
Choosing Multiple Parameters for

Support Vector Machines

Olivier Chapelle, Vladimir Vapnik

AT&T Research Labs

ochapell@ens-lyon.fr

vlad@research.att.com

Olivier Bousquet
�Ecole Polytechnique

bousquet@cmapx.polytechnique.fr

Sayan Mukherjee

MIT

sayan@ai.mit.edu

March 16, 2001

Abstract

The problem of automatically tuning multiple parameters for pat-
tern recognition Support Vector Machines (SVMs) is considered. This
is done by minimizing some estimates of the generalization error of
SVMs using a gradient descent algorithm over the set of parameters.
Usual methods for choosing parameters, based on exhaustive search
become intractable as soon as the number of parameters exceeds two.
Some experimental results assess the feasibility of our approach for
a large number of parameters (more than 100) and demonstrate an
improvement of generalization performance.

1 Introduction

In the problem of supervised learning, one takes a set of input-output pairs
Z = f(x1; y1); : : : ; (x`; y`)g and attempts to construct a classi�er function f
that maps input vectors x 2 X onto labels y 2 Y. We are interested here in
pattern recognition or classi�cation, that is the case where the set of labels
is simply Y = f�1; 1g. The goal is to �nd a f 2 F which minimizes the
error (f(x) 6= y) on future examples. Learning algorithms usually depend
on parameters which control the size of the class F or the way the search
is conducted in F . Several techniques exist for performing the selection of
these parameters. The idea is to �nd the parameters that minimize the

1

generalization error of the algorithm at hand. This error can be estimated
either via testing on some data which has not been used for learning (hold-
out testing or cross-validation techniques) or via a bound given by theoretical
analysis.

Tuning multiple parameters Usually there are multiple parameters to
tune at the same time and moreover, the estimates of the error are not
explicit functions of these parameters, so that the naive strategy which is
exhaustive search in the parameter space becomes intractable since it would
correspond to running the algorithm on every possible value of the parameter
vector (up to some discretization). We propose here a methodology for
automatically tuning multiple parameters for the Support Vector Machines
(SVMs) which takes advantage of the speci�c properties of this algorithm.

The SVM algorithm Support vector machines (SVMs) realize the fol-
lowing idea: map a n-dimensional input vector x 2 Rn 1 into a high dimen-
sional (possibly in�nite dimensional) feature space H by � and construct an
optimal separating hyperplane in this space. Di�erent mappings construct
di�erent SVMs.

When the training data is separable, the optimal hyperplane is the one
with the maximal distance (inH space) between the hyperplane and the clos-
est image �(xi) of the vector xi from the training data. For non-separable
training data a generalization of this concept is used.

Suppose that the maximal distance is equal to and that the images
�(x1); :::;�(x`) of the training vectors x1; :::;x` are within a sphere of radius
R. Then the following theorem holds true [20].

Theorem 1 Given a training set Z = f(x1; y1); : : : ; (x`; y`)g of size `, a
feature space H and a hyperplane (w; b), the margin (w; b; Z) and the radius
R(Z) are de�ned by

(w; b; Z) = min
(xi;yi)2Z

yi(w � �(xi) + b)

kwk

R(Z) = min
a;xi
k�(xi) + ak

The maximum margin algorithm L` : (X � Y)
` ! H � R takes as input a

training set of size ` and returns a hyperplane in feature space such that the

1In the rest of this article, we will reference vectors and matrices using bold notation

2

margin (w; b; Z) is maximized. Note that assuming the training set sepa-

rable means that > 0. Under this assumption, for all probability measures

P underlying the data Z, the expectation of the misclassi�cation probability

perr(w; b) = P (sign(w � �(X) + b) 6= Y)

has the bound

Efperr(L`�1(Z))g �
1

`
E

�
R2(Z)

2(L(Z); Z)

�
:

The expectation is taken over the random draw of a training set Z of size

`� 1 for the left hand side and size ` for the right hand side.

This theorem justi�es the idea of constructing a hyperplane that sep-
arates the data with a large margin: the larger the margin the better the
performance of the constructed hyperplane. Note however that according to
the theorem the average performance depends on the ratio EfR2=2g and
not simply on the large margin .

Why multiple parameters ? The SVM algorithm usually depends on
several parameters. One of them, denoted C, controls the tradeo� between
margin maximization and error minimization. Other parameters appear in
the non-linear mapping into feature space. They are called kernel parame-

ters. For simplicity, we will use a classical trick that allows us to consider
C as a kernel parameter, so that all parameters can be treated in a uni�ed
framework.

It is widely acknowledged that a key factor in an SVM's performance
is the choice of the kernel. However, in practice, very few di�erent types
of kernels have been used due to the diÆculty of appropriately tuning the
parameters. We present here a technique that allows to deal with a large
number of parameters and thus allows to use more complex kernels.

Another potential advantage of being able to tune a large number of
parameters is the possibility of rescaling the attributes. Indeed, when no a
priori knowledge is available about the meaning of each of the attributes,
the only choice is to use spherical kernels (i.e. give the same weight to each
attribute). But one may expect that there is a better choice for the shape of
the kernel since many real-world database contain attributes of very di�erent
natures. There may thus exist more appropriate scaling factors that give
the right weight to the right feature. For example, we will see how to use

3

radial basis function kernels (RBF) with as many di�erent scaling factors as
input dimensions:

K(x; z) = exp

�
X
i

(xi � zi)
2

2�2i

!
:

The usual approach is to consider � = �1 = � � � = �n and to try to pick
the best value for �. However, using the proposed method, we can choose
automatically good values for the scaling factors �i. Indeed, these factors
are precisely parameters of the kernel.

Moreover, we will demonstrate that the problem of feature selection can
be addressed with the same framework since it corresponds to �nding those
attributes which can be rescaled with a zero factor without harming the
generalization.

We thus see that tuning kernel parameters is something extremely useful
and a procedure that allows to do this would be a versatile tool for various
tasks such as �nding the right shape of the kernel, feature selection, �nding
the right tradeo� between error and margin, etc. All this gives a rationale
for developing such techniques.

Our approach In summary, our goal is not only to �nd the hyperplane
which maximizes the margin but also the values of the mapping parameters
that yield best generalization error. To do so, we propose a minimax ap-
proach: maximize the margin over the hyperplane coeÆcients and minimize
an estimate of the generalization error over the set of kernel parameters.
This last step is performed using a standard gradient descent approach.

What kind of error estimates We will consider several ways of assessing
the generalization error.

� Validation error: this procedure requires a reduction of the amount of
data used for learning in order to save some of it for validation. More-
over, the estimates have to be smoothed for proper gradient descent.

