), “correct”
meaning in agreement with the translation interval (3.13).

The BC, intervals transform in the obvious way: if ¢ =
g(0), ¢ = g(0), then the BC, interval endpoints satisfy

@[] = g(6[a]). This follows directly from (3.8), (3.9) and
the relationship H(g(s)) = G(s), equivalently H (a) =
g(G~Y(a)), between the two bootstrap cdf’s. Lemma 1 has
now been verified: the transformations § — ¢ — ¢ and 6
— ¢ — { reduce the problem to translation form (3.12);
the inverse transformations of the natural interval (3.13)
for { produce the BC, interval (3.8), (3.9).

4. THE TWO CONSTANTS

The BC, intervals require the statistician to calculate the
bootstrap distribution G and also the two constants z, and
a. The bootstrap distribution is obtained directly from (3.2).
This calculation does not require knowledge of the nor-
malizing transformation g occurring in (3.5). The two con-
stants z, and a can also be obtained, or at least approxi-
mated, directly from the bootstrap distribution fi(6%).
These calculatlons which are the subject of this section,
assume that a transformation g to form (3.6), (3.7) exists,
but do not require g to be known.

In fact the bias-correction constant z, is

zy = ®Y(G(0)) (4.1)

under assumptions (3.5)-(3.7), and so can be computed
directly from G. To verify (4.1) notice that

Pr¢{d3 < @} = Pr{Z < zo} = P(zy) 4.2)
according to (3.6). However, (3.5) gives
Prfl < 0} = Prdd < ¢} = ®(zp)  (4.3)

for every value of §. Substituting 6 = 6 gives G(0) =
Pro{0* < 6} = ®(z,), which is (4.1).
What about the acceleration constant a? We will show

that a good approximation for a is

a = % SKEW,_4(ly), (4.4)
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where SKEW,_;(X) indicates the skewness of a random
variable X, /43(X)/,uz(X 32 evaluated at parameter point
6 equal to 0, and I, is the score function of the family
6), - A

1o(8) = a/96 log f,(6). (4.5)

Formula (4.4) allows us to calculate a from the form of
the given density f, near § = 6, without knowing g. Sec-
tions 6 and 7 discuss the computation of g in families with
nuisance parameters. Section 10 gives a deeper discussion
of a and its relationship to other quantities of interest. See
also Remark F, Section 11.

Example. For 0 ~ 0(3%/19), as in Table 2, standard
x? calculations give SKEW({)/6 = [8/(19 - 36)]"* = .1081,
which is quite close to the actual value a = .1077 derived
in Section 10.

Here is a simple heuristic argument that indicates the
role of the constant a in setting approxi'mate confidence
intervals. Suppose that zo = 0 and a > 0 in (3.6), (3.7).
Having observed ¢ = 0, and noticing o5 = 1, the naive
interval for ¢ [which is almost the same as the standard
interval (1.1)] is ¢ € [z©®, z(1~9]. If, however, the stat-
istician checks the situation at the right endpoint z(!~-9, he
finds that the hypothesized standard deviation of ¢ has
increased from 1 to 1 + az(!~9. This suggests increasing
the right endpoint to z=9(1 + az('~). Now the hypoth-
esized standard deviation has further increased to 1 +
az@~9(1 + az(1-9), suggesting a still larger right endpoint,
and so forth. Continuing on in this way results in formula
(3.14), leading to Lemma 1. [Improving the standard in-
terval (1.1) by recomputing & at its endpoints is a useful
idea. It was brought to my attention by John Tukey, who
pointed out its use by Bartlett (1953); see, e.g., Bartlett’s
eq. (17). Tukey’s (1949) unpublished talk anticipated many
of the same points.]

We call a the acceleration constant because of its effect
of constantly changing the natural units of measurement
as we move along the ¢ (or 6) axis. Notice that we can
write (3.7) as

gy = a4, [1 + a(d — o)/ a,], (4.6)

SO

_ d(olay)
(¢ — #u)lo)

for any fixed value of ¢,. This shows that a is the relative
change in o4 per unit standard deviation change in ¢, no
matter what value ¢ has.

The point ¢, = 0 is favored in definition (3.7), since o,
has been set equal to the convenient value 1. There is no
harm in thinking of 0 as the true value of ¢, the value
actually governing the distribution of ¢ in (3.8), because
in theory we can always choose the transformation g so
that this is the case and, in addition, so that g, = 1 (see
Remark A, Sec. 11). The restriction 1 + a¢ > 0 in (3.7)
causes no practical trouble for |a| < .2, since it is then at
least 5 standard deviations to the boundary of the per-
missible ¢ region.

The remainder of this section is devoted to verifying

4.7)
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(4.4). The discussion is fairly technical and can be deferred
until Section 10 at the reader’s preference.
If we make smooth one-to-one transformations é =

g(0), ¢ = h(0), then [,($) = 1,(6)/h'(6) and SKEW
(l ) = SKEW(/,). In other words, the right side of (4.4)
is invariant under all mappings of this type. Suppose that
for some choice of g and &, we can represent the family
of distributions of ¢ as

¢ = (b + O'¢Q(Z),

where g, and g(Z) are functions of ¢ and z, having at
least one and two derivatives, respectively, q'(Z) > 0.
Situation (4.8), with the added conditions ¢(0) = 0, ¢'(0)
= 1, is called a general scaled transformation family (GSTF)
in Efron (1982b). [Please note the corrigenda to Efron
(1982b).]

Z~N@0,1), (4.8)

Lemma 2. The family (4.8) has score function I,(¢)
satisfying

gl () ~ [Z +

7@ [1+ @] _,
q’(Z)][ q'(Z) ] @
Z ~ N0, 1). (4.9)

Here 6, = do,/d¢ and q' and q" are the first two deriv-
atives of q.

Before presenting the proof of Lemma 2, we note that
it verifies (4.4): in situation (3.6), (3.7), where 65 = a,
q'(Z) =1, q"(Z) = 0, the distributional relationship (4.9)
becomes

(z—n]
(4.10)

ol s($) ~ (1 — aZo)[Z 1T

Let

a
1 - azy’

(4.11)

& =

a quantity discussed in Section 10. From the moments of
Z ~ N(0, 1), (4.10) gives
SKEW(i,) 1+ 4%é
6 (1 + 29

(4.12)

We will see in Section 10 that for the usual repeated
sampling situation both a and z, are order of magnitude
O(n~') in the sample size n. This means that ¢, = a - [1
+ O(n™Y)], (4.11), and that SKEW(i,)/6 = SKEW(i,)/
6 = a[l + O(n~1)], (4.12), justifying approximation (4.4).
The “constant” a actually depends on 6, but substituting
6 =06in (4.4) causes errors only at the third-order level,
like 6B{/n in (1.2), and so does not affect the second-
order properties of the BC, intervals.

Proof of Lemma 2. Starting from (4.8), the cdf of

¢ is cI’(q (¢ = ¢)/5y)), so § has density f,() =
exp(— )/(\/2—7; 04q'(Z4)), where Z, = q 1((<l5 ¢)/
Gp)- ThlS gives log-likelihood function

Io(d) = —4Z% — log(q'(Z)) — log(a,). (4.13)
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Lemma 2 follows by differentiating (4.13) with respect to
¢ and noting that Z, ~ N(0, 1) when sampling from (4.8).

