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1. Introduction 
Assuming that n  units are randomly selected at the 

beginning of study which will be terminated when there 
are m  or more failed units. Under a type II progressive 
interval censored inspection scheme, that trial is 
terminated after the thk  inspection if the total number of 
failed units is equal to or exceeds m . Also; iL , 1, 2,...i =  
is the predetermined inspection times. Suppose that at the 

thi  inspection, id  failed units Markov chain Monte Carlo 
(MCMC) are observed and ir  units are fixed removed 
from the test. In other words, id  is the number of failed 
units between any two successive inspections 1iL −  and iL , 
where 0 0L = . Thus, id  is random variable with observed 
value pending on the outcomes of the study. Denote

1

j

j i
i

dζ
=

= ∑ , the test is terminated when 1k mζ − <  and

k mζ ≥ , for the predetermined integer value m , 0 m n< ≤ . 
 There is shortage of topics for type II progressive 

interval censored. For instance, Xiang & Tse [10] treated 
the number of dropouts as a random variable and 
discussed a type II progressive interval censoring with 
random removals for Weibull distributed lifetime data. 
Ashour and Afify [1] considered the estimations of the 
parameters of exponentiated Weibull family with type II 
progressive interval censoring with random removals. 

In Bayesian approach, It is too difficult to find integrate 
over the posterior distribution and the problem is that the 
integrals are usually impossible to evaluate analytically. 
But in MCMC technique provided a convenient and 
efficient way to sample from complex, high-dimensional 
statistical distributions. Recently, application of the 
MCMC method to the estimation of parameters or some 
other vital properties about statistical models is very 
common. Green et al. [5] using the MCMC method for 
estimating the three parameters Weibull distribution, and 
they showed that the MCMC method is better than the ML 
method, when given a proper prior distribution of the 
parameters. As a generalization of the two parameters 
Weibull model, Gupta et al. [6] gave a complete Bayesian 
analysis of the Weibull extension model using MCMC 
simulation and complete sample. 

Bebbington et al. [2] shown that the flexible Weibull 
distribution is quite flexible, being able to model various 
ageing classes of lifetime distributions. So we can say that 
the flexible Weibull distribution is very important in 
several basic fields include engineering sciences, 
reliability, biological, demography and actuarial sciences. 
Also, El-Gohary et al. [3] introduced Inverse Flexible 
Weibull Extension Distribution. 

A random variable X  is said to have a flexible Weibull 
distribution with parameters Θ = (λ, β) > 0  if Y = 1 X⁄  
then the random variable Y has the inverse flexible 
Weibull extension distribution, symbolically we write 
Y~IFW(λ, β) . The cumulative distribution function and 
the probability density function of Y are respectively 
given by 
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The main aim of this paper is evaluating the estimates 
the model under Type II progressive interval censored 
using both of bootstrap-t (Boot-t) and Monte Carlo 
simulation based on Classical estimation and Metropolis–
Hastings algorithms based on Bayes estimation. In 
addition, we will assume the lifetime model which has 
inverse flexible Weibull distribution with two scale 
parameters. We assumed that the both scale parameters λ 
and β have gamma prior and they are independently 
distributed. We will evaluate performance some simulation 
experiments to see the behavior of the proposed Bayes 
estimators and compare their performances with the 
maximum likelihood estimators MLEs.  

The rest of the paper is organized as follows. In the next 
section, bootstrap-t (Boot-t) based on Classical estimation 
are presented. In Section 3, we cover Bayesian estimation 
and MCMC technique. To illustrate the behavior of the 
proposed methods as well as evaluate the statistical 
performances of these estimates, we performed a real data 
analysis in section 4 with comparisons among estimators 
are investigated through Monte Carlo simulations in 
previous section and conclusions appear. 

2. Bootstrap-t (Boot-t) Based on Classical 
Estimation 

Classical estimation (MLEs) of the unknown parameters 
and approximate confidence intervals are presented. Also, 
the corresponding parametric bootstrap confidence intervals 
using Boot-t for the parameters are given in this section. 