� Leave-one-out error estimates: this procedure gives an estimate of the
expected generalization as an analytic function of the parameters.

We will examine how the accuracy of the estimates inuences the whole
procedure of �nding optimal parameters. In particular we will show that
what really matters is how variations of the estimates relate to variations of
the test error rather than how their values are related.

4

Outline The paper is organized as follows. The next section introduces
the basics of SVMs. The di�erent possible estimates of their generalization
error are described in section 3 and section 4 explains how to smooth theses
estimates. Then we introduce in section 5 a framework for minimizing those
estimates by gradient descent. Section 6 deals with the computation of
gradients of error estimates with respect to kernel parameters. Finally, in
section 7 and 8, we present experimental results of the method applied to a
variety of databases in di�erent contexts. Section 7 deals with �nding the
right penalization along with the right radius for a kernel and with �nding
the right shape of a kernel. In section 8 we present results of applying our
method to feature selection.

2 Support Vector Learning

We introduce some standard notations for SVMs; for a complete description,
see [19]. Let f(xi; yi)g1�i�` be a set of training examples, xi 2 R

n which
belong to a class labeled by yi 2 f�1; 1g. In the SVM methodology, we map
these vectors into a feature space using a kernel function K(xi;xj) that
de�nes an inner product in this feature space. Here, we consider a kernel
K� depending on a set of parameters �. The decision function given by an
SVM is:

f(x) = sign

 X̀
i=1

�0i yiK�(xi;x) + b

!
; (1)

where the coeÆcients �0i are obtained by maximizing the following function-
al:

W (�) =
X̀
i=1

�i �
1

2

X̀
i;j=1

�i�jyiyjK�(xi;xj) (2)

under the constraints

X̀
i=1

�iyi = 0 and �i � 0; i = 1; :::; `:

The coeÆcients �0i de�ne a maximal margin hyperplane in a high-dimensional
feature space where the data are mapped through a non-linear function �
such that �(xi) � �(xj) = K(xi;xj).

This formulation of the SVM optimization problem is called the hard

margin formulation since no training errors are allowed. Every training point

5

satis�es the inequality yif(xi) � 1 and for points xi with corresponding
�i > 0 an equality is satis�ed. These points are called support vectors.

Notice that one may require the separating hyperplane to pass through
the origin by choosing a �xed b = 0. This variant is called the hard margin
SVM without threshold. In that case, the optimization problem remains the
same as above except that the constraint

P
�iyi = 0 disappears.

Dealing with non-separability For the non-separable case, one need-
s to allow training errors which results in the so called soft margin SVM
algorithm [4]. It can be shown that soft margin SVMs with quadratic pe-
nalization of errors can be considered as a special case of the hard margin
version with the modi�ed kernel [4, 6]

K K+
1

C
I; (3)

where I is the identity matrix and C a constant penalizing the training
errors. In the rest of the paper, we will focus on the hard margin SVM and
use (3) whenever we have to deal with non-separable data. Thus C will be
considered just as another parameter of the kernel function.

3 Estimating the performance of an SVM

Ideally we would like to choose the value of the kernel parameters that min-
imize the true risk of the SVM classi�er. Unfortunately, since this quantity
is not accessible, one has to build estimates or bounds for it. In this section,
we present several measures of the expected error rate of an SVM.

3.1 Single validation estimate

If one has enough data available, it is possible to estimate the true error on
a validation set. This estimate is unbiased and its variance gets smaller as
the size of the validation set increases. If the validation set is f(x0i; y

0
i)g1�i�p,

the estimate is

T =
1

p

pX
i=1

	(�y0if(x
0
i)); (4)

where 	 is the step function: 	(x) = 1 when x > 0 and 	(x) = 0 otherwise.

6

3.2 Leave-one-out bounds

The leave-one-out procedure consists of removing from the training data one
element, constructing the decision rule on the basis of the remaining training
data and then testing on the removed element. In this fashion one tests all `
elements of the training data (using ` di�erent decision rules). Let us denote
the number of errors in the leave-one-out procedure by L(x1; y1; :::;x`; y`). It
is known [12] that the the leave-one-out procedure gives an almost unbiased
estimate of the expected generalization error:

Lemma 1

Ep`�1err =
1

`
E(L(x1; y1; :::;x`; y`));

where p`�1err is the probability of test error for the machine trained on a sample

of size ` � 1 and the expectations are taken over the random choice of the

sample.

Although this lemma makes the leave-one-out estimator a good choice when
estimating the generalization error, it is nevertheless very costly to actual-
ly compute since it requires running the training algorithm ` times. The
strategy is thus to upper bound or approximate this estimator by an easy
to compute quantity T having, if possible, an analytical expression.

If we denote by f0 the classi�er obtained when all training examples are
present and f i the one obtained when example i has been removed, we can
write:

L(x1; y1; :::;x`; y`) =
X̀
p=1

	(�ypf
p(xp)); (5)

which can also be written as

L(x1; y1; :::;x`; y`) =
X̀
p=1

	(�ypf
0(xp) + yp(f

0(xp)� fp(xp))):

Thus, if Up is an upper bound for yp(f
0(xp) � fp(xp)), we will get the

following upper bound on the leave-one-out error:

L(x1; y1; :::;x`; y`) �
X̀
p=1

	(Up � 1);

since for hard margin SVMs, ypf
0(xp) � 1 and 	 is monotonically increas-

ing.

7

3.2.1 Support vector count

Since removing a non-support vector from the training set does not change
the solution computed by the machine (i.e. Up = f0(xp)�f

p(xp) = 0 for xp
non-support vector), we can restrict the preceding sum to support vectors
and upper bound each term in the sum by 1 which gives the following bound
on the number of errors made by the leave-one-out procedure [18]:

T =
NSV

`
;

where NSV denotes the number of support vectors.

3.2.2 Jaakkola-Haussler bound

For SVMs without threshold, analyzing the optimization performed by the
SVM algorithm when computing the leave-one-out error, Jaakkola and Haus-
sler [9] proved the inequality:

yp(f
0(xp)� fp(xp)) � �0pK(xp;xp) = Up

which leads to the following upper bound:

T =
1

`

X̀
p=1

	(�0pK(xp;xp)� 1):

Note that Wahba et al. [21] proposed an estimate of the number of errors
made by the leave-one-out procedure, which in the hard margin SVM case
turns out to be

T =
X

�0pK(xp;xp);

which can be seen as an upper bound of the Jaakkola-Haussler one since
	(x� 1) � x for x � 0.

