
HOL Light: an overview

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue
Hillsboro OR 97124

johnh@ichips.intel.com

Abstract. HOL Light is an interactive proof assistant for classical higher-
order logic, intended as a clean and simplified version of Mike Gordon’s
original HOL system. Theorem provers in this family use a version of ML
as both the implementation and interaction language; in HOL Light’s
case this is Objective CAML (OCaml). Thanks to its adherence to the
so-called ‘LCF approach’, the system can be extended with new infer-
ence rules without compromising soundness. While retaining this reli-
ability and programmability from earlier HOL systems, HOL Light is
distinguished by its clean and simple design and extremely small logical
kernel. Despite this, it provides powerful proof tools and has been ap-
plied to some non-trivial tasks in the formalization of mathematics and
industrial formal verification.

1 LCF, HOL and HOL Light

Both HOL Light and its implementation language OCaml can trace their origins
back to Edinburgh LCF, developed by Milner and his research assistants in the
1970s [6]. The LCF approach to theorem proving involves two key ideas:

– All proofs are ultimately performed in terms of a small set of primitive
inferences, so provided this small logical ‘kernel’ is correct the results should
be reliable.

– The entire system is embedded inside a powerful functional programming
language, which can be used to program new inference rules. The type dis-
cipline of the programming language is used to ensure that these ultimately
reduce to the primitives.

The original Edinburgh LCF was a theorem prover for Scott’s Logic of Com-
putable Functions [16], hence the name LCF. But as emphasized by Gordon [4],
the basic LCF approach is applicable to any logic, and now there are descen-
dents implementing a variety of higher order logics, set theories and constructive
type theories. In particular, members of the HOL family [5] implement a ver-
sion of classical higher order logic, hence the name HOL. They take the LCF
approach a step further in that all theory developments are pursued ‘definition-
ally’. New mathematical structures, such as the real numbers, may be defined
only by exhibiting a model for them in the existing theories (say as Dedekind



cuts of rationals). New constants may only be introduced by definitional ex-
tension (roughly speaking, merely being a shorthand for an expression in the
existing theory). This fits naturally with the LCF style, since it ensures that all
extensions, whether of the deductive system or the mathematical theories, are
consistent per construction.

2 HOL Light’s logical foundations

HOL Light’s logic is simple type theory [2, 1] with polymorphic type variables.
The terms of the logic are those of simply typed lambda calculus, with formulas
being terms of boolean type, rather than a separate category. Every term has a
single welldefined type, but each constant with polymorphic type gives rise to
an infinite family of constant terms. There are just two primitive types: bool
(boolean) and ind (individuals), and given any two types σ and τ one can form
the function type σ → τ .1

For the core HOL logic, there is essentially only one predefined logical con-
stant, equality (=) with polymorphic type α → α → bool. However to state one
of the mathematical axioms we also include another constant ε : (α → bool) →
α, explained further below. For equations, we use the conventional concrete syn-
tax s = t, but this is just surface syntax for the λ-calculus term ((=)s)t, where
juxtaposition represents function application. For equations between boolean
terms we often use s ⇔ t, but this again is just surface syntax.

The HOL Light deductive system governs the deducibility of one-sided se-
quents Γ ` p where p is a term of boolean type and Γ is a set (possibly empty) of
terms of boolean type. There are ten primitive rules of inference, rather similar
to those for the internal logic of a topos [14].

` t = t
REFL

Γ ` s = t ∆ ` t = u
Γ ∪∆ ` s = u

TRANS

Γ ` s = t ∆ ` u = v
Γ ∪∆ ` s(u) = t(v)

MK COMB

Γ ` s = t
Γ ` (λx. s) = (λx. t)

ABS

` (λx. t)x = t
BETA

{p} ` p
ASSUME

1 In Church’s original notation, also used by Andrews, these are written o, ι and τσ
respectively. Of course the particular concrete syntax has no logical significance.