2.1. Classical Estimation 
Xiang & Tse [10] point out that the 1 2( , ,..., )kD d d d=  

where k  is random and corresponds to the number of 
inspections before the termination of the experiment, the 
joint likelihood function of id  and k , is given by 

 
1 2

1
1

( , ,..., , ; )

( ( ) ( )) (1 ( ))

k
k

d ri ii i i
i

L d d d k

C F L F L F L−
=

Θ

= − −∏
 

where 

 

1

1 1
1

1 2

( )
...

k

j j
j

k

n d rn n d r
C

d d
d

−

=

 
− + − −  

=    
    

 

∑  

and 

 
1

1 1
.

k k

k j j
j j

r n d r
−

= =
= − −∑ ∑  (3) 

Note that id  and k  are random variables in equation 
(3), to ensure that there at least m  failed units at the end 

of the study, the number of units removed at each 
inspection time, ir , is restricted to be any integer value 

between 0  and 
1

1

i

j
j

n m r
−

=
− −∑ , thus, ir  would not be 

affected by jd  for all 1, 2,...,j i= . 
Xiang & Tse [10] concluded that, the likelihood 

function under type II progressive censoring may be 
considered as a special case of equation (4) when all id 's 

are fixed to be 1 and ( )i iL y= , where ( )iy is the thi
ordered survival time. By all previous condition, it reduces 
to the type II censored if 0ir =  for 1, 2,..., 1i m= −  and

mr n k= − . 
By taking logarithm in (3), the log likelihood function 

for type II progressive interval censored ignoring the 
normalized constant can be written as follows 

 [ ] [ ]1
1 1

log ( ) ( ) log 1 ( )
k k

i i i i i
i i

l d F L F L d F L−
= =

= − + −∑ ∑  (4) 

where 𝑙𝑙 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝛩𝛩). 
Thus, the maximum likelihood estimates �̂�𝜆 and �̂�𝛽 can be 

obtained by maximizing (4) with respect to 𝜆𝜆 and  𝛽𝛽; that 
is, by simultaneously solving the estimating equations, 
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To construct confidence intervals for the unknown 
parameters we need to compute the asymptotic matrix 
variance which obtained by inverting the Fisher 
information matrix 𝐼𝐼(𝜆𝜆 , 𝛽𝛽),  in which elements are 
negatives of expected values of the second partial 
derivatives of the 𝑙𝑙 . The first and second partial 
derivatives for 𝐹𝐹(𝑥𝑥) with respect to 𝜆𝜆 ,𝛽𝛽 and the elements 
of the sample information matrix will be obtained in 
Appendix. The asymptotic normality of the MLEs can be 
used to compute the approximate confidence intervals 
(ACI) for parameters λ  and β . Therefore, (1 − 𝛾𝛾) 100% 
confidence intervals for parameters λ  and β  become 

 /2 /2
ˆ ˆ ˆ( ) ( )Z Var and Z Varγ γλ α β β± ±  

where Zγ 2⁄  is percentile of the standard normal 
distribution with right-tail probability  γ 2⁄ . 

2.2. Percentile Bootstrap Algorithm (Boot-p) 
We can increase information about the population value 

more than does a point estimate by using a parametric 
bootstrap interval. We propose to use confidence intervals 
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based on the parametric bootstrap methods using 
bootstrap-t Algorithm (Boot-t) based on the idea of Hall 
[7]. The algorithms for estimating the confidence intervals 
using this method is illustrated as follows 

1. Specify the values of 𝑛𝑛, 𝑚𝑚  and 𝑙𝑙𝑖𝑖 . 
2. Specify the values of λ and β. 

Step 1: set 𝑖𝑖 = 0 and let 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚 = 0. 
Step 2: 𝑖𝑖 = 𝑖𝑖 + 1 
• Generate 𝑑𝑑𝑖𝑖  as a binomial random variable with 

parameters 𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚 and  
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• Calculate 𝑟𝑟𝑖𝑖 = 𝑓𝑓𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟{𝑝𝑝𝑖𝑖 × [𝑛𝑛 − 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 − 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚 −
𝑑𝑑𝑖𝑖, where 𝑝𝑝𝑖𝑖 progressive schemes. 

Step 3: Set 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑚𝑚 + 𝑑𝑑𝑖𝑖  and 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚 = 𝑟𝑟𝑑𝑑𝑑𝑑𝑚𝑚 + 𝑟𝑟𝑖𝑖 . 

Step 4: If  
1
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else go to step 2. 
1. Compute the maximum likelihood estimates of 

the parameters  λ� , β�   by solving the likelihood 
equations simultaneously in Appendix. 