5. SECOND-ORDER CORRECTNESS OF
THE BC, INTERVALS

The standard intervals are based on approximation (2.1).
The BC, intervals, which improved considerably on the
standard intervals in Tables 1 and 2, are based on the more
general approximation (2.3). Is it possible to go beyond
(2.3), to find still further improvements over the standard
intervals? The answer is no, at least not in terms of second-
order asymptotics. The theorem of this section states that
for simple one-parameter problems the BC, intervals co-
incide through second order with the exact intervals. In
terms of (1.2), the BC, intervals have the correct second-
order asymptotic form § + 6(z@ + A@/Vn + ).

We continue to consider the simple one-parameter prob-
lem 6 ~ f,. Suppose that the 100 - & percentlle of f as a
function of 0, say 0, is a continuously increasing function
of 0 for any fixed «. In this case the usual confidence
interval construction gives an exact 1 — 2a central interval
for 0 havmg observed 0, say (O[], HEx[l a]], where
e @] is the value of @ satisfying 0% ~® = 0. The exact
interval in Table 2 is an example of this construction.

It is not necessary that 6 be the MLE of 6. In (3.6), for
instance, ¢ is not the MLE of ¢. The BC, method is quite
insensitive to small changes in the form of the estimator
(see Remark B, Sec. 11). It will be assumed, however,
that § behaves asymptotically like the MLE in terms of
the orders of magnitude of its bias, standard deviation,
skewness, and kurtosis,

6 — 0 ~ (By/n, Co/N'n, Do/, Eg/n).  (5.1)

Here n is the sample size upon which the summary statistic
0 is based; By, Cy, Dy, and E, are bounded functions of 0
(and of n, which is suppressed in the notation). Then (5.1)
says that the bias of 8, By/n, is O(n™?), the standard de-
viation C,/Vnis O(n~12), skewness O(n~"2), and kurtosis
O(n~'). Higher cumulants, which are typically of order
smaller than O(n 1), will be assumed negligible in proving
the results that follow (see DiCiccio 1984; Hougaard 1982).

In the simple situation 6 ~ fo» 0 is a sufficient statistic
for 0. Later when we consider more complicated problems
we will take 6 to be the MLE of 6. This guarantees that
d is first-order efficient and asymptotically sufficient (Ef-
ron 1975).

The asymptotics of this article are stated relative to the
size of the estimated standard error & of 4, as in (1.2). It
is often convenient in what follows to have & be O,(1).
This is easy to accomplish by transforming to q§ =

Vb, ¢ = Vnb, so (5.1) becomes

¢ - ¢ ~ (ﬁd)* O'¢, V¢, 5(#)’

where ﬁd’ B¢/,,1/z/n , Op = C¢/,,1/2, Yo = D¢/n1/2/n 2, and
84 = Egun/n. Notice that B, = O(n=12), f, = d,b’¢/d¢ =
O(n~- 3), and so forth. We can just assume to begin with
that 0 and 6 are the rescaled quantities previously called

(5.2)
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¢ and ¢. Then the following orders of magnitude apply:

o(1) O~  Oom™")  Om*?
Gy Go, Bos Yo G, Bos Vo, 09 Po» Vo Op

Theorem 1. If § has bias By, standard error g4, skewness
g, and kurtosis J, satisfying (5.3), then the BC, intervals
are second-order correct.

The theorem states that pc [a], the @ endpoint of the
BC, interval, is asymptotically close to the exact endpoint,

(Oscla] = Oedal)/6 = Op(n7"). (5.4)

This is not true for the standard intervals (1.1) or the BC
intervals, a = 0. The proof of Theorem 1, which appears
in Section 12, makes it clear that all three of the elements
in (2.3), the transformation g, the bias-correction constant
Z,, and the acceleration constant a, make necessary cor-
rections of O,(n~"?) to the standard intervals.

(5.3)

6. NUISANCE PARAMETERS

The discussion so far has centered on the simple case
6 ~ ~ f4, where we have only a real-valued parameter 6 and
areal-valued summary statistic 6 from which we are trying
to construct a confidence interval for 8. We have been able
to show favorable properties of the BC, intervals for the
simple case, but of course the simple case is where we
least need a general method like the bootstrap.

This section discusses the more difficult situation where
there are nuisance parameters besides the parameter of
interest §. Section 7 discusses the nonparametric situation,
where the number of nuisance parameters is effectively
infinite. Because of the inherently simple nature of the
bootstrap it will be easy to extend the BC, method to cover
these cases, though we will not be able to provide as strong
a justification for the correctness of the resulting intervals.

Suppose then that the data y comes from a parametric
family § of density functions f,, say y ~ f,, where m is an
unknown vector of parameters, and we want a confidence
interval for the real-valued parameter § = #(n). In Efron
(1985), the multivariate normal case y ~ Ni(m, I) is ex-
amined in detail. X

From y we obtain 9, the MLE of n, and 6 = #(4), the
MLE of 0. The parametric bootstrap distribution of y is
defined to be

y* ~ fa (6.1)

the distribution of the data when m equals ¥. From y*
we obtain §*, the bootstrap MLE of v, and then 6* =
H(h*).

The distribution of §* under model (6.1) is the para-
metric boostrap distribution of 8, generalizing (3.1). This
gives the bootstrap cdf

G(s) = Pry{d* < s}, 6.2)

as in (3.2). The bias-correction constant z, equals
®-YG(H)), as in (4.1).

To compute the BC, intervals (3.8), (3.9), we also need

to know the appropriate value of the acceleration constant
a. We will find a by following Stein’s (1956) construction,
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which replaces the multiparameter faAmily F={fabya
least favorable one-parameter family 3.

Let i, be the vector with ith coordmate d/dn; log fo(y),
SO l,,(y) = 0 by definition of the MLE 1, and let [, be
the k X k matrix with ijth entry 8%/(9n,05;) log f,,(y)|,, @
In addition, let V be the gradient vector of 6 = #(m)
evaluated at the MLE, V, = (8/37,)t(n)|,-4 The least
favorable direction at = 1 is defined to be

p= (_i.)—lﬁ (6.3)

Then the least favorable famlly is the one-parameter
subfamily of F passing through 1 in the direction fi,

§ = {70y = faraa(y)h (6.4)

Using y* to denote a hypothetical data vector from ¥, is
intended to avoid confusion with the actual data vector y
that gave 9; 1) and ji are fixed in (6.4), only A being un-
known.

Consider the problem of estimating (1) = t(f§ + Ajh)
having observed y* ~ },. The Fisher information bound
for an unbiased estimate of ¢ in this one-parameter family
evaluated at 4 = 0 is V'(—1I; 4)” 'V, which is the same as
the corresponding bound for estimating 6 = (), atm =
1, in the multiparameter family 5. This is Stein’s reason
for calling ¥ least favorable.

We will use & to calculate an approximate value for the
acceleration constant a,

a = {SKEW,_[d log fﬁ+lﬁ(y*)/a’1]/6}

This is formula (4.4) applied to § assumlng that 4 =
(which is the MLE of 4 in  when y* = vy, the actual data
vector). See Remark F, Section 11.

Formula (6.5) is especially simple in the exponential
family case where the densities f,(y) are of the form

faly) = etry=v@ify(y). (6.6)

The factor » in the exponent of (6.6) is not necessary, but

it is included to agree with the situation where the data

consists of iid observations x;, x,, . .., X,, each with

%ensity exp(n'x — w(n)), and y is the sufficient vector
n_x;/n.