3.2.3 Opper-Winther bound

For hard margin SVMs without threshold, Opper and Winther [14] used
a method inspired from linear response theory to prove the following: un-
der the assumption that the set of support vectors does not change when
removing the example p, we have

yp(f
0(xp)� fp(xp)) =

�0p

(K�1
SV)pp

;

8

where KSV is the matrix of dot products between support vectors; leading
to the following estimate:

T =
1

`

X̀
p=1

	

�0p

(K�1
SV)pp

� 1

!
:

3.2.4 Radius-margin bound

For SVMs without threshold and with no training errors, Vapnik [19] pro-
posed the following upper bound on the number of errors of the leave-one-out
procedure:

T =
1

`

R2

2
:

where R and are the radius and the margin as de�ned in theorem 1.

3.2.5 Span bound

Vapnik and Chapelle [20, 3] derived an estimate using the concept of span
of support vectors.

Under the assumption that the set of support vectors remains the same
during the leave-one-out procedure, the following equality is true:

yp(f
0(xp)� fp(xp)) = �0pS

2
p ;

where Sp is the distance between the point �(xp) and the set �p where

�p =

8<
: X

i 6=p; �0i>0

�i�(xi);
X
i6=p

�i = 1

9=
; : (6)

This gives the exact number of errors made by the leave-one-out procedure
under the previous assumption:

T =
1

`

X̀
p=1

	(�0pS
2
p � 1): (7)

The span estimate can be related to other approximations:

Link with Jaakkola-Haussler bound

If we consider SVMs without threshold, the constraint
P

�i = 1 can
be removed in the de�nition of the span. Then we can easily upper
bound the value of the span: S2

p � K(xp;xp), and thus recover the
Jaakkola-Haussler bound.

9

Link with R2=2

For each support vector, we have ypf
0(xp) = 1. Since for x � 0, 	(x�

1) � x, the number of errors made by the leave-one-out procedure is
bounded by: X

p

�0pS
2
p :

It has been shown [20] that the span Sp is bounded by the diameter
of the smallest sphere enclosing the training points and since

P
�0p =

1=2, we �nally get

T � 4
R2

2
:

A similar derivation as the one used in the span bound has been pro-
posed in [10], where the leave-one-out error is bounded by jfp; 2�0pR

2 >
ypf

0(xp)gj, with 0 � K(xi;xi) � R2; 8i.

Link with Opper-Winther

When the support vectors do not change, the hard margin case without
threshold gives the same value as the Opper-Winther bound, namely:

S2
p =

1

(K�1
SV)pp

:

4 Smoothing the test error estimates

The estimate of the performance of an SVM through a validation error (4) or
the leave-one-out error (5) requires the use of the step function 	. However,
we would like to use a gradient descent approach to minimize those estimates
of the test error. Unfortunately the step function is not di�erentiable. As
already mentioned in section 3.2.5, it is possible to bound 	(x � 1) by x
for x � 0. This is how the bound R2=2 is derived from the leave-one-out
error. Nevertheless by doing so, large errors count more than one, therefore
it might be advantageous instead to use a contracting function of the form
	(x) = (1 + exp(�Ax+B))�1 (see �gure 1).

However, the choice of the constants A and B is diÆcult. If A is too
small, the estimate is not accurate and A is too large, the resulting estimate
is not smooth.

Instead of trying to pick good constants A and B, one can try to get
directly a smooth approximation of the test error by estimating posterior

10

-4.0 -3.0 -2.0 -1.0 -0.0 1.0

-2.547

-2.348

-2.149

-1.949

-1.750

-1.551

-4.0 -3.0 -2.0 -1.0 -0.0 1.0

-2.487

-2.262

-2.038

-1.814

-1.589

-1.365

-4.0 -3.0 -2.0 -1.0 -0.0 1.0

-1.283

-1.087

-0.892

-0.697

-0.501

-0.306

Figure 1: Validation error for di�erent values of the width of an RBF kernel.
Top left: with a step function, 	(x) = 1x>0. Top right: sigmoid function,
	(x) = (1+exp(�5x))�1. Bottom: linear function, 	(x) = 1+x for x > �1,
0 otherwise. Note that on the bottom picture, the minimum is not at the
right place

probabilities. Recently, Platt proposed the following estimate of the poste-
rior distribution P (Y = 1jX = x) of an SVM output f(x) [15]:

~PA;B(x) = ~P (Y = 1jX = x) =
1

1 + exp(Af(x) +B)
;

where f(x) is the output of the SVM. The constants A and B are found
by minimizing the Kullback-Leibler divergence between ~P and an empirical
approximation of P built from a validation set (x0i; y

0
i)1�i�nv :

(A�; B�) = argmax
A;B

nvX
i=1

�
1 + y0i
2

log(~PA;B(x
0
i)) +

1� y0i
2

log(1� ~PA;B(x
0
i))

�
:

11

This optimization is carried out using a second order gradient descent algo-
rithm [15].

According to this estimate the best threshold for our SVM classi�er f is
such that f(x) = sign(~PA�;B�(x)� 0:5). Note that if B� 6= 0, we obtained a
correction compared to the usual SVM threshold.

By de�nition the generalization error of our classi�er is

P (Y 6= f(X)) =

Z
x;f(x)=�1

P (Y = 1jx)d�(x) +

Z
x;f(x)=1

(Y = �1jx)d�(x):

This error can be empirically estimated as 2:

P (Y 6= f(X)) �
X

i; ~P (x0i)<0:5

~P (x0i) +
X

i; ~P (x0i)>0:5

1� ~P (x0i) (8)

=
nvX
i=1

min
�
~P (x0i); 1 �

~P (x0i)
�
: (9)

Note that the labels of the validation set are not used directly in this
last step but indirectly through the estimation of the constants A and B
appearing in the parametric form of ~PA�;B� . To have a better understanding
of this estimate, let us consider the extreme case where there is no error on
the validation set. Then the maximum likelihood algorithm is going to yield
A = �1 and ~PA�;B�(x) will only take binary values. As a consequence, the
estimate of the error probability will be zero.

5 Optimizing the kernel parameters

Let's go back to the SVM algorithm. We assume that the kernel k depends
on one or several parameters, encoded into a vector � = (�1; : : : ; �n). We
thus consider a class of decision functions parametrized by �, b and �:

f�;b;�(x) = sign

 X̀
i=1

�iyiK�(x;xi) + b

!
:

We want to choose the values of the parameters � and � such thatW (see
equation (2)) is maximized (maximum margin algorithm) and T , the model
selection criterion, is minimized (best kernel parameters). More precisely,
for � �xed, we want to have �0 = argmaxW (�) and choose �0 such that

�0 = argmin
�

T (�0;�):

2We note ~P (x) as an abbreviation for ~PA�;B�(x)

12

When � is a one dimensional parameter, one typically tries a �nite num-
ber of values and picks the one which gives the lowest value of the criterion
T . When both T and the SVM solution are continuous with respect to �,
a better approach has been proposed by Cristianini et al. [5]: using an in-
cremental optimization algorithm, one can train an SVM with little e�ort
when � is changed by a small amount. However, as soon as � has more than
one component computing T (�;�) for every possible value of � becomes
intractable, and one rather looks for a way to optimize T along a trajectory
in the kernel parameter space.