2. Using  λ�  and β�   to generate a bootstrap sample k∗. 
Based on k∗ compute the bootstrap estimate of λ  
and β  using likelihood equations respectively, 
say λ�∗ and β�∗ and the following statistics 
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3. Where 𝑉𝑉𝑉𝑉𝑟𝑟�λ�∗� and 𝑉𝑉𝑉𝑉𝑟𝑟�β�∗� are obtained using 
the Fisher information matrix. 

4. Repeat Step 4, B boot times. 
5. For the T1

∗  and T2
∗  values obtained in step 4, 

determine the upper and lower bounds of the 
100(1 − γ)% confidence interval bootstrap (CIB) 
of λ� and β�  as follows: let H(x) = P(Ti

∗ ≤ x), i =
1,2,3 be the cumulative distribution function of 
T1
∗ and T2

∗ for a given X , define  
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3. Bayesian Estimation and MCMC 
Technique 

In this section, we will focus to Bayesian approach 
using Markov chain Monte Carlo (MCMC) method to 
generate from the posterior distributions and in turn 
computing the Bayes estimators are developed. 

3.1. Bayesian Estimation 
In Bayesian scenario, we need to assume the prior 

distribution of the unknown model parameters to take into 
account uncertainty of the parameters. We consider the 
Bayesian estimation under the assumption that the random 

variables λ  and β  have an independent gamma prior 
distributions. Assumed that λ  ~ Gamma(B,A) and β  ~ 
Gamma(D,C), then, the joint prior density of λ  and β
can be written as  

 1 1 ( )( , ) B D A Cg e λ βλ β λ β− − − +∝  (7) 

Note that when 𝐴𝐴 = 𝐵𝐵 = 𝐶𝐶 = 𝐷𝐷 = 0, (we call it prior 0) 
they are the non-informative λ  and β  respectively. It 
follows from (1), (3) and (7) that the joint posterior 
density function of λ  and β given 𝑥𝑥 is thus  
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The Bayes estimate of any function of λ  and β , say 

𝑈𝑈(𝜆𝜆,𝛽𝛽), is 
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By using binomial and exponential series for equation 
(8), the posterior conditional distribution for λ  and β  are 
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respectively. 
It is not possible to compute (9) analytically. The 

problem is that the integrals in (9) are usually impossible 
to evaluate analytically, and the numerical methods may 
fail. The MCMC method provides an alternative method 
for parameter estimation. In the following subsections, we 
propose using the MCMC technique to obtain Bayes 
estimates of the unknown parameters and construct the 
corresponding credible intervals. 
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3.2. MCMC Technique 
Computer simulation of Markov chains in the space of 

parameter will depend on Markov chain Monte Carlo 
(MCMC) [see Gilks et al. [4]]. The Markov chains are 
defined in such a way that the posterior distribution in the 
given statistical inference problem is the asymptotic 
distribution. However, the posterior likelihood usually 
does not have a closed form for a given type II 
progressively interval censored data. Moreover, a 
numerical integration cannot be easily applied in this 
situation. The Metropolis – Hastings algorithm is a very 
general MCMC method first expansion by Metropolis et 
al. [9] and later extended by Hastings [8]. It is possible to 
use these algorithms by implement posterior simulation in 
essentially any problem which allows point wise 
evaluation of the prior distribution and likelihood function. 
It can be used to obtain random samples from any 
arbitrarily complicated target distribution of any dimension 
that is known up to a normalizing constant. In fact, Gibbs 
sampler is just a special case of the M-H algorithm.  

Now, we propose the following scheme to generate λ  
and β  from density functions and in turn obtain the 
Bayes estimates and the corresponding credible intervals. 

0. Start with an λ(0) = λ�, β(0) = β�  and M = burn −
in. 

1. Set t = 1. 
2. Generate λ(t)and β(t) from (10). 
3. Set t = t + 1. 
4. Repeats Steps 1-3 N  times. 
5. Obtain the Bayes estimates of λ  and β  with 

respect to the squared error loss function as  
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1Ê(β / x) β ,
N M

β
= +

= =
− ∑  

6. To compute the credible intervals of λ  and β  
order �̃�𝜆1, … , λ�N−M  and β�1, … , β�N−M  as λ�1 < ⋯ <
λ�N−M  and β�1 < ⋯ < β�N−M . Then the 100(1-γ)% 
symmetric credible intervals (SCI) of λ  and β  
become: 
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4. Numerical Results 
To illustrate the behavior of the proposed methods as 

well as evaluate the statistical performances of these 
estimates a numerical illustration is conducted where the 
performance of the different results obtained in the 
previous sections can't be compared theoretically. We 
reanalyze a real data set analyzed by Xiang and Tse [10]. 
Also, a simulations study is used to compare the 
performance of the different estimators, different 
confidence intervals using different parameter values and 
different schemes. In this section, the numerical study is 
carried out under type II progressive interval censored 
with unknown parameters. All of computations were 
performed using MATHCAD program version 2007. 