(6. 5)

Lemma 3. For the exponential family (6.6), formula
(6.5) gives

_ 190
ERVATEIOE 7
where
g Yy(h + AR)
0)] 0 = — .
P(0) | (6.8)
Proof. We have
alog f * ., A
2oefaenl¥D | ppr(yr — wa), (69)
=0
so SKEW,_[(d log f4+:4(¥*))/04] equals the skewness of

p'y* for y* ~ fi. The fact that SKEW(ji'y*) equals
[y/(3)(0)/(u/(2)(0))3’2]/\/_ nis a standard exercise in expo-
nential family theory. Note that Lemma 3 applies to y ~
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Ni(m, I), the case considered in Efron (1985), and gives
a = 0, which is why the unaccelerated BC intervals worked
well there.

Table 3 relates to the following example:

Yy~ Nim, a3D), [0y = 1 + a(lyl - 8)],

where we observe y = (8, 0, 0, 0) and wish to set confi-
dence intervals for the parameter § = #(n) = |j5l. The
case a = 0 amounts to finding a confidence interval for
the noncentrality parameter of a noncentral y? distribution
and can be solved exactly. The theory of Efron (1985)
applies to the a = 0 case, and we see that the BC, interval,
that is, the BC interval, well-matches the exact interval.

Table 3 shows the result of varying the constant a from
.10 to —.10. This example has a partlcularly simple ge-
ometry: the sphere Cy = {q : || = 0} is the set of m
vectors having ¢(n) equal to the MLE value § = t(n), the
least favorable direction fi is orthogonal to Cy at §; the
distribution of § is nearly normal (see Efron 1985, Table
2), with standard deviation changing in the least favorable
direction at a rate nearly equal to a, as in (4.7). The BC,
intervals alter predictably with a. For instance, comparing
the upper endpoint at a = .10 with a = 0, notice that
(9.70 — 8.00)/(9.44 — 8.00) = 1.18, closely matching the
expansion factor due to acceleration, 1 + .10 - 1.645 =
1.16.

We could disguise problem (6.10) by making nonlinear
transformations

(6.10)

M = h(n),

in which case the geometry of the BC, intervals might not
be obvious from the form of the parameter 6 = t(h~'(7))
= |lh~*(q)|| and the transformed densities f;(y). However,
the BC, method is invariant under such transformations
(see Remark C, Sec. 11), so the statistician would auto-
matically get the same intervals as if he knew the nor-
malizing transformations y = g~(§), m = A~'(9).
Currently we cannot justify the BC, method as being
second-order correct in the multiparameter context of this
section, though it seems a likely conjecture that this is so.
We know that it is so in the one-parameter case (see Sec.
5) and in the restricted multiparameter case of Efron (1985),
where the BC, and BC methods coincide, and that the

y = 8(y), (6.11)

BC, method makes a rather obvious correction to the BC
interval in the general multiparameter case.

Table 3. Central 90% Confidence Intervals for 6 = ||, Having
Observed |ly|| = 8, From the Parametric Family y ~ N(m, d3l),
With o, = 1 + a(llrll — 8)

Exact (RIL) BC, (RIL) (6.5
a=.10 [6.46, 9.69] (.96) [6.47,9.70] (.97) .0984
a = .05 [6.32,9.57] (.85) [6.34,9.56] (.84) .0498
a=0 [6.14,9.47) (74) [6.19,9.44] (.75) 0
a=—-.05 [5.92,938 (65 [6.03,9.35] (.66) —.0498
a=—-.10 |[5.62,9.30] (.56) [5.89,9.27] (.60) —.0984

NOTE: The standard interval (1.1) is [6.36, 9.64] for all values of a. The last column shows
that (6.5) nearly equals the constant a in this case. The exact intervals are based on the
noncentral 2 distribution.
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7. THE NONPARAMETRIC CASE

This section concerns the nonparametric case where the
datay = (xi, x5, . . . , X,,) consist of n iid observations x;
that may have come from any probability distribution F
on their common sample space 9. There is a real-valued
parameter § = t(F) for which we desire an approximate
confidence interval. We will show how the BC, method
can be used to provide such an interval based on the ob-
vious nonparametric estimate 6 = t(F) Here F is the
empirical probability distribution of the sample, putting
mass 1/n on each observed value x;.

A bootstrap sample y* ~ F consists in this case of an
iid sample of size n from E, say y* = (xf, x5, . .., x).
In other words, y* is a random sample of size n drawn
with replacement from {x;, x,, . . . , x,}. The bootstrap
sample y* gives a bootstrap rephcatlon of 0, 6* = t(F*),
where F* puts mass 1/n on each x*. The bootstrap cdf
G(s) is the probability that a bootstrap replication is less
than s,

G(s) = Prp{f* < s}, (7.1)

as in (6.2) and (3 2). The bias-correction constant z, equals
®-Y(G(h)), as in (4.1).

For most nonparametric problems the bootstrap cdf G
has to be determined by Monte Carlo sampling. Section
9 discusses how many Monte Carlo replications of 6* are
necessary. Here we will continue to assume that G has
been computed exactly—in effect, that we have taken an
infinite number of bootstrap replications 6.

At this point we could use G to form the BC interval for
0, but to obtain the BC, interval (3.8), (3.9) we also need
the value of the acceleration constant a. We will derive a
simple approximation for a, based on Lemma 3. It depends
on

AYF + A6) — t(F)
A 9
i=1,2,... (7.2)

the empirical influence function of § = t(F). Here d; is
a point mass at x;, so U, is the derivative of the esti-
mate § with respect to the mass on point x;. [Jaeckel’s in-
finitesimal jackknife estimate of standard error for @ is
(Z1UH"*/n.] Definition (7.2) assumes that #(F) is smoothly
defined for choices of F near F [see Efron 1982a, (6.3),
or Efron 1979, sec. 5]. Note that 2] U, =

The next section shows that Lemma 3, applied to a
family appropriate to the nonparametric situation, gives
the following approximation for the constant a,

“i[(E)/Go) ]

This is a convenient formula since the U; can be evaluated
easily by using finite differences in definition (7.2).

Example 1: The Law School Data. Table 4 shows two
indexes of student excellence, LSAT and GPA, for each
of 15 American law schools (see Efron 1982a, sec. 2.2).
The Pearson correlation coefficient p between LSAT and
GPA equals .776; we want a confidence interval for the

U, = tim L=

A—0

,n’

(7.3)
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Table 4. The Law School Data and Values of the Empirical Influence
Function for the Correlation Coefficient p

i (LSAT, GPA) U i (LSAT, GPA) U

1 (576,3.39)  —1.507 9  (651,3.36) 310
2 (635,3.30) .168 10 (605, 3.13) .004
3 (558, 2.81) 273 11 (653,3.12) —.526
4 (578, 3.03) .004 12 (575,2.74)  —.091
5 (666, 3.44) 525 13 (545, 2.76) 434
6 (580, 3.07) —.049 14 (572, 2.88) 125
7 (555, 3.00) -.100 15 (594,2.96)  —.048
8 (661, 3.43) 477

true correlation p. Table 4 also shows the values of U, for
the statistic §, from which formula (7.3) produces a =
—.0817. B = 100,000 bootstrap replications (about 100
times more than actually needed; see Sec. 9) gave G(f)

.463, and so z, = —.0927. Using these values of a and
zy in (3.8), (3.9) resulted in the central 90% nonparametric
BC, interval [.43, .92] for p. The usual bivariate normal
interval, based on Fisher’s tanh~! transformation, is [.49,
.90]. This is also the parametric BC, interval based on the
simple family p ~ f,, where f,(p) is Fisher’s density func-
tion for the correlation coefficient from bivariate normal
data. The standard interval (1.1), p * 1.6456, using the
bootstrap estimate & = .133, is [.56, .99].