Using the gradient of a model selection criterion to optimize the model
parameters has been proposed in [1] and demonstrated in the case of linear
regression and time-series prediction. It has also been proposed by [11] to
optimize the regularization parameters of a neural network.

Here we propose an algorithm that alternates the SVM optimization
with a gradient step is the direction of the gradient of T in the parameter
space. This can be achieved by the following iterative procedure:

1. Initialize � to some value.

2. Using a standard SVM algorithm, find the maximum of the

quadratic form W:

�0(�) = argmax
�

W (�;�):

3. Update the parameters � such that T is minimized.

This is typically achieved by a gradient step (see below).

4. Go to step 2 or stop when the minimum of T is reached.

Solving step 3 requires estimating how T varies with �. We will thus
restrict ourselves to the case where K� can be di�erentiated with respect
to �. Moreover, we will only consider cases where the gradient of T with
respect to � can be computed (or approximated).

Note that �0 depends implicitly on � since �0 is de�ned as the maximum
of W . Then, if we have n kernel parameters (�1; : : : ; �n), the total derivative
of T 0(�) � T (�0(�); �) with respect to �p is:

@T 0

@�p
=

@T 0

@�p

����
�0 �xed

+
@T 0

@�0

@�0

@�p
:

13

Having computed the gradient r�T (�
0;�), a way of performing step 3

is to make a gradient step:

Æ�k = �"
@T (�0;�)

@�k
;

for some small and eventually decreasing ". The convergence can be im-
proved with the use of second order derivatives (Newton's method):

Æ�k = �(��T)
�1@T (�

0;�)

@�k

where the Laplacian operator � is de�ned by

(��T)i; j =
@2T (�0;�)

@�i@�j
:

In this formulation, additional constraints can be imposed through projec-
tion of the gradient.

6 Computing the gradient

In this section, we describe the computation of the gradient (with respect to
the kernel parameters) of the di�erent estimates of the generalization error.
First, for the bound R2=2 (see Theorem 1), we obtain a formulation of
the derivative of the margin (section 6.1) and of the radius (section 6.2).
For the validation error (see equation (4)), we show how to calculate the
derivative of the hyperplane parameters �0 and b (see section 6.3). Finally,
the computation of the derivative of the span bound (7) is presented in
section 6.4.

We �rst begin with a useful lemma.

Lemma 2 Suppose we are given a (n� 1) vector v� and an (n� n) matrix

P� smoothly depending on a parameter �. Consider the function:

L(�) = max
x2F

xTv� �
1

2
xTP�x

where

F = fx : bTx = c;x � 0g:

14

Let �x be the the vector x where the maximum in L(�) is attained. If this

minimum is unique then

@L(�)

@�
= �xT

@v�
@�
�
1

2
�xT

@P�

@�
�x:

In other words, it is possible to di�erentiate L with respect to � as if �x did

not depend on �. Note that this is also true if one (or both) of the constraints
in the de�nition of F are removed.

Proof: We �rst need to express the equality constraint with a Lagrange
multiplier � and the inequality constraints with Lagrange multipliers i:

L(�) = max
x;�;

xTv� �
1

2
xTP�x� �(bTx� c) + Tx: (10)

At the maximum, the following conditions are veri�ed:

v� �P��x = ��b� �;
bT �x = c;
�i �xi = 0; 8i:

We will not consider here di�erentiability problems. The interested read-
er can �nd details in [2]. The main result is that whenever �x is unique, L is
di�erentiable.

We have

@L(�)

@�
= �xT

@v�
@�
�
1

2
�xT

@P�

@�
�x+

@�x

@�

T

(v� �P��x);

where the last term can be written as follows,

@�x

@�

T

(v� �P��x) = ��
@�x

@�

T

b�
@�x

@�

T

�:

Using the derivatives of the optimality conditions, namely

@�x

@�

T

b = 0;

@�i
@�

�xi + �i
@�xi
@�

= 0;

and the fact that either �i = 0 or �xi = 0 we get:

@�i
@�

�xi = �i
@�xi
@�

= 0;

hence
@�x

@�

T

(v� �P��x) = 0

and the result follows. �

15

6.1 Computing the derivative of the margin

Note that in feature space, the separating hyperplane fx : w ��(x)+ b = 0g
has the following expansion

w =
X̀
i=1

�0i yi�(xi)

and is normalized such that

min
1�i�`

yi(w � �(xi) + b) = 1:

It follows from the de�nition of the margin in Theorem 1 that this latter is
 = 1=kwk. Thus we write the bound R2=2 as R2kwk2.

The previous lemma enables us to compute the derivative of kwk2. In-
deed, it can be shown [19] that

1

2
kwk2 =W (�0);

and the lemma can be applied to the standard SVM optimization problem
(2), giving

@kwk2

@�p
= �

X̀
i;j=1

�0i�
0
jyiyj

@K(xi;xj)

@�p

6.2 Computing the derivative of the radius

Computing the radius of the smallest sphere enclosing the training points
can be achieved by solving the following quadratic problem [19]:

R2 = max
�

X̀
i=1

�iK(xi;xi)�
X̀
i;j=1

�i�jK(xi;xj)

under constraints X̀
i=1

�i = 1

8i �i � 0

We can again use the previous lemma to compute the derivative of the
radius:

@R2

@�p
=
X̀
i=1

�0i
@K(xi;xi)

@�p
�
X̀
i;j=1

�i�j
@K(xi;xj)

@�p
;

where �0 maximizes the previous quadratic form.