4.1. Real Data 
In the first subsection, we will rely on re-analyzed the 

real data which was originally analyzed by Xiang and Tse 
[10]. The data was obtained an experiment which was 
conducted to assess the toxicity of substance to animals. 
Forty mice were selected, every week a blood sample was 
collected from each of them, and the number of mice that 
showed evidence of toxicity was recorded. During the 
course of study, some mice which had to be removed from 
the study because they had developed other diseases, 
which made them unfit for the study. The data collected in 
the study are summarized in the following table: 

  

 Week 
 1 2 3 4 5 6 
𝑑𝑑𝑖𝑖  7 3 3 4 6 3 
𝑟𝑟𝑖𝑖  1 0 2 2 2  

Before computing the MLEs, we get the MLEs of λ and 
𝛽𝛽 from equations 5 and 6 respectively. On the hand, for 
fixed β, the MLE of λ can be obtained as function in β as 
�̂�𝜆(β), By Substituting �̂�𝜆(β) in (4) and from other hand, for 
fixed λ, the MLE of 𝛽𝛽 can be obtained as function in λ as 
β�(λ), By Substituting β�(λ) in (4); we can plot the profile 
log likelihood of β and λ as follows 

 
Figure 1. Profile log likelihood of 𝛽𝛽 and 𝜆𝜆 
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It is noted from Figure 1 that the likelihood equations 
have a unique solution, so we suggest using 0.52β =  and 

 0.33λ =  as initial values to start the iteration to obtain 
the MLEs of β  and λ . The maximum likelihood 
estimates are �̂�𝜆 = 5.2 and �̂�𝛽 = 2.2, and the corresponding 
95% confidence intervals are (4.988, 5.734) and (2.084, 
2.577) respectively. Based on the bootstrap sample of size 
1000, the bootstrap estimates are λ�∗ = 5.341 and  β�∗ =
2.482, and the corresponding 95% confidence intervals 
bootstrap are (5.201, 5.511) and (2.227, 2.670). We 
assume the non-informative priors, because we have no 
prior information about the unknown parameters. Based 
on the MCMC samples of size 10000, the Bayes estimates 
under the squared error loss function are λ� = 5.211 and 
 𝛽𝛽� = 2.340 , and the corresponding 95% symmetric 
credible intervals (5.014, 5.467) and (2.201, 2.470). 

The analysis of the previous real data set demonstrates 
the importance and usefulness of type II progressive 
Interval censored and inferential procedures based on 
them. From the previous example, we observed that the 
predetermined time number of inspection and number of 
failures plays an important role for the estimation of the 
unknown parameters and the corresponding confidence 
intervals. Also, it can be seen that the performance of the 
different methods for estimation are quite close to each 
other. However, the MLEs and Bayes estimators under 

squared error loss function with respect to the non-
informative priors are the closest. 

4.2. Simulation Study 
The simulation study is conducted by considering 

different values of sample sizes 20,30,50n = , different 
effective number of failure 5,10,15m = , and by choosing 

, ) (1. )( 5,3λ β =  in all the cases, also used generate type II 
progressive interval censored data under each of the four 
progressive schemes with withdraw probabilities denoted 
as 1 2 3, ,p p p  and 4p  and depend on k . All the 
progressive schemes used for the study are defined as 
follows: 
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Where censoring in p1 is lighter for the all intervals and 
p2 is heavier for the all intervals.While p3  are the 
conventional interval censoring where there are no 
removals prior to the experiment termination and the 
censoring in p4 only occurs at the left-most and the right-
most. 