Formula (7.3) is invariant under monotone changes of
the parameter of interest. This results in the BC, intervals
having correct transformation properties. Suppose, for ex-
ample, that we change parameters from p to ¢ = g(p) =
tanh~!(p), with corresponding nonparametric estimate q,'>
= g(p). The central 90% BC, interval for ¢ based on )
is then the obvious transformation of the interval for 6
based on 0, [g(.43), g(.92)] = [.46, 1.59]. This compares
with Fisher’s tanh " interval [g(.49), g(.90)] = [.54, 1.47]
and the standard interval ¢ = 1.6456, = [.49, 1.59]. The
standard interval is much more reasonable-looking on the
tanh~! scale, as we might expect from Fisher’s transfor-
mation theory. As commented before, a major advantage
of the BC, method is that the statistician need not know
the correct scale on which to work. In effect the method
effectively selects the best (most normal) scale and then
transforms the interval back to the scale of interest.

Example 2: The Mean. Suppose that Fis a distribution
on the real line, and 6 = #(F) equals the expectation EpX.
The empirical influence function U; = (x; — X), so (7.3)
gives

MY (= X (= 3PP
(1/6Vn)(fis/3?) = $/6Vn. (7.4)

Here &, = 2 (x; — X)"/n, the hth sample central moment,
and § = f[i;/43?, the sample skewness. It turns out also
that z, = $/6Vn in this case, by standard Edgeworth ar-
guments. Both a and z, are typically of order n~'2.

Because the sample mean is such a simple statistic, we
can use Edgeworth methods to get asymptotic expressions
for the a-level endpoint of the BC, interval:

Osclal = X + 6{z@ + (§/6Vn)(2z + 1) +

Q
I

O,(n~M},
(7.5)
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& = (fi/m)"2. This compares with
Oscla] = X + 6{z® + ($/6Vn)(z® + 1) + O,(n M)},
(7.6)

for the BC interval, so the BC, intervals are shifted ap-
proximately (5/6\Vn)z(@’ further right.

Johnson (1978) suggested modifying the usual ¢ statistic
T=@-6)6toT, =T+ (5/6Vn)(2T* + 1) and then
considering T; to have a standard ¢,_; distribution in order
to obtain confidence intervals for § = EzX. Efron (1981,
sec. 10) showed that this is much like using the bootstrap
distribution of 7* = (x* — X)/6* as a pivotal quantity.
Interestingly enough, the Edgeworth expansion of 6,[al,
the o endpoint of Johnson’s interval, coincides with (7.5).
The BC, method makes a ““t correction” in the case of 6
= EpX, but it is not the familiar Student-t correction,
which operates at third order in (1.2), but rather a second-
order correction, coming from the correlation between x
and ¢ in nonnormal populations (see Remark D, Sec. 11).

I conjecture that the nonparametric BC, intervals will
be second-order correct for any parameter 6. There is no
proof of this, a major difficulty being the definition of
second-order correctness in the nonparametric situation.
Whether or not it is true, small-sample nonparametric con-
fidence intervals are far from well understood and, as em-
phasized in Schenker (1985), should be interpreted with
some caution.

Example 3: The Variance. Suppose that & is the real
line and 6 = var X, the variance. Line 5 of Table 2 shows
the result of applying the nonparametric BC, method to
data sets x;, x5, . . . , Xy, which were actually iid samples
from an N(0, 1) distribution. The number .640, for ex-
ample, is the average of O [.05}/ 6 over 40 such data sets,
B = 4,000 bootstrap replications per data set. The upper
limit 1.68 - § is'noticeably small. The reason is simple: the
nonparametric bootstrap distribution of #* has a short
upper tail compared with the parametric bootstrap distri-
bution, which is a scaled y%, random variable. The results
of Beran (1984a), Bickel and Freedman (1981), and Singh
(1981) show that the nonparametric bootstrap distribution
is highly accurate asymptotically, but of course that is not
a guarantee of good small-sample behavior. Bootstrapping
from a smoothed version of F, as in Efron (1982a, sec.
5.3), alleviates the problem in this particular example.

8. GEOMETRY OF THE NONPARAMETRIC CASE

Formula (7.3), which allows us to apply the BC, method
nonparametrically, is based on a simple heuristic argu-
ment: instead of the actual sample-space 9C of the data
points x;, consider only distributions F supported on X =
{x1, x5, ..., x,}, the observed data set. This is an n-
category multinomial family, to which the results of Sec-
tion 6 can be applied. Because the multinomial is an ex-
ponential family, Lemma 3 directly gives (7.3).

We will now examine this argument more carefully, with
the help of a simple geometric representation. See Efron
(1981, sec. 11) for further discussion of this approach to
nonparametric confidence intervals.
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A typical distribution supported on 9 is

F(w) : mass w; on x;, (8.1)

where w = (w;, w,, . . ., w,) can be any vector in the
simplex §, = {w: w; = 0 Vi, 2} w; = 1}. The parameter
6 = t(F) is defined on §, by 6(w) = #(F(w)). The central
point of the simplex,

wl=1/n = (1/n, 1n, ..., 1/n), (8.2)

corresponds to F(w?) = F, the usual empirical distribu-

tion; (w°) = § = t(F), the nonparametric MLE of 6.
The curved surface

e = {w: 0(w) = O(w°) = 6} (8.3)

comprises those distributions F(w) having 6(w) = 0. The
vector U, is orthogonal to ¢ at w°, as shown in Figure 1,
which follows from definition (7.2) of the empirical influ-
ence function. U is essentially the gradient of 6(w) at w°
(see Efron 1982a, sec. 6.3).

With w unknown, but & = {x,, . .., x,} considered
fixed, one can imagine setting a confidence interval for
6(w) on the basis of a hypothetical sample x§, x5, . . .,
x} ~ F(w). A sufficient statistic is the vector of proportions
P, = #{x} = x}/n, say P = (P, P,, ..., P,), with
distribution

P ~ mult,(n, w)/n, wES,. (8.4)

The notation here indicates n draws from an n-category
multinomial, having probability w; for category i. We sup-
pose that we have observed P = w? in (8.4), that is, that
the hypothetical sample xf, . .., x* equals the actual
sample x;, . . ., X,.

Distributions (8.4) form an n-parameter exponential
family (6.6) withy = P, ; = log(nw;) + ¢, and y(y) =
log(2} exp(n;)/n). Here ¢ can be any constant, since all
vectors i) + c1 correspond to the same probability vector
w, namely w; = exp(n,)/ 2} exp(n;).

