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KRIGING HYDROCHEMICAL DATA

Donald E. Myers

University of Arizona

ABSTRACT

As a part of the National Uranium Resource Evaluation Program
(NURE) water samples were collected from existing wells in all
the continental United States. These samples were analyzed for
some 30 elements and ions. Data were assembled for each 2
degrees RMTS quadrangle. The objectives of the NURE program
included identification of areas favorable for exploration and
producing estimates of recoverable resources. Other authors have
reported on the use of pattern recognition, cluster analysis, and
discriminant analysis to identify favorable areas.

In cooperation with the Uranium Resource Evaluation Group at
Oakridge, the author utilized data from Plainview Quadrangle
(Plainview, Texas) to examine the effectiveness of kriging to
contour data on 13 variables including uranium. These variables
were selected for their chemical association with the deposition
or leaching of uranium salts. Because of strong dissimilarities

between the Ogallala (Pliocene) and Permian groupings, the data
were segregated. '

Variograms were computed for each variable, separately for the
Permian and Ogallala. Variogram models were cross-validated
using randomly selected data subsets. In addition to kriged