Γ ` p ⇔ q ∆ ` p

Γ ∪∆ ` q
EQ MP

Γ ` p ∆ ` q

(Γ − {q}) ∪ (∆− {p}) ` p ⇔ q
DEDUCT ANTISYM RULE

Γ [x1, . . . , xn] ` p[x1, . . . , xn]
Γ [t1, . . . , tn] ` p[t1, . . . , tn]

INST

Γ [α1, . . . , αn] ` p[α1, . . . , αn]
Γ [γ1, . . . , γn] ` p[γ1, . . . , γn]

INST TYPE

In MK COMB it is necessary for the types to agree so that the composite terms
are well-typed, and in ABS it is required that the variable x not be free in any of
the assumptions Γ , while our notation for term and type instantiation assumes
capture-avoiding substitution. All the usual logical constants are defined in terms
of equality. The conventional syntax ∀x.P [x] for quantifiers is surface syntax for
(∀)(λx. P [x]), and we also use this ‘binder’ notation for the ε operator.

> =def (λp. p) = (λp. p)
∧ =def λp. λq. (λf. f p q) = (λf. f > >)

=⇒ =def λp. λq. p ∧ q ⇔ p

∀ =def λP. P = λx.>
∃ =def λP. ∀q. (∀x. P (x) =⇒ q) =⇒ q

∨ =def λp. λq. ∀r. (p =⇒ r) =⇒ (q =⇒ r) =⇒ r

⊥ =def ∀p. p

¬ =def λp. p =⇒ ⊥
∃! =def λP. ∃P ∧ ∀x. ∀y. P x ∧ P y =⇒ x = y

These definitions allow us to derive all the usual (intuitionistic) natural de-
duction rules for the connectives in terms of the primitive rules above. All of the
core ‘logic’ is derived in this way. But then we add three mathematical axioms:

– The axiom of extensionality, in the form of an eta-conversion axiom ETA AX:
` (λx.t x) = t. We could have considered this as part of the core logic rather
than a mathematical axiom; this is largely a question of taste.

– The axiom of choice SELECT AX, asserting that the Hilbert operator ε is a
choice operator: ` P x =⇒ P ((ε)P ). It is only from this axiom that we can
deduce that the HOL logic is classical [3].

– The axiom of infinity INFINITY AX, which implies that the type ind is infi-
nite.



In addition, HOL Light includes two principles of definition, which allow
one to extend the set of constants and the set of types in a way guaranteed
to preserve consistency. The rule of constant definition allows one to introduce
a new constant c and an axiom ` c = t, subject to some conditions on free
variables and polymorphic types in t, and provided no previous definition for
c has been introduced. All the definitions of the logical connectives above are
introduced in this way. Note that this is ‘object-level’ definition: the constant
and its defining axiom exists in the object logic. Nevertheless, the definitional
principles are designed so that they always give a conservative (in particular
consistency-preserving) extension of the logic.

3 The HOL Light implementation

Like other LCF provers, HOL Light is in essence simply a large ML program that
defines data structures to represent logical entities, together with a suite of func-
tions to manipulate them in a way guaranteeing soundness. The most important
data structures belong to one of the datatypes hol type, term and thm, which
represent types, terms (including formulas) and theorems respectively. The user
can write arbitrary programs to manipulate these objects, and it is by creating
new objects of type thm that one proves theorems. HOL’s notion of an ‘inference
rule’ is simply a function with return type thm.

In order to guarantee logical soundness, however, all these types are encap-
sulated as abstract types. In particular, the only way of creating objects of type
thm is to apply one of the 10 very simple inference rules listed above or to make
a new term or type definition. Thus, whatever the circuitous route by which one
arrives at it, the validity of any object of type thm rests only on the correctness
of the rather simple primitive rules (and of course the correctness of OCaml’s
type checking etc.).