If one accepts the reduction of the original nonpara-
metric problem to (8.4), with observed value P = w?,
then it is easy to carry through the least favorable family
calculations (6.3)-(6.5): (i) 4 = 0; (i) o = U; (iii) f, is
the member of (7.4) corresponding to %) + Ajp = AU,
namely

P* ~ mult(n, w*)/n, w} = exp(/lU,-)/Z exp(AU));
j=1

(8.5)

(iv) finally, formula (7.3) follows directly from Lemma 3,
by differentiating (1) = log(Z} exp(4'J;)/n) (and re-
membering that 2 U, = 0).

Only step (ii) is not immediate, but it is a straightforward
consequence of definition (6.3) and standard properties of
the multinomial. It has already been noted that U is or-
thogonal to €, so U is proportional to V in (6.3). However,
—i4 = I — 11'/n, which has pseudo-inverse I. Thus fi is
proportional to U. Since (6.7), (6.8) produce the same
value of a if ji is multiplied by any constant, this in effect
gives p = U.

An interesting case that provides some support for the



180

nonparametric BC, method is that where the sample space
is finite to begin with, say & = {1, 2, , L}. A typ-
ical distribution on «is f = (f, . . ., fL) where fi =
Prix; = I}. The observed sample proportions f= (F1, fas

C s FU), fi = #{x; = D/n, are sufficient, with distribu-
tion f ~ mult, (n, f)/n. This is an L-parameter exponential
family, so the theory of Section 6 applies. It turns out that
Lemma 3 agrees with formula (7.3) in this case. Non-
parametric BC, intervals are the same as parametric BC,
intervals when 9Cis finite. See remarks G and H of Efron
(1979) for the first-order bootstrap asymptotics of finite
sample spaces.

Family (8.4) was used in Section 11 of Efron (1981) to
motivate a method called nonparametric tilting, a nonpar-
ametric analog of the standard hypothesis-testing ap-
proach to confidence interval construction. The one-pa-
rameter tilting family, (11.12) of Efron (1981), is closely
related to the least favorable family 5 in Figure 1. Efron
(1981, table 5) considered samples of size n = 15 for the
one-sided exponential density f(x) = exp[—(x + 1] (x

—1). Central 90% tilting intervals for § = E.X were
constructed for each of 10 such samples, averaging [ — .34,
.50]. The corresponding nonparametric BC, intervals av-
eraged [—.34, .52] and were quite similar to the tilting
intervals on a sample-by-sample comparison. The non-
parametric BC, method is computationally simpler than
nonparametric tilting and seems likely to give similar re-
sults in most problems.

We end this section with a useful approximation formula
for the bias-correction constant z,, developed jointly with
Timothy Hesterberg. In addition to (7.2) we need the
second-order empirical influence function

Vi = lim {[t((1 — 24)F + AJ; + AJ))
A—0

- (1 = A)F + A6)

— (1 - AF + A6) + ((F)/AY. (8.6)

Define z,, = (3) 2 U3/(2] U?)*? [approximation (7.3)

for a] and
[U’VU
2 = | TyTn T

OF ®7)

tr V] /2n{Ul),

where V is the n X n matrix (V).

Lemma 4. The bias-correction constant z, approxi-
mately equals

Q12D (201) P (200)}-

For the law school data, Example 1 of Section 7, zy, =
—.0817 and zy, = —.0067, giving zo = —.0869 from (8.8),
compared with z, = —.0927 = .0039 from B = 100,000
bootstrap replications.

The term z(, relates to skewness in §, and zy, is a geo-
metric term arising from the curvature of ¢; at w°. It is
analogous to formula (A15) of Efron (1985). Lemma 4
will not be proved here but is important in the sample size
considerations of Section 9.

(8.8)

Journal of the American Statistical Association, March 1987

Figure 1. All probability distributions supported on {x,, X, . . .
are represented as the simplex §,. The central point w° corresponds
to the empirical distribution F. The curves indicate level surfaces of
constant value of the parameter 6. In particular s comprises those
probability distributions having 6 equal to O(w°) = 6, the MLE. The
least favorable family 5 passes through we in the direction U, orthogonal
to G.

) Xn}

9. BOOTSTRAP SAMPLE SIZES

How many bootstrap replications of 6* need we take?
So far we have pretended that the number of replications
B = oo, butif Monte Carlo methods are necessary to obtain
the bootstrap cdf G, then B must be finite, usually the
smaller the better. This section gives rough estimates of
how small B may be taken in practice. The results are
presented without proof, all being standard exercises in
error estimation (see, e.g., Kendall and Stuart 1958, chap.
10). They apply to any situation, parametric or nonpara-
metric, where G is obtained by Monte Carlo sampling.

First consider the easy problem of estimating the stan-
dard error of § via the bootstrap The bootstrap estimate
based on B replications, 65 = [ZZ.,(0 — 6*)¥
(B — 1]"?, has conditional coefficient of variation (stan-
dard deviation divided by expectation)

CV{65 |y} = [(6 + 2)/4B]™", 9.1)

where § is the kurtosis of the bootstrap distribution G.
The notation indicates that the observed data y is fixed in
this calculation. As B — =, then (9.1) — 0 and 65 — &,
the ideal bootstrap estimate of standard error.

Of course ¢ itself will usually not estimate the true stan-
dard error o = SD,{f} perfectly. Let CV(6) be the coef-
ficient of variation of &, unconditional now, averaging over
the possrble realizations of y [e.g., if n = 20, § =
X ~ N(O 1), then CV(§) = (1/40)"2 = .16]. The uncon-
ditional CV of 45 is then approximated by

ES + 2] 12

5 9.2)

Table 5 displays CV(d) for various choices of B and
CV(6), assuming that E§ = 0. For values of CV(6) =

CV(6,) = [CVZ(a) +
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Table 5. Coefficient of Variation of g, the Bootstrap Estimate of
Standard Error, as a Function of B, the Number of Bootstrap
Replications, and CV(é), the Limiting CV as B —

B—

CV(s) 25 50 100 200 ®
.25 .29 .27 .26 .25 .25
.20 .24 .22 .21 .21 .20
15 .21 .18 A7 .16 .15
10 A7 14 A2 11 10
.05 15 1 .09 .07 .05

0 14 .10 .07 .05 0

NOTE: These data are based on (9.2), assuming that £5 = 0.

.10, typical in practice, there is little improvement past B
= 100. In fact, B as small as 25 gives reasonable results.

Now we return to bootstrap confidence intervals. In the
Monte Carlo situation the bootstrap cdf G must be esti-
mated from bootstrap replications 67, , 0%, say
by

Gy(s) = #{0F < s}/B. 9.3)

As B — o, then Gz — G, the ideal bootstrap cdf we have
been using in the previous sections. Let 0[] be the level
a endpoint of either the BC or BC, interval obtained from
G5(s) by substitution in (3.8), (3.9).

The following formula for the conditional CV of 65[a]
— 0 assumes that G is roughly normal and that z, and a
are known, for example, from (8.8) and (6.5) or (7.3):

L1 a(l — a))"?
- Bl/ZIZ(a)I{ o(z@)? } , (94

9(z) = exp(—3z2)/V2x. Notice that since we condition
on y, the only random quantity on the left side of (9.4) is
0p[]. Formula (9.4) measures the variability in 63[a] —
@ due to taking only B bootstrap replications, rather than
an infinite number.