16

6.3 Computing the derivative of the hyperplane parameters

Let us �rst compute the derivative of �0 with respect to a parameter �
of the kernel. For this purpose, we need an analytical formulation for �0.
First, we suppose that the points which are not support vectors are removed
from the training set. This assumption can be done without any loss of
generality since removing a point which is not support vector does not a�ect
the solution. Then, the fact that all the points lie on the margin can be
written �

KY Y

YT 0

�
| {z }

H

�
�0

b

�
=

�
1

0

�
;

where KY
ij = yiyjK(xi;xj). If there are n support vectors, H is a (n+

1)� (n+ 1) matrix. The parameters of the SVMs can be written as:

(�0; b)T = H�1(1 � � � 1 0)T :

We are now able to compute the derivatives of those parameters with respect
to a kernel parameter �p. Indeed, since the derivative of the inverse of a
matrix M depending on a parameter �p can be written 3

@M�1

@�p
= �M�1@M

@�p
M�1; (11)

it follows that
@(�0; b)

@�p
= �H�1@H

@�p
H�1(1 � � � 1 0)T ;

and �nally

@(�0; b)

@�p
= �H�1 @H

@�p
(�0; b)T :

We can easily use the result of this calculation to recover the computation
@kwk2

@�p
. Indeed, if we denote ~� = (�0; b), we have kwk2 = (�0)TKY�0 =

~�TH~� and it turns out that:

@kwk2

@�p
= ~�T @H

@�p
~�+ 2~�H

@ ~�

@�p

= ~�T @H

@�p
~�� 2~�HH�1 @H

@�p
~�

3This inequality can be easily proved by di�erentiating MM
�1 = I

17

= �~�T @H

@�p
~�

= �(�0)T
@KY

@�p
�0:

6.4 Computing the derivative of the span-rule

Now, let us consider the span value. Recall that the span of the support
vector xp is de�ned as the the distance between the point �(xp) and the set
�p de�ned by (6). Then the value of the span can be written as:

S2
p = min

�
max
�

0
@�(xp)�X

i6=p

�i�(xi)

1
A2

+ 2�

0
@X

i6=p

�i � 1

1
A :

Note that we introduced a Lagrange multiplier � to enforce the constraintP
�i = 1.
Introducing the extended vector ~� = (�T�)T and the extended matrix

of the dot products between support vectors

~KSV =

�
K 1

1T 0

�
;

the value of the span can be written as:

S2
p = min

�
max
�

(K(xp;xp)� 2vT ~�+ ~�
T
H~�);

where H is the submatrix of ~KSV with row and column p removed, and v
is the p-th column of ~KSV .

From the fact that the optimal value of ~� is H�1v, it follows:

S2
p = K(xp;xp)� v

TH�1v

= 1=(~K�1
SV)pp: (12)

The last equality comes from the following block matrix identity, known as
the \Woodbury" formula [13]�

A1 AT

A A2

��1
=

�
B1 BT

B B2

�
;

where B1 = (A1 �AA
�1
2 AT)�1.

18

The closed form we obtain is particularly attractive since we can compute
the value of the span for each support vector just by inverting the matrix
KSV .

Combining equation (12) and (11), we get the derivative of the span

@S2
p

@�p
= S4

p

~K�1
SV

@ ~KSV

�p
~K�1
SV

!
pp

Thus, the complexity of computing the derivative of the span-rule with
respect to a parameter �p of the kernel requires only the computation of
@K(xi;xj)

@�p
and the inversion of the matrix ~KSV . The complexity of these

operations is not larger than that of the quadratic optimization problem
itself.

There is however a problem in this approach: the value given by the span-
rule is not continuous. By changing smoothly the value of the parameters
�, the coeÆcients �p change continuously, but the span S

2
p does not. There

is actually a discontinuity for most support vectors when the set of support
vectors changes. This can be easily understood from equation (6): suppose
that upon changing the value of the parameter from � to �+ ", a point xm
is not a support vector anymore, then for all other support vectors (xp)p6=m,
the set �p is going to be smaller and a discontinuity is likely to appear for
the value of Sp = d(�(xp);�p).

The situation is explained in �gure 2: we plotted the value of the span of
a support vector xp versus the width of an RBF kernel �. Almost everywhere
the span is decreasing, hence a negative derivative, but some jumps appear,
corresponding to a change in the set of support vectors. Moreover the span
is globally increasing: the value of the derivate does not give us a good
indication of the global evolution of the span.

One way to solve is this problem is to try to smooth the behavior of
the span. This can be done by imposing the following additional constraint
in the de�nition of �p in equation (6): j�ij � c �0i , where c is a constant.
Given this constraint, if a point xm is about to leave or has just entered the
set of support vectors, it will not have a large inuence on the span of the
other support vectors, since �0m will be small. The e�ect of this constraint
is to make the set �p become \continuous" when the set of support vectors
changes.

However this new constraint prevents us from computing the span as
eÆciently as in equation (12). A possible solution is to replace the constraint

19

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

73e-3

74e-3

75e-3

76e-3

77e-3

78e-3

79e-3

80e-3

Figure 2: Value of
P

S2
p , the sum of the span of the training points for

di�erent values of the width of an RBF kernel varying in the small vicinity

by a regularization term in the computation of the span:

S2
p = min

�;
P

�i=1

�(xp)�
nX
i6=p

�i�(xi)

2

+ �

nX
i6=p

1

�0i
�2i

With this new de�nition of the span, equation (12) becomes:

S2
p = 1=(~KSV +D)�1pp �Dpp;

where D is a diagonal matrix with elements Dii = �=�0i and Dn+1;n+1 = 0.
As shown on �gure 3 , the span is now much smoother and its minimum is
still at the right place. In our experiments, we took � = 0:1.

Note that computing the derivative of this new expression is no more
diÆcult than the previous span expression.

It is interesting to look at the leave-one-out error for SVMs without
threshold. In this case, the value of the span with regularization writes:

S2
p = min

�

�(xp)�
X
i 6=p

�i�(xi)

2

+ �

nX
i 6=p

1

�0i
�2i

As already pointed out in section 3.2.5, if � = 0, the value of span is:

S2
p =

1

(K�1
SV)pp

:

20

-4.0 -3.0 -2.0 -1.0 -0.0 1.0

-2.487

-2.262

-2.038

-1.814

-1.589

-1.365

2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

73e-3

77e-3

81e-3

85e-3

89e-3

93e-3

97e-3

Figure 3: Left: the minima of the span with regularization (dashed line)
and without regularization (solid line) are close. Right: detailed behavior
of the span for di�erent values of the regularizer, � = 0; 0:001; 0:01; 0:1

and we recover the Opper-Winther bound.
On the other hand, if � = +1, then � = 0 and S2

p = K(xp;xp). In this
case, the span bound is identical to the Jaakkola-Haussler one.

In a way, the span bound with regularization is in between the bounds
of Opper-Winther and Jaakkola-Haussler.

7 Experiments

Experiments have been carried out to assess the performance and feasibility
of our method.

The �rst set of experiments consists in �nding automatically the optimal
value of two parameters: the width of an RBF kernel and the constant C in
equation (3). The second set of experiments corresponds to the optimiza-
tion of a large number of scaling factors in the case of handwritten digit
recognition. We then show that optimizing scaling factors leads naturally
to feature selection and demonstrate the application of the method to the
selection of relevant features in several databases.