To illustrate how inference rules are represented as functions in OCaml, sup-
pose that two theorems of the form Γ ` s = t and ∆ ` t = u have already been
proved and bound to the OCaml variables th1 and th2 respectively. In abstract
logical terms, the rule TRANS ensures that the theorem Γ ∪∆ ` s = u is deriv-
able. In terms of the HOL implementation, one can apply the OCaml function
TRANS, of type thm -> thm -> thm, to these two theorems as arguments, and
hence bind name th3 to that theorem Γ ∪∆ ` s = u:

let th3 = TRANS th1 th2;;

One doesn’t normally use such low-level rules much, but instead interacts
with HOL via a series of higher-level derived rules, using built-in parsers and
printers to read and write terms in a more natural syntax. For example, if one
wants to bind the name th6 to the theorem of real arithmetic that when |c−a| < e
and |b| ≤ d then |(a + b)− c| < d + e, one simply does:

let th6 = REAL_ARITH

‘abs(c - a) < e ∧ abs(b) <= d =⇒ abs((a + b) - c) < d + e‘;;



If the purported fact in quotations turns out not to be true, then the rule
will fail by raising an exception. Similarly, any bug in the derived rule (which
represents several dozen pages of code written by the present author) would lead
to an exception.2 But we can be rather confident in the truth of any theorem
that is returned, since it must have been created via applications of primitive
rules, even though the precise choreographing of these rules is automatic and of
no concern to the user. What’s more, users can write their own special-purpose
proof rules in the same style when the standard ones seem inadequate — HOL
is fully programmable, yet retains its logical trustworthiness when extended by
ordinary users.

Among the facilities provided by HOL is the ability to organize proofs in a
mixture of forward and backward steps, which users often find more congenial.
The user invokes so-called tactics to break down the goal into more manageable
subgoals. For example, in HOL’s inbuilt foundations of number theory, the proof
that addition of natural numbers is commutative is written as follows (the symbol
∀ means ‘for all’):

let ADD_SYM = prove

(‘∀m n. m + n = n + m‘,

INDUCT_TAC THEN

ASM_REWRITE_TAC[ADD_CLAUSES]);;

The tactic INDUCT TAC uses mathematical induction to break the original
goal down into two separate goals, one for m = 0 and one for m + 1 on the
assumption that the goal holds for m. Both of these are disposed of quickly
simply by repeated rewriting with the current assumptions and a previous, even
more elementary, theorem about the addition operator. The identifier THEN is
a so-called tactical, i.e. a function that takes two tactics and produces another
tactic, which applies the first tactic then applies the second to any resulting
subgoals (there are two in this case).

For another example, we can prove that there is a unique x such that x =
f(g(x)) if and only if there is a unique y with y = g(f(y)) using a single stan-
dard tactic MESON TAC, which performs model elimination [15] to prove theorems
about first order logic with equality. As usual, the actual proof under the surface
happens by the standard primitive inference rules.

let WISHNU = prove

(‘(∃!x. x = f (g x)) ⇔ (∃!y. y = g(f y))‘,

MESON_TAC[]);;

These and similar higher-level rules certainly make the construction of proofs
manageable whereas it would be almost unbearable in terms of the primitive
rules alone. Nevertheless, we want to dispel any false impression given by the
simple examples above: proofs often require long and complicated sequences of
2 Or possibly to a true but different theorem being returned, but this is easily guarded

against by inserting sanity checks in the rules.



rules. The construction of these proofs often requires considerable persistence.
Moreover, the resulting proof scripts can be quite hard to read, and in some
cases hard to modify to prove a slightly different theorem. One source of these
difficulties is that the proof scripts are highly procedural — they are, ultimately,
OCaml programs, albeit of a fairly stylized form. There are arguments in favour
of a more declarative style for proof scripts, but the procedural approach has its
merits too, particularly in applications using specialized derived inference rules
[9].

4 HOL Light applications

Over the years, HOL Light has been used for a wide range of applications, and in
concert with this its library of pre-proved formalized mathematics and its stock
of more powerful derived inference rules have both been expanded. As well as
the usual battery of automated techniques like first-order reasoning and linear
arithmetic, HOL Light has been used to explore and apply unusual and novel
decision procedures [12, 17].