Here is a brief tabulation of (9.4) x B'%:

o .75 90 .95 .975
(9.4) x B2 :2.02 1.33 128 1.36

If B = 1,000, for instance, then CV{05[.95] — 8 | y} =
1.28/10002 = .040. Reducing B to 200 increases the con-
ditional CV to .091. This last figure may be too big. The
whole purpose of developing a theory better than (1.1) is
to capture second-order effects. As the examples have
indicated, these become interesting when the asymmetry
ratio R/L is larger than say, 1.25, or smaller than .80. In
such borderline situations, an extra 9% error in each tail
due to inadequate bootstrap sampling may be unaccept-
able.

If the bias-correction constant Zo 18 estimated by Monte
Carlo directly from z, = ®~'(G5(f)), rather than from
(8.8), then

CV{05[a] — 0|y}

CV{03[a] — 6 | y}

(9.5)

2(1 - a)
9(0)p(z)

Ll “)}m 9.6)

. 1 1
- Bl2z(@ {(/)(0)2 ¢(z(a))2
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for a > .50. This gives larger CV’s than (9.4):
a 75 90 95 975 ©.7)
(9.6) x B¥?:3.04 197 175 1.71 '

Comparing (9.7) with (9.5) shows that we need B to be
about twice as large to get the same CV if z, is estimated
rather than calculated. Formula (8.8) can be very helpful!

Both (9.4) and (9.6) assume that the bootstrap cdf is
estimated by straightforward Monte Carlo sampling, as in
(9.3). M. V. Johns (personal communication) has devel-
oped importance sampling methods that greatly accelerate
the estimation of G in some situations.

10. ONE-PARAMETER FAMILIES

We return to the simple situation 6 ~ f,, where there
are no nuisance parameters and where we want a confi-
dence interval for the real-valued parameter 6 based on a
real-valued summary statistic . This section gives a more
extensive discussion of the acceleration constant a, which
has played a basic role in our considerations. Three fa-
miliar types of one-parameter families will be investigated:
exponential families, translation families, and transfor-
mation families.

Efron (1982b) considered the following question: for a
given family  ~ fq, do there exist mappings é = g(d), d)
= h(6) such that ¢ = ¢ + 04s9(Z), Z ~ N(0, 1), as in
(4.8)? This last form, a General Scaled Transformation
Family (GSTF), generalizes the concept of the ideal nor-
malization, where ¢ = ¢ + Z.[We now add the conditions
q(0) = 0, ¢'(0) = 1, as in Efron (1982b).]

The question is answered in terms of the diagnostic func-
tion D(z, 0) = [p(0)/p(2)][F(65”)/Fy(us)]. Here o(z) is
the standard normal density (27) "2 exp( — 2%/2); Fg is the
cdf Fy(s) = Pro{d = s}; Fy(s) = (8/80)Fy(s); a = P(2);
0% is the 100 - « percentile of 0 given 0, 6 = Fi'(@);
and Uy is the median of 8 given 0, u, = 6§ 5 - E31(.5).
It is shown that the form of ¢, and g(z) in (4.8) can be
inferred from D(z, 8), the main advantage being that D(z,
0) is computed without knowledge of the normalizing
transformations g, 4.

The connection of transformation family theory with the
acceleration constant a is the following: define

& = (3/02)D(z, )], (10.1)

If g(z) in (4.8) is symmetrically distributed about zero, a
situation called a symmetric scaled transformation family
(SSTF), then

& = do,ld (10.2)

(see Efron 1982b, eq. 4.11). A more complicated rela-
tionship holds for the GSTF case.

Notice that (10.2) is quite close to our original descrip-
tion of “a” as the rate of change of standard deviation on
the normahzed scale. As a matter of fact, we can transform
(3.6), (3.7) into an SSTF by considering the statistic

Zy A
;= ¢ +
1 - az, 4=9

$=¢+ =1+ ),

]_ —
(10.3)
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instead of ¢ itself. Then it is easy to show that
b=0¢+ A+ ed)Z & =all - az), (10.4)

an SSTF with 6, = 1 + &¢, 64, = ¢ for all ¢. [The
quantity &, has the same definition in (10.4) as in (4.11).]

Example. For § ~ 0x%/19 as in Table 2, ¢, = .1090
for all ¢ [using Eq. (10.6)]. In addition, z, = ®~! Pr{y%
< 19} = .1082. The relationship a = &/(1 + &z,) ob-
tained by solving for a in (10.4) gives a = .1077, the value
used in Table 2. This family is nearly in SSTF (see Remark
E, Sec. 11).

We show below that under reasonable asymptotic con-
ditions,

SKEW,(l,)/6 = &, (10.5)

where & = (3/8z)D(z, 0)|.-o, as in (10.1). This last def-
inition of &, can be evaluated for any family 6 ~ fo, as-
suming only that the necessary derivatives exist. The main
point here is that SKEW,(/,)/6 always approximates &,
(10.1), and in SST families ¢, has the acceleration inter-
pretation (10.2).

Now to show (10.5). It is possible to reexpress (10.1)
as

e = 20
©T defo(to)

where i, = (d/dO)u,, the rate of change of the median u,
with respect to 6. For notational convenience suppose that
6 = 0. Instead of 0, consider the statistic X = i o(0)iy,
where i, equals the Fisher information E,l(f)%. The pa-
rameter g, is invariant under one-to-one transformations
of §, so we can evaluate the right side of (10.6) in terms
of X, &g = —p(0) 5 () fi (uf).

For 6 = 0, X has expectatlon EyX = 0 and standard
deviation ¢ = ig'?; in addition, [£(0) = 0, since X = 0
implies that @ = 0 is a solution of the MLE equation.
Assuming the usual asymptotic convergence properties, as
in (5.1), (5 3) we have the following approx1mat10ns
mo= 15 pf = —yfig6; fE(uf) = o(0)id?; IF(u¥) =
— Vi y§/6. These are derived from standard Edgeworth
and Taylor series arguments, which w1ll not be presented
here. Taken together they give ¢, = SKEW,(/ §)6 =
SKEWo(l )/6, which is (10.5). The quantity SKEWo(l )/6
is O(n~'?), and the error of approximation in (10.5) is
quite small,

& = [SKEW,({o)/6][1 + O(n-1)]. (10.7)

Approximation (10.5) is particularly easy to understand
in one-parameter exponential families. Suppose that x;,
Xy, . . . , X, are iid observations from such a family, with
sufficient statistic y = ¥ having density f,(y) = exp{n[6y
= (O} fo(y). In this case formula (10.6) becomes

L oke(®) [ = ul
O A
where 1§ = Ey{y}, uf = mediang{y}, 4} = 9u}/60, and

so forth. The term [(A; — uf)lod] = yi/6[1 + O(n~1)],
and ajo0)a fi(ud) = 1 + O(n™), both of the calcu-

Lo(o) (10.6)

(10.8)
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lations being quite straightforward. Thus & = 6[1
O(n‘l)] Since / g(y) = n[y — 4], we have SKEW,,(I o(»))

= SKEW,(y) = y¢, verifying (10.5) for one-parameter
exponential families.