7.1 Optimization details

The core of the technique we present here is a gradient descent algorithm.
We used the optimization toolbox of Matlab to perform it. It includes second
order updates to improve the convergence speed. Since we are not interested
in the exact value of the parameters minimizing the functional, we used a
loose stopping criterion.

21

Cross-validation R2=2 Span-bound

Breast Cancer 26.04 � 4.74 26.84 � 4.71 25.59 � 4.18
Diabetis 23.53 � 1.73 23.25 � 1.7 23.19 � 1.67
Heart 15.95 � 3.26 15.92 � 3.18 16.13 � 3.11
Thyroid 4.80 � 2.19 4.62 � 2.03 4.56 � 1.97
Titanic 22.42 � 1.02 22.88 � 1.23 22.5 � 0.88

Table 1: Test error found by di�erent algorithms for selecting the SVM
parameters C and �. The �rst column reports the results from [16]. In the
second and last column, the parameters are found by minimizing R2=2 and
the span-bound using a gradient descent algorithm.

7.2 Benchmark databases

In a �rst set of experiments, we tried to select automatically the width � of
a RBF kernel,

K(x; z) = exp

�

nX
i=1

(xi � zi)
2

2n�2

!

along the constant C penalizing the training error appearing in equation
(3).

In order to avoid adding positivity constraints in the optimization prob-
lem (for the constant C and the width � of the RBF kernel), we use the
parameterization � = (logC; log �). Moreover, this turns out to give a more
stable optimization. The initial values are C = 1 and log � = �2. Each
component being normalized by its standard deviation, this corresponds to
a rather small value for �.

We used benchmark databases described in [16]. Those databases, as
long as the 100 di�erents training and test splits are available at
http://ida.first.gmd.de/�raetsch/data/benchmarks.htm.

We followed the same experimental setup as in [16]. On each of the �rst
5 training sets, the kernel parameters are estimated using either 5-fold cross-
validation, minimization of R2=2, or the span-bound. Finally, the kernel
parameters are computed as the median of the 5 estimations.

The results are shown in table 1.
It turns out that minimizing R2=2 or the span estimates yields approxi-

mately the same performances as picking-up the parameters which minimize
the cross-validation error. This is not very surprising since cross-validation
is known to be an accurate method for choosing the hyper-parameters of

22

Cross-validation R2=2 Span-bound

Breast Cancer 500 14.2 7
Diabetis 500 12.2 9.8
Heart 500 9 6.2
Thyroid 500 3 11.6
Titanic 500 6.8 3.4

Table 2: Average number of SVM trainings on one training set needed to
select the parameters C and � using standard cross-validation or by mini-
mizing R2=2 or the span-bound.

any learning algorithm.
A more interesting comparison is the computational cost of these meth-

ods. Table 2 shows how many SVM trainings in average are needed to select
the kernel parameters on each split. The results for cross-validation are the
ones reported in [16]. They tried 10 di�erent values for C and � and per-
formed 5-fold cross-validation. The number of SVM trainings on each of the
5 training set needed by this method is 10 � 10 � 5 = 500.

The gain in complexity is impressive: on average 100 times fewer SVM
training iterations are required to �nd the kernel parameters. The main rea-
son for this gain is that there were two parameters to optimize. Because of
computational reasons, exhaustive search by cross-validation can not han-
dle the selection of more than 2 parameters, whereas our method can, as
highlighted in the next section.

Discussion As explained in section 3.2, R2=2 can seem to be a rough
upper bound of the span-bound, which is in an accurate estimate of the test
error [3]. However in the process of choosing the kernel parameters, what
matters is to have a bound whose minimum is close to the optimal kernel
parameters. Even if R2=2 cannot be used to estimate the test error, the
previous experiments show that its minimization yields quite good results.
The generalization error obtained by minimizing the span-bound (cf table 1)
are just slightly better. Since the minimization of the latter is more diÆcult
to implement and to control (more local minima), we recommend in practice
to minimize R2=2. In the experiments of the following section, we will only
relate experiments with this bound, but similar results have been obtained
with the span-bound.

23

7.3 Automatic selection of scaling factors

In this experiment, we try to choose the scaling factors for an RBF and
polynomial kernel of degree 2. More precisely, we consider kernels of the
following form:

K(x; z) = exp

�
X
i

(xi � zi)
2

2�2i

!

and

K(x; z) =

1 +

X
i

xizi
�2i

!2

Most of the experiments have been carried out on the USPS handwritten
digit recognition database. This database consists of 7291 training examples
and 2007 test examples of digit images of size 16x16 pixels. We try to classify
digits 0 to 4 against 5 to 9. The training set has been split into 23 subsets
of 317 examples and each of this subset has been used successively during
the training.

To assess the feasibility of our gradient descent approach for �nding
kernel parameters, we �rst used only 16 parameters, each one corresponding
to a scaling factor for a squared tile of 16 pixels as shown on �gure 4.

Figure 4: On each of the 16 tiles, the scaling factors of the 16 pixels are
identical.

The scaling parameters were initialized to 1. The evolution of the test
error and of the bound R2=2 is plotted versus the number of iterations in
the gradient descent procedure in �gures 5 (polynomial kernel) and 6 (RBF
kernel).

Note that for the polynomial kernel, the test error went down to 9%
whereas the best test error with only one scaling parameter is 9.9%. Thus,

24

0 10 20 30 40 50 60
88e-3

90e-3

92e-3

94e-3

96e-3

98e-3

100e-3

102e-3

104e-3

0 10 20 30 40 50 60
430

470

510

550

590

630

670

710

750

790

Figure 5: Evolution of the test error (left) and of the bound R2=2 (right)
during the gradient descent optimization with a polynomial kernel

1 5 9 13 17 21 25 29 33 37 41
64e-3

68e-3

72e-3

76e-3

80e-3

84e-3

88e-3

92e-3

96e-3

100e-3

104e-3

1 5 9 13 17 21 25 29 33 37 41
100

200

300

400

500

600

700

800

Figure 6: Evolution of the test error (left) and of the bound R2=2 (right)
during the gradient descent optimization with an RBF kernel

by taking several scaling parameters, we managed to make the test error
decrease.

It might be interesting to have a look at the value of the scaling coeÆ-
cients we have have found. For this purpose, we took 256 scaling parameters
(one per pixel) and minimized R2=2 with a polynomial kernel. The map of
the scaling coeÆcient is shown in �gure 7.

The result is quite consistent with what one could expect in such a
situation: the coeÆcients near the border of the picture are smaller than
those in the middle of the picture, so that these coeÆcients can be directly
interpreted as measures of the relevance of the corresponding features.