Table 1. The average values (AVE),mean square error (MSE), variance(VAR), bias andlength of 95% ACI (LACI)of the MLEs using Monte 
Carlo simulation 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.928 2.882 2.898 2.863  1.346 1.354 1.340 1.309 AVE 

5 

20 

0.054 0.076 0.083 0.013  0.099 0.080 0.071 0.069 MSE 
0.009 0.007 0.012 0.009  0.008 0.001 0.001 0.005 VAR 
0.054 0.076 0.083 0.013  0.099 0.080 0.071 0.069 BIAS 
0.376 0.501 0.357 0.298  0.399 0.390 0.382 0.400 LACI 
2.949 2.924 2.913 2.867  1.482 1.464 1.464 1.431 AVE 

10 
0.096 0.047 0.060 0.077  0.078 0.022 0.033 0.060 MSE 
0.012 0.002 0.005 0.010  0.008 0.007 0.001 0.001 VAR 
0.096 0.047 0.060 0.077  0.078 0.022 0.033 0.060 BIAS 
0.407 0.595 0.506 0.400  0.410 0.401 0.416 0.392 LACI 
2.951 2.925 2.924 2.882  1.448 1.473 1.444 1.416 AVE 

15 
0.068 0.010 0.078 0.059  0.098 0.024 0.034 0.009 MSE 
0.007 0.002 0.012 0.011  0.005 0.003 0.003 0.001 VAR 
0.068 0.010 0.078 0.058  0.098 0.024 0.034 0.009 BIAS 
0.155 0.588 0.270 0.494  0.405 0.448 0.414 0.419 LACI 

Table 2. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% ACI (LACI) of the MLEs using Monte 
Carlo simulation 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.825 2.762 2.801 2.801  1.509 1.433 1.405 1.292 AVE 

5 

30 

0.010 0.002 0.016 0.010  0.012 0.049 0.062 0.090 MSE 
0.012 0.001 0.009 0.012  0.000 0.001 0.000 0.007 VAR 
0.009 0.002 0.016 0.009  0.012 0.049 0.062 0.090 BIAS 
0.535 0.325 0.238 0.535  0.462 0.464 0.459 0.475 LACI 
2.863 2.822 2.817 2.817  1.535 1.440 1.405 1.382 AVE 

10 
0.012 0.086 0.071 0.012  0.064 0.069 0.004 0.071 MSE 
0.004 0.001 0.009 0.004  0.007 0.002 0.008 0.004 VAR 
0.012 0.086 0.070 0.012  0.064 0.069 0.004 0.071 BIAS 
0.520 0.356 0.365 0.520  0.373 0.378 0.418 0.381 LACI 
2.884 2.829 2.822 2.820  1.624 1.575 1.564 1.524 AVE 

15 
0.097 0.005 0.071 0.097  0.038 0.002 0.075 0.053 MSE 
0.010 0.009 0.000 0.010  0.005 0.005 0.005 0.006 VAR 
0.097 0.005 0.071 0.097  0.038 0.002 0.075 0.053 BIAS 
0.413 0.420 0.168 0.413  0.356 0.400 0.369 0.374 LACI 
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Table 3. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% ACI (LACI) of the MLEs using Monte 
Carlo simulation 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
3.045 3.028 3.019 2.989  1.578 1.463 1.290 1.256 AVE 

5 

50 

0.023 0.055 0.045 0.058  0.085 0.012 0.081 0.048 MSE 
0.000 0.006 0.003 0.005  0.008 0.004 0.000 0.006 VAR 
0.023 0.055 0.045 0.058  0.085 0.012 0.081 0.048 BIAS 
0.188 0.310 0.515 0.368  0.379 0.448 0.419 0.432 LACI 

3.113 3.045 3.027 2.992  1.579 1.520 1.480 1.391 AVE 

10 
0.001 0.077 0.089 0.006  0.022 0.037 0.007 0.096 MSE 
0.002 0.008 0.004 0.000  0.009 0.004 0.010 0.002 VAR 
0.001 0.077 0.089 0.006  0.022 0.037 0.006 0.096 BIAS 
0.422 0.279 0.627 0.202  0.367 0.400 0.417 0.420 LACI 
3.142 3.075 3.046 3.037  1.619 1.572 1.567 1.559 AVE 

15 
0.045 0.096 0.011 0.075  0.054 0.021 0.037 0.099 MSE 
0.006 0.010 0.004 0.006  0.006 0.005 0.008 0.008 VAR 
0.045 0.096 0.011 0.075  0.054 0.021 0.037 0.099 BIAS 
0.151 0.115 0.131 0.172  0.285 0.258 0.345 0.324 LACI 