In verification, HOL Light has been used at Intel to verify a number of com-
plex floating-point algorithms including division, square root and transcendental
functions [11]. HOL Light seems well-suited to applications like this. It has a
substantial library of formalized real analysis, which is used incessantly when
justifying the correctness of such algorithms. The flexibility and programmabil-
ity that the LCF approach affords are also important here since one can write
custom derived rules for special tasks like accumulating bounds on rounding
errors or enumerating the solutions to Diophantine equations of special kinds.

As for the formalization of mathematics, HOL Light has from the very be-
ginning had a useful formalization of real analysis [10]. More recently this has
been substantially developed to cover multivariate analysis in Euclidean space
and complex analysis. As well as the miscellany of theorems noted in the list
at http://www.cs.ru.nl/∼freek/100/, HOL Light has been used to formalize
some particularly significant results such as the Jordan Curve Theorem [8] and
the Prime Number Theorem [13]. HOL Light is also heavily used in the Fly-
speck Project [7] to formalize the proof of the Kepler sphere-packing conjecture,
possibly the most ambitious formalization project to date.

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press, 1986.

2. A. Church. A formulation of the Simple Theory of Types. Journal of Symbolic
Logic, 5:56–68, 1940.

3. R. Diaconescu. Axiom of choice and complementation. Proceedings of the American
Mathematical Society, 51:176–178, 1975.

4. M. J. C. Gordon. Representing a logic in the LCF metalanguage. In D. Néel, editor,
Tools and notions for program construction: an advanced course, pages 163–185.
Cambridge University Press, 1982.



5. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving
environment for higher order logic. Cambridge University Press, 1993.

6. M. J. C. Gordon, R. Milner, and C. P. Wadsworth. Edinburgh LCF: A Mechanised
Logic of Computation, volume 78 of Lecture Notes in Computer Science. Springer-
Verlag, 1979.

7. T. C. Hales. Introduction to the Flyspeck project. In T. Coquand, H. Lombardi,
and M.-F. Roy, editors, Mathematics, Algorithms, Proofs, volume 05021 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany, 2006.

8. T. C. Hales. The Jordan curve theorem, formally and informally. The American
Mathematical Monthly, 114:882–894, 2007.

9. J. Harrison. Proof style. In E. Giménez and C. Paulin-Mohring, editors, Types for
Proofs and Programs: International Workshop TYPES’96, volume 1512 of Lecture
Notes in Computer Science, pages 154–172, Aussois, France, 1996. Springer-Verlag.

10. J. Harrison. Theorem Proving with the Real Numbers. Springer-Verlag, 1998.
Revised version of author’s PhD thesis.

11. J. Harrison. Floating-point verification using theorem proving. In M. Bernardo
and A. Cimatti, editors, Formal Methods for Hardware Verification, 6th Interna-
tional School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2006, volume 3965 of Lecture Notes in Computer Science,
pages 211–242, Bertinoro, Italy, 2006. Springer-Verlag.

12. J. Harrison. Verifying nonlinear real formulas via sums of squares. In K. Schnei-
der and J. Brandt, editors, Proceedings of the 20th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs 2007, volume 4732 of Lec-
ture Notes in Computer Science, pages 102–118, Kaiserslautern, Germany, 2007.
Springer-Verlag.

13. J. Harrison. Formalizing an analytic proof of the Prime Number Theorem (dedi-
cated to Mike Gordon on the occasion of his 60th birthday). Journal of Automated
Reasoning, 2009. To appear.

14. J. Lambek and P. J. Scott. Introduction to higher order categorical logic, volume 7
of Cambridge studies in advanced mathematics. Cambridge University Press, 1986.

15. D. W. Loveland. Mechanical theorem-proving by model elimination. Journal of
the ACM, 15:236–251, 1968.

16. D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical
Computer Science, 121:411–440, 1993. Annotated version of a 1969 manuscript.

17. R. M. Solovay, R. Arthan, and J. Harrison. Some new results on decidability for
elementary algebra and geometry. ArXiV preprint 0904.3482; submitted to Annals
of Pure and Applied Logic. Available at http://arxiv.org/PS cache/arxiv/pdf/

0904/0904.3482v1.pdf, 2009.