Example. 1f Y ~ Poisson(f), 6 = 15, then SKEW,
({9)/6 = 1/(6 - 62) = .0430. For the continued version of
the Poisson family used in Efron (1982b; note Corrigenda,
p. 1032), (8/02)D(z, 0)|,-o = .0425 for 6 =

Translation Families. Suppose that we observe a trans-
lation family f = { + W, as in (3.12). Express W as a
function q(Z) of Z ~ N(0, 1), for simplicity assuming
that q(O) 0 and ¢'(0) = 1, as in Efron (1982b). Then
zo = ®-Pr{{ < ¢} = 0. In this case it looks like methods
based on the percentiles of the bootstrap distribution must
give wrong answers, since if W is long-tailed to the right
then the correct interval (3.13) is long-tailed to the left,
and vice versa. However, the BC, method produces at
least roughly correct intervals, as we saw in the proof of
Lemma 1.

What happens is the following: for any constant A the
transformatlon ga(?) = (exp(Ar) — 1)/A gives ¢ = ga(0),

= 84(0), and Z, = g4(W) satisfying

b=1¢+ 0} Zy,, =1+ A¢. (10.9)

The Taylor series for W = g(Z) begins W = Z + (yy/
6)Z* + ---, where y = SKEW(W). Then Z, = Z + (yw/
6)°Z* + (A2)Z? +
The choice A = a = —ypy/3resultsin Z, = Z + cZ°
+ -+, the quadratic term canceling out; Z, is then ap-
proximately normal, so (10.9) is approximately situation
(3.6), (3.7), with z; = 0, a = —yy/3. But we know that
the BC, intervals are correct if we can transform to situation
(3 6), (3.7). An application of Lemma 2, assuming that
~ N(0, 1), shows that a = —yu/3 = SKEW(/,({))/6
for the translation family { = ¢ + W, reverifying (4.4).
[(If Z, ~ N(0, 1) in (10.9), then a must equal ¢, the constant
value of ¢, (10.1), for the translatlon family £ = ¢ + W,
one can show directly that ¢ = —yy/3 for such a family.]
In the example § ~ 6x2/19, the two constants z, and a
are nearly equal. This is no fluke.

Theorem 2. 1If § is the MLE of 6 in a one-parameter
problem having standard asymptotic properties (5.1) or
(5.3), then z; = a,

SKEW,(/,)

2= ®7IPr{f < 6} = >

[1 + O(n1)).

(10.10)

Proof.  We follow the notation and results of DiCiccio
(1984): thus k,, k,, k, equal the first three cumulants of
lgunder 6; ky,, ko, kos the first three cumulants of Io; koo,
the first cumulant of /,; and k,, = covy(ly, I4). (So ky =
iy, the Fisher information.) All cumulants are assumed to
be O(n). Then the relative bias of 9 is

Ef0 — 0)  koy — 2k

— - 3 -
iy T VR G

(10.11)
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and 6 has skewness
koyw — k
Yo = '—0—017(‘%72——3 + 0O(n=3?).
Both b and y, are O(n~1?2).
Standard Edgeworth theory now gives

(10.12)

Pr,{0 < 6}

B(=b) = CoB)E* = 1) + O™

= .5+ ¢(0) (2k; — kOOl;k';Z(kom - k;)
+ 0(n‘3’2)
= .5+ ¢(0) 6k3’2 + O(n=32).

Since SKEW,(I,) = k,/ k32, this verifies (10.10).

In multiparameter problems it is no longer true that z,
= a. The geometry of the level surface ¢; adds another
term to z,, as in (8.8).

1. REMARKS

Remark A. Suppose that instead of (3.6), (3.7) we
have o, = 7(1 + A¢), so oo = 7 (z # 1). The transfor-
mations ¢' = /1, ¢' = ¢/, give ' = ¢' + oy (Z —
z), where oy = 1 + a¢’ and a = Ar, so we are back in
form (3.6), (3.7). Notice that the derivative d(a,/0,)/d(¢/
0op) = a, as in (4.7). In a similar way we can transform
(3.6), (3.7) so that g4, = 1 at any point ¢,; the resulting
value of a satisfies (4.7).

Remark B. Instead of using ¢ to estimate ¢ in (3.6),
(3.7) we might change to the estimator ¢© = ¢ — cay,
for some constant c. It turns out that we are still in situation
(3.6), (3.7): ¢© = ¢ + oH(Z — z{?), where

0P =1+ a9 — ¢), ¢ = c/(l - ao),
(11.1)

and a© = a(l — ac), z{) = z; + ¢§. The choice ¢ =
—zo/(1 — az,) gives z(‘) = 0, as in (10.3), (10.4). The
choice ¢ = a gives approximately the MLE of ¢. Inter-
estingly enough, the BC, interval for ¢ based on ¢ is the
same for all choices of c. Minor changes in the choice of
estimator seem to have little effect on the BC, intervals
in general, though for computational reasons it is best not
to use very biased estimators having large values of z,.

Remark C. Section 6 uses the MLE 6 = ¢(}). This has
one major advantage: the BC, interval for 0, based on 0,
stays the same under all multivariate transformations (6.11).
Stein (1956) noted that the least favorable direction f
transforms in the obvious way under (6.11), r = Dg,
where D is the matrix with ijth element 3:7,/317,},, -4, from
which it is easy to check that formula (6.5) is invariant:
the constant a is assigned the same value no matter what
transformations (6.11) are applied. The bootstrap distri-
bution G is similarly invariant, as shown in Efron (1985)
and so is z,. This implies that the BC, intervals are invari-
ant under transformations (6.11).
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Remark D. The multiparametric theory of Section 5
gives an interesting result when applied to location-scale
families; y = (x, 5), = (0, o), and family of densities
f»(y) of the form

foo(x, ) = (1/6*)fo((x — 0)/a,s/0),

fo(x, s) being a known bivariate density function.

Suppose that we wish to set a confidence interval for
the location parameter @ on the basis of its MLE 6. Par-
ametric bootstrap intervals are based on the distribution
of 6* when sampling from fos(x*, s*). The BC interval
essentially amounts to pretending that ¢ is known (and
equal to ¢) in (11.2) and that we have only a location
problem to deal with, rather than a location-scale problem.
In contrast, the BC, interval takes account of the fact that
o is unknown. In particular the least favorable direction
i1, plotted in the (6, ¢) plane, is not parallel to the 6 axis.
It has a component in the ¢ direction, whose magnitude
is determined by the correlation between x and s. This
means that Stein’s least favorable family (6.4) does not
treat o as a constant.

Table 6 relates to the following choice of fy(x, 5):

x~x%/30 — 1,  s|x~1+ x)(xL/149)"2, (11.3)

the two y? variates being independent. This is a compu-
tationally more tractable version of the problem discussed
in Efron (1982, tables 4 and 5). Approximate central 90%
intervals are given for 6, having observed (x, s) = (0, 1).
For any other observed (x, s) the intervals transform in
the obvious way, 0,[a] = x + s6y[a]. Line 3 of Table 6
shows the exact interval, based on inverting the distribu-
tion of the pivotal quantity T = (§ — )/6 for situations
(11.2), (11.3).

In this case the BC, method makes a large ‘“‘second-
order ¢ correction,” as in Example 2 of Section 6, shifting
the BC interval a considerable way rightward and achiev-
ing the correct R/L ratio. The length of the BC, interval
is 90% the length of the T interval. This deficiency is a
third-order effect, in the spirit of the familiar Student-¢
correction. It arises from the variability of & as an estimate
of g, rather than the second-order effect due to the cor-
relation of & with 4.