Table 4. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95%CIB (LCIB) of the MLEs using 
Bootstrap method 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.826 2.753 2.690 2.661  1.272 1.229 1.210 1.204 AVE 

5 

20 

0.113 0.001 0.100 0.056  0.078 0.031 0.088 0.003 MSE 
0.029 0.001 0.024 0.029  0.006 0.001 0.012 0.008 VAR 
0.113 0.001 0.099 0.055  0.078 0.031 0.088 0.003 BIAS 
0.282 0.338 0.254 0.237  0.403 0.389 0.512 0.465 LCIB 
2.847 2.769 2.708 2.690  1.274 1.255 1.225 1.216 AVE 

10 
0.093 0.031 0.015 0.117  0.024 0.071 0.041 0.077 MSE 
0.028 0.020 0.028 0.032  0.003 0.004 0.007 0.012 VAR 
0.092 0.030 0.014 0.116  0.024 0.070 0.041 0.077 BIAS 
0.187 0.158 0.169 0.325  0.405 0.410 0.405 0.421 LCIB 

2.849 2.787 2.735 2.697  1.293 1.289 1.268 1.219 AVE 

15 
0.008 0.067 0.022 0.109  0.056 0.039 0.020 0.062 MSE 
0.013 0.018 0.028 0.005  0.010 0.008 0.009 0.004 VAR 
0.008 0.066 0.021 0.109  0.056 0.039 0.020 0.062 BIAS 
0.275 0.275 0.179 0.274  0.435 0.421 0.471 0.426 LCIB 

Table 5. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% CIB (LCIB) of the MLEs using 
Bootstrap method 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.832 2.779 2.681 2.658  1.244 1.221 1.209 1.200 AVE 

5 

30 

0.040 0.055 0.070 0.088  0.023 0.044 0.028 0.001 MSE 
0.003 0.021 0.002 0.005  0.002 0.008 0.011 0.004 VAR 
0.040 0.055 0.070 0.088  0.023 0.044 0.028 0.001 BIAS 
0.154 0.292 0.238 0.271  0.381 0.439 0.492 0.514 LCIB 

2.833 2.797 2.720 2.666  1.279 1.224 1.244 1.207 AVE 

10 
0.080 0.091 0.002 0.075  0.077 0.063 0.050 0.094 MSE 
0.006 0.009 0.005 0.030  0.006 0.010 0.005 0.005 VAR 
0.080 0.091 0.002 0.074  0.077 0.063 0.050 0.094 BIAS 
0.160 0.326 0.197 0.239  0.545 0.366 0.457 0.491 LCIB 
2.835 2.799 2.766 2.668  1.293 1.273 1.254 1.242 AVE 

15 
0.117 0.055 0.044 0.112  0.065 0.053 0.068 0.033 MSE 
0.019 0.031 0.002 0.011  0.007 0.010 0.004 0.004 VAR 
0.116 0.054 0.044 0.112  0.065 0.052 0.068 0.033 BIAS 
0.308 0.166 0.348 0.219  0.386 0.496 0.448 0.489 LCIB 
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Table 6. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% CIB (LCIB) of the MLEs using 
Bootstrap method 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.776 2.732 2.691 2.668  1.242 1.236 1.223 1.218 AVE 

5 

50 

0.003 0.004 0.016 0.113  0.094 0.100 0.082 0.090 MSE 
0.007 0.033 0.009 0.008  0.001 0.010 0.007 0.004 VAR 
0.003 0.003 0.016 0.113  0.094 0.100 0.082 0.090 BIAS 
0.173 0.216 0.185 0.265  0.463 0.485 0.401 0.397 LCIB 

2.780 2.735 2.715 2.683  1.279 1.276 1.254 1.225 AVE 

10 
0.121 0.022 0.022 0.091  0.060 0.099 0.050 0.080 MSE 
0.004 0.016 0.007 0.031  0.009 0.001 0.011 0.002 VAR 
0.121 0.022 0.022 0.090  0.060 0.099 0.049 0.080 BIAS 
0.167 0.287 0.201 0.276  0.469 0.540 0.441 0.491 LCIB 
2.781 2.776 2.717 2.691  1.283 1.276 1.268 1.229 AVE 