25

Figure 7: Scaling factors found by the optimization procedure: darker means
smaller scaling factor

Discussion This experiment can be considered as a sanity check experi-
ment. Indeed, it proves it is feasible to choose multiple kernel parameters of
an SVM and that it does not lead to over�tting. However, the gain in test
error was not our main motivation since we did not expect any signi�can-
t improvement on such a problem where most features play a similar role
(taking all scaling factors equal on this database seems a reasonable choice).
However as highlighted by �gure 7, this method can be a powerful tool to
perform feature selection.

8 Feature selection

The motivation for feature selection is three-fold:

1. Improve generalization error

2. Determine the relevant features (for explanatory purposes)

3. Reduce the dimensionality of the input space (for real-time applica-
tions)

Finding optimal scaling parameters can lead to feature selection algo-
rithms. Indeed, if one of the input components is useless for the classi�ca-
tion problem, its scaling factor is likely to become small. But if a scaling
factor becomes small enough, it means that it is possible to remove it with-
out a�ecting the classi�cation algorithm. This leads to the following idea

26

for feature selection: keep the features whose scaling factors are the largest.
This can also be performed in a principal components space where we scale
each principal component by a scaling factor.

We consider two di�erent parametrization of the kernel. The �rst one
correspond to rescaling the data in the input space:

K�(x; z) = K(�Tx;�T z)

where � 2 Rn .
The second one corresponds to rescaling in the principal components

space:
K�(x; z) = K(�T�x;�T�z)

where � is the matrix of principal components.
We compute � and � using the following iterative procedure:

1. Initialize � = (1; : : : ; 1)

2. In the case of principal component scaling, perform

principal component analysis to compute the matrix �.

3. Solve the SVM optimization problem

4. Minimize the estimate of the error T with respect to �

with a gradient step.

5. If a local minimum of T is not reached go to step 3.

6. Discard dimensions corresponding to small elements in �

and return to step 2.

We demonstrate this idea on two toy problems where we show that fea-
ture selection reduces generalization error. We then apply our feature selec-
tion algorithm to DNA Micro-array data where it is important to �nd which
genes are relevant in performing the classi�cation. It also seems in these
types of algorithms that feature selection improves performances. Lastly,
we apply the algorithm to face detection and show that we can greatly re-
duce the input dimension without sacri�cing performance.

8.1 Toy data

We compared several algorithms

� The standard SVM algorithm with no feature selection

27

� Our feature selection algorithm with the estimate R2=2 and with the
span estimate

� The standard SVM applied after feature selection via a �lter method

The three �lter methods we used choose the m largest features accord-
ing to: Pearson correlation coeÆcients, the Fisher criterion score4, and the
Kolmogorov-Smirnov test5. Note that the Pearson coeÆcients and Fisher
criterion cannot model nonlinear dependencies.

In the two following arti�cial datasets our objective was to assess the
ability of the algorithm to select a small number of target features in the
presence of irrelevant and redundant features [22].

For the �rst example, six dimensions of 202 were relevant. The probabil-
ity of y = 1 or �1 was equal. The �rst three features fx1; x2; x3g were drawn
as xi = yN(i; 1) and the second three features fx4; x5; x6g were drawn as
xi = N(0; 1) with a probability of 0:7, otherwise the �rst three were drawn
as xi = N(0; 1) and the second three as xi = yN(i � 3; 1). The remaining
features are noise xi = N(0; 20), i = 7; : : : ; 202.

For the second example, two dimensions of 52 were relevant. The prob-
ability of y = 1 or �1 was equal. The data are drawn from the following: if
y = �1 then fx1; x2g are drawn from N(�1;�) or N(�2;�) with equal prob-
ability, �1 = f�

3
4 ;�3g and �2 = f

3
4 ; 3g and � = I, if y = 1 then fx1; x2g

are drawn again from two normal distributions with equal probability, with
�1 = f3;�3g and �2 = f�3; 3g and the same � as before. The rest of the
features are noise xi = N(0; 20); i = 3; : : : ; 52.

In the linear problem the �rst six features have redundancy and the rest
of the features are irrelevant. In the nonlinear problem all but the �rst two
features are irrelevant.

We used a linear kernel for the linear problem and a second order poly-
nomial kernel for the nonlinear problem.

We imposed the feature selection algorithms to keep only the best two
features. The results are shown in �gure (8) for various training set sizes,
taking the average test error on 500 samples over 30 runs of each training
set size. The Fisher score (not shown in graphs due to space constraints)
performed almost identically to correlation coeÆcients.

4F (r) =
����+r ���r
�
+
r
+�

�

r

���, where ��r is the mean value for the r-th feature in the positive and

negative classes and ��r is the standard deviation
5KStst(r) =

p
` sup

�
P̂fX � frg � P̂fX � fr; yr = 1g

�
where fr denotes the r-th

feature from each training example, and P̂ is the corresponding empirical distribution.

28

In both problem, we clearly see that our method outperforms the other
classical methods for feature selection. In the nonlinear problem, among the
�lter methods only the Kolmogorov-Smirnov test improved performance over
standard SVMs.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Span−Bound & Forward Selection
RW−Bound & Gradient
Standard SVMs
Correlation Coefficients
Kolmogorov−Smirnov Test

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Span−Bound & Forward Selection
RW−Bound & Gradient
Standard SVMs
Correlation Coefficients
Kolmogorov−Smirnov Test

(a) (b)

Figure 8: A comparison of feature selection methods on (a) a linear problem
and (b) a nonlinear problem both with many irrelevant features. The x-axis
is the number of training points, and the y-axis the test error as a fraction
of test points.

8.2 DNA Microarray Data

Next, we tested this idea on two leukemia discrimination problems [7] and a
problem of predicting treatment outcome for Medulloblastoma 6. The �rst
problem was to classify myeloid versus lymphoblastic leukemias based on
the expression of 7129 genes. The training set consists of 38 examples and
the test set 34 examples. Standard linear SVMs achieve 1 error on the test
set. Using gradient descent on R2=2 we achieved 0 error using 30 genes
and 1 error using 1 gene. Using the Fisher score to select features resulted
in 1 error for both 1 and 30 genes.

The second leukemia classi�cation problem was discriminating B versus
T cells for lymphoblastic cells [7]. Standard linear SVMs make 1 error for
this problem. Using either the span bound or gradient descent on R2=2

results in 0 error using 5 genes, whereas the Fisher score get 2 errors using
the same number of genes.

The �nal problem is one of predicting treatment outcome of patients
that have Medulloblastoma. Here there are 60 examples each with 7129

6The database will be available at : http://waldo.wi.mit.edu/MPR/data sets.html

29

expression values in the dataset and we use leave-one-out to measure the
error rate. A standard SVM with a Gaussian kernel makes 24 errors, while
selecting 60 genes using the gradient descent on R2=2 we achieved an error
of 15.