(11.2)

Remark E. Section 3 says that the family § ~ 6y3/19
can be mapped into form (3.6), (3.7). What are the ap-
propriate mappings? It simplifies the problem to consider
the equivalent family 6 ~ 9()(19/c0), where ¢, = 18.3337
= median(y%). Then ¢ = g,(0), { = g,(0), and W =
81(x%/c,) give a translatlon family (3.12), with median(W)

Table 6. Central 90% Intervals for 6, Having Observed
(x, s) = (0, 1) From the Location-Scale Family
(11.2), (11.3) so 8 = 0 and & = .966

RL Length
1. BC interval [-.336, .501] 1.49 .837
2. BG, interval [-.303, .603] 1.99 .906
3. Tinterval [—-.336, .670] 1.99 1.006

NOTE: Line 3 is based on the actual distribution of the pivotal quantity T = (6 — 6)/é.
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= 0, for any mapping g;(f) = (log t)/c,. Choosing ¢, =
.3292 results in W = g(Z) having q(0) = 0, ¢'(0) =

as in the discussion of translation families in Section 10.

Section 10 suggests normalizing a translation family by

84(H) = (exp(At) — 1)/A, a good choice for A being the
-constant &, (10.1), which equals .1090 for all § in the
family § ~ 6(x%/c,). The combined transformation g
= ga(g(9)) is g(¢) = 9.1746[+*'* — 1]. The transformed
family ¢ = g(0), ¢ = g(0) is of form (3.6), (3.7),

d=¢ + (1+.109 - ¢)Z,
Z = 9.1746[(x%/co)®1 — 1]. (11.4)

Numerical calculations verify that Z as defined in (11.4)
is very close to a standard normal variate. In fact we have
automatically recovered, nearly, the Wilson-Hilferty cube
root transformation (Johnson and Kotz 1970). Using (11.4),
it is not difficult to show that g(¢), as defined previously,
gives approximately (3.6), (3.7) when applied to the family
0 ~ 6(x%/19) considered in Section 3, with constants z,
and a as stated. Schenker (1985) gave almost the same
result.

Remark F.  Suppose thaty = (x;, x,, . . . , X,,), where
the x; are an iid sample from a regular one-parameter
family f,(x.), and that d(y) is a first-order efficient esti-
mator of 6, like the MLE. The score function i  appearing
in (4.4) is that based just on @, rather than the score
function based on the entire data set y. However, it is easy
to show from considerations like those in Efron (1975)
that the two score functions are asymptotically identical.
Their skewnesses differ only by amount O,(n~?). Itis often
more convenient to calculate a from the score function for
y rather than for 6, as was done, for example, in (6.5).

Remark G. McCullagh (1984) and Cox (1980) gave an
interesting approximate confidence interval for 6, which
for the simple case 6 ~ f, has endpoint

eApp[a] = é + 1/\/’]%_2

o (3]}5 + 21}00]) + ]%0012(‘1)2
X {z() + oka”

Here 6 is the MLE of 6; if ky(0) = E,l3, the Fisher in-
formation, then k, = k,(9) and k} = dk2(0)/d0|9 ¢; and
koo = (Eglg)g ¢- Formula (11.5) is based on higher-order
asymptotic approximations to the distribution of the MLE
(see also Barndorff-Nielsen 1984).

It can be shown, as indicated in Section 12, that 6 []
also closely matches (11.5), (Ogc,[a] — GApp[a])/a =

O,(n™"). We see again that the BC, method offers a way
to avoid theoretical effort, at the expense of increased
numerical computations.

} . (11.5)

12. PROOF OF THEOREM 1

A monotonic mapping d; = g(é), ¢ = g(6) transforms
the exact confidence interval in the obvious way, dex[a]
= g(ﬁEx[a]) likewise for the BC, interval. By using such
a mapping we can always make ¢ = 0 and the distribution
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of pgivend = 0 perfectly normal. Because of (5.3), which
says that the distributions of § are approaching normality
at the usual O(n~'?) rate, the normalizing transformation
g is asymptotically linear, g(0) = 0 + c,0* + c;6° +
= 0n '), c; = O(n™Y).
We will assume that the problem is already in the form
6 = 0, with the cdf of 6 for 6 = 0 normal, say

Gy~ N(-2z, 1). (12.1)

Here z, = ® 'Py{f < 0} must be included because it is
not affected by any monotonic transformations; z, = y,/
6 is O(n~"?) by (5.3). A simple exercise, using the mean
value theorem of calculus, shows that if (5.4) is true in the
transformed problem (12.1), then it is true in the original
problem.

Assuming (5.3), = 0, and (12.1), we will show that
the exact interval has endpoint

zy + z©

e R N (N TCC
+(60/2)(zg + 2@), (12.2)
compared with
. Zy + Z(a)
= 12.
0BC,[a] 1 — 6’0(20 + Z(a)) ( 3)
for the BC, interval. In this section the symbol “=" in-

dicates accuracy through O(n~!) or O,(n""), with errors
O(n=?) or 0,(n~%?). Then

Osc,[o] — O o]
gy
= Onc,[al{oozo + fo + (30/6)(z? — 1)}
— (60/2)(zg + z@)3,

which is O,(n""), as claimed in Theorem 1.
The proof of (12.2) begins by noting that (12.1) implies

(12.4)

that fy = —z, 09 = 1, y = 0, &, = 0. Then (5.3) gives
Efd =0+ 8=+ po)0 —
g9 =1+ 600 + 5,6%2,
Yo = 108, 8y =0, (12.5)

for 8 = O(1) [i.e., for 6 a bounded function of n, in the
sequence of situations referred to in (5.3)]. The 100 - «
percentile of § given 6 is

0 = (0 + B) + 0sfz® + (3/6)(z? - 1)}
= [(1 + Bo)0 — zo] + [1 + 608 + (60/2)67]
X [2@ + (5,6/6)(z®* - 1)], (12.6)

using a Cornish-Fisher expansion and (12.5). The 6, how-
ever, that has §{ = 0 is by definition 0z,[1 — a]. Solving
the lower expression in (12.6) for 0 and substituting 1 —
a for a gives (12.2).

The proof of (12.3) follows from (3.8), (3.9), and (12.1)
[which says that G ~ N(—z,, 1)], if we can establish that
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a = ¢,. In fact, we show below that
g =0a, for 0 = O(n=1?),

which combines with a =
required result.

Formula (12.7) follows from (12.5), which gives the sim-
pler expressions

Egé=0 — 2o,

(12.7)
e/ (1 + &2zg) = g to give the

09514‘600, ))gio, 6g=0

(12.8)
for § = O(n=?). The cdf of 0 given 6 is calculated to be
Gi(0) = P(z9)20 — (W/O)(z5 — 1), (12.9)

zg=(0 — 0 — By)loy, 2y = (3/30)z,. Straightforward
expansions give
1+ 6029 + By + (/6)(z2 — 1)
1+ Bo — 7/6 ’
(12.10)

from which &, = (8/02)D(z, 0) |,—0 = 6o/(1 + o — o/
6), verifying (12.7), (12.3), and the main result (12.4).

The proof that f5c [«] also matches the Cox—McCullagh
formula (11.5) is similar to the proof of Theorem 1 and

will not be presented here. The main step is an expression
for Opc,[a] involving Lemma 5,

Opc,[e] = 2@ + (ks/6k3*){z? + 1}

D(z@®, §) =

+ (ky/6k32)22@ + (03},
[Received November 1984. Revised December 1985.]
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