15 
0.052 0.020 0.008 0.009  0.075 0.062 0.030 0.031 MSE 
0.014 0.024 0.033 0.004  0.004 0.000 0.010 0.003 VAR 
0.052 0.019 0.007 0.009  0.075 0.062 0.030 0.031 BIAS 
0.185 0.270 0.349 0.236  0.462 0.472 0.355 0.506 LCIB 

Table 7. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% SCI (LSCI) of the Bayes estimates 
using MCMC 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
2.904 2.891 2.885 2.867  1.457 1.412 1.406 1.378 AVE 

5 

20 

0.001 0.006 0.009 0.008  0.018 0.047 0.078 0.070 MSE 
0.013 0.019 0.000 0.001  0.003 0.005 0.010 0.005 VAR 
0.001 0.005 0.009 0.008  0.018 0.047 0.077 0.070 BIAS 
0.178 0.122 0.119 0.169  0.157 0.237 0.251 0.273 LSCI 
3.026 3.012 2.925 2.869  1.540 1.446 1.414 1.381 AVE 

10 
0.018 0.007 0.002 0.008  0.057 0.002 0.075 0.023 MSE 
0.008 0.009 0.013 0.016  0.011 0.006 0.003 0.008 VAR 
0.018 0.007 0.002 0.008  0.057 0.002 0.075 0.023 BIAS 
0.196 0.141 0.131 0.118  0.223 0.230 0.233 0.201 LSCI 

3.032 3.027 2.986 2.888  1.543 1.528 1.469 1.389 AVE 

15 
0.001 0.012 0.012 0.015  0.075 0.080 0.068 0.061 MSE 
0.009 0.006 0.000 0.015  0.001 0.011 0.008 0.003 VAR 
0.001 0.012 0.012 0.014  0.075 0.080 0.068 0.061 BIAS 
0.120 0.109 0.120 0.130  0.185 0.264 0.187 0.219 LSCI 

Table 8. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% SCI (LSCI) of the Bayes estimates 
using MCMC 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
3.119 3.034 3.000 2.997  1.588 1.567 1.539 1.385 AVE 

5 

30 

0.011 0.016 0.012 0.011  0.048 0.070 0.021 0.055 MSE 
0.011 0.019 0.009 0.005  0.004 0.006 0.005 0.011 VAR 
0.011 0.015 0.012 0.011  0.048 0.070 0.021 0.055 BIAS 
0.173 0.151 0.143 0.199  0.232 0.248 0.228 0.185 LSCI 

3.129 3.100 3.039 3.006  1.623 1.574 1.548 1.521 AVE 

10 
0.005 0.009 0.011 0.020  0.061 0.014 0.051 0.040 MSE 
0.002 0.003 0.001 0.003  0.000 0.011 0.007 0.001 VAR 
0.005 0.009 0.011 0.020  0.061 0.014 0.051 0.040 BIAS 
0.203 0.144 0.208 0.103  0.207 0.196 0.275 0.270 LSCI 
3.188 3.108 3.066 3.035  1.652 1.584 1.563 1.558 AVE 

15 
0.008 0.010 0.004 0.017  0.049 0.023 0.065 0.033 MSE 
0.012 0.014 0.010 0.016  0.005 0.008 0.000 0.001 VAR 
0.008 0.010 0.004 0.017  0.049 0.023 0.065 0.033 BIAS 
0.208 0.140 0.121 0.139  0.170 0.219 0.264 0.161 LSCI 
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Table 9. The average values (AVE), mean square error (MSE), variance (VAR), bias and length of 95% SCI (LSCI) of the Bayes estimates 
using MCMC 

β  λ  
𝑚𝑚 𝑛𝑛 

𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  𝑝𝑝4 𝑝𝑝3 𝑝𝑝2 𝑝𝑝1  
3.068 3.061 3.030 3.020  1.381 1.524 1.401 1.544 AVE 

5 

50 

0.001 0.008 0.006 0.008  0.020 0.028 0.008 0.033 MSE 
0.007 0.001 0.003 0.002  0.001 0.007 0.001 0.009 VAR 
0.001 0.008 0.006 0.008  0.020 0.028 0.008 0.033 BIAS 
0.124 0.159 0.142 0.143  0.233 0.238 0.258 0.160 LSCI 