8.3 Face detection

The trainable system for detecting frontal and near-frontal views of faces in
gray images presented in [8] gave good results in terms of detection rates.
The system used gray values of 19�19 images as inputs to a second-degree
polynomial kernel SVM. This choice of kernel lead to more than 40,000
features in the feature space. Searching an image for faces at di�erent s-
cales took several minutes on a PC. To make the system real-time reducing
the dimensionality of the input space and the feature space was required.
The feature selection in principal components space was used to reduce the
dimensionality of the input space [17].

The method was evaluated on the large CMU test set 1 consisting of 479
faces and about 57,000,000 non-face patterns. In Figure 9, we compare the
ROC curves obtained for di�erent numbers of selected components.

The results showed that using more than 60 components does not im-
prove the performances of the system [17].

9 Conclusion

We proposed an approach for automatically tuning the kernel parameters
of an SVM. This is based on the possibility of computing the gradient of
various bounds on the generalization error with respect to these parameter-
s. Di�erent techniques have been proposed to smooth these bounds while
preserving their accuracy in predicting the location of the minimum of test
error. Using these smoothed gradients we were able to perform gradient de-
scent to search the kernel parameter space, leading to both an improvement
of the performance and a reduction of the complexity of the solution (feature
selection). Using this method, we chose in the separable case appropriate
scaling factors. In the non separable case, this method allows us to choose
simultaneously scaling factors and parameter C (see equation 3).

The bene�ts of this technique are many. First it allows to actually op-
timize a large number of parameters while previous approaches only could
deal with 2 parameters at most. Even in the case of a small number of
parameters, it improves the run time by a large amount. Moreover exper-
imental results have demonstrated that an accurate estimate of the error

30

Figure 9: ROC curves for di�erent number of PCA gray features.

is not required and that a simple estimate like R2=2 has a very good be-
haviour in terms of �nding the right parameters. In a way this renders the
technique even more applicable since this estimate is very simple to com-
pute and derive. Finally, this approach avoids holding out some data for
validation and thus makes full use of the training set for the optimization
of parameters, contrary to cross-validation methods.

This approach and the fact that it has be proven successful in various
situation opens new directions of research in the theory and practice of Sup-
port Vector Machines. On the practical side, this approach makes possible
the use of highly complex and tunable kernels, the tuning of scaling factors
for adapting the shape of the kernel to the problem and the selection of
relevant features. On the theoretical side, it demonstrates that even when
a large number of parameter are simultaneously tuned the over�tting e�ect
remains low.

Of course a lot of work remains to be done in order to properly un-
derstand the reasons. Another interesting phenomenon is the fact that the
quantitative accuracy of the estimate used for the gradient descent is only

31

marginally relevant. This raises the question of how to design good estimates
for parameter tuning rather than accurate estimates.

Future investigation will focus on trying to understand these phenomena
and obtain bounds on the generalization error of the overall algorithm, along
with looking for new problems where this approach could be applied as well
as new applications.

Acknowledgments

The authors would like to thank JasonWeston and �Elodie N�ed�elec for helpful
comments and discussions.

References

[1] Y. Bengio. Gradient-based optimization of hyper-parameters. Neural

Computation, 12(8), 2000.

[2] J.F. Bonnans and A. Shapiro. Perturbation Analysis of Optimization

Problems. Springer-Verlag, 2000.

[3] O. Chapelle and V. Vapnik. Model selection for support vector ma-
chines. In Advances in Neural Information Processing Systems, 1999.

[4] C. Cortes and V. Vapnik. Support vector networks. Machine Learning,
20:273 { 297, 1995.

[5] N. Cristianini, C. Campbell, and J. Shawe-Taylor. Dynamically adapt-
ing kernels in support vector machines. In Advances in Neural Infor-

mation Processing Systems, 1999.

[6] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector

Machines. Cambridge University Press, 2000.

[7] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P.
Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D.
Bloom�eld, and E.S. Lander. Molecular classi�cation of cancer : Class
discovery and class prediction by gene expression monitoring. Science,
286:531{537, 1999.

[8] B. Heisele, T. Poggio, and M. Pontil. Face detection in still gray images.
AI Memo 1687, Massachusetts Institute of Technology, 2000.

32

[9] T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models.
In Proceedings of the 1999 Conference on AI and Statistics, 1999.

[10] T. Joachims. Estimating the generalization performance of a svm ef-
�ciently. In Proceedings of the International Conference on Machine

Learning. Morgan Kaufman, 2000.

[11] J. Larsen, C. Svarer, L.N. Andersen, and L.K. Hansen. Adaptive reg-
ularization in neural network modeling. In G.B. Orr and K.R. M�uller,
editors, Neural Networks : Trick of the Trade. Springer, 1998.

[12] A. Luntz and V. Brailovsky. On estimation of characters obtained
in statistical procedure of recognition. Technicheskaya Kibernetica, 3,
1969. (in Russian).

[13] H. L�utkepohl. Handbook of Matrices. Wiley & Sons, 1996.

[14] M. Opper and O. Winther. Gaussian processes and svm: Mean �eld
and leave-one-out. In A.J. Smola, P.L. Bartlett, B. Sch�olkopf, and
D. Schuurmans, editors, Advances in Large Margin Classi�ers, pages
311{326, Cambridge, MA, 2000. MIT Press.

[15] John Platt. Probabilities for support vector machines. In A. Smola,
P. Bartlett, B. Sch�olkopf, and D. Schuurmans, editors, Advances in
Large Margin Classi�ers. MIT Press, Cambridge, MA, 2000.

[16] G. R�atsch, T. Onoda, and K.-R. M�uller. Soft margins for AdaBoost.
Machine Learning, 42(3):287{320, 2001.

[17] T. Serre, B. Heisele, S. Mukherjee, and T. Poggio. Feature selection for
face detection. AI Memo 1697, Massachusetts Institute of Technology,
2000.

[18] V. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

[19] V. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[20] V. Vapnik and O. Chapelle. Bounds on error expectation for support
vector machines. Neural Computation, 12(9), 2000.

[21] G. Wahba, Y. Lin, and H. Zhang. Generalized approximate cross-
validation for support vector machines : another way to look at margin-
like quantities. In A. Smola, P. Bartlett, B. Sch�olkopf, and D. Schu-
urmans, editors, Advances in Large Margin Classi�ers, pages 297{309.
MIT Press, 2000.

33

[22] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and
V. Vapnik. Feature selection for support vector machines. In Advances

in Neural Information Processing Systems, 2000.

34