3.076 3.047 3.016 3.001  1.567 1.530 1.457 1.583 AVE 

10 
0.008 0.009 0.009 0.008  0.068 0.042 0.019 0.047 MSE 
0.001 0.008 0.004 0.007  0.006 0.011 0.011 0.008 VAR 
0.008 0.009 0.009 0.008  0.068 0.042 0.019 0.046 BIAS 
0.155 0.117 0.112 0.101  0.207 0.178 0.184 0.175 LSCI 
3.050 3.027 2.995 2.992  1.576 1.545 1.531 1.636 AVE 

15 
0.009 0.003 0.001 0.001  0.024 0.041 0.034 0.061 MSE 
0.000 0.001 0.003 0.005  0.005 0.005 0.009 0.006 VAR 
0.009 0.003 0.001 0.001  0.024 0.041 0.034 0.061 BIAS 
0.163 0.140 0.137 0.131  0.214 0.225 0.255 0.185 LSCI 

Under a type II progressive interval censored, using the 
different simulation methods, on the hand, were obtained 
the unknown parameters dependent on Monte Carlo 
simulation and Bootstrap method using maximum likelihood 
estimation and from other hand were used MCMC to 
obtain the unknown parameters using Bayes estimation. 

In general, tables from (1) to (9) show that variance is 
usually smaller and bias is usually larger in both the 
estimation methods by using different simulations. The 
mean-squared error (MSE) associated with both MLE and 
Bayes estimates of the parameters decrease with 
increasing the sample size n. Also, it decreases when m is 
large. 

With increasing n, there is an improvement in the value 
of estimators regardless of the type of estimation and the 
method of simulation. At each table with increasing m, 

there is an improvement in the value of the estimators, and 
also estimators obtained from progressive schemes p3 and 
p4 are the best forever. By comparison with the different 
methods of simulation the worst methods was bootstrap 
and which fail to give good estimators. Also, the 
estimators which were obtained from maximum likelihood 
estimation and Bayes estimation approximately one. In 
other words, the difference between them was trivial. 

Under a type II progressive interval censored inspection 
scheme, that trial is terminated after the thk  inspection if 
the total number of failed units is equal to or exceeds m . 
In the fact, the total number of failure units greater than 
the value of m and know m�  which refer to estimated value 
to estimate value which obtained in accordance with the 
conditions of the experiment. 

Table 10. The average values (AVE), mean square error (MSE), variance (VAR), bias and 95% CI of thetotal number of failed unitswith 
different simulation methods 

95% Confidence Intervals 
𝒎𝒎�   

𝒎𝒎 Simulation 
BIAS VAR MSE AVE  

9.010 8.990 0.056 0.002 0.005 9  5 
Monte Carlo 14.009 13.991 0.022 0.004 0.005 14  10 

18.016 17.984 0.039 0.007 0.008 18  15 
11.024 10.976 0.056 0.009 0.012 11  5 

Bootstrap 16.419 15.581 0.097 0.205 0.214 16  10 
19.033 18.967 0.051 0.014 0.017 19  15 
7.004 6.996 0.038 0.000 0.002 7  5 

MCMC 12.002 11.998 0.001 0.001 0.001 12  10 
9.010 8.990 0.082 0.006 0.001 16  15 

We considered the following values: 𝑛𝑛 = 20  and 
𝑚𝑚 = 5,10  and 15,we computed 𝑚𝑚�  using Monte Carlo 
simulation and Bootstrap method using maximum 
likelihood estimation and MCMC using Bayes estimation 
to study of 10000 samples. The results are displayed in 
Table 10, By compared between simulation methods and 
both of estimations, which referred to MCMC gave the 
smallest m� , so, MCMC is the better in economic terms, 
where decrease of failure units (unobserved) which mean 
ending the experiment early and therefore is the best 
estimate. Bootstrap method is the worst, where the 
experiment ends in late unlike other methods. 
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Appendix  
The asymptotic variance-covariance matrix of the maximum likelihood estimators for parameters λ  and β  are given 

by elements of the inverse of the Fisher information matrix. Unfortunately, the exact mathematical expressions for the 
above expectations are very difficult to obtain. Therefore, we give the approximate (observed) asymptotic varaince-
covariance matrix for the maximum likelihood estimators, which is obtained by dropping the expectation operator E, 
where 
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Fisher information matrix and the variance-covariance matrix will be obtained by numerical technique. 
From equations (5) and (6), we will determine the second partials by differentiating the first partials as following 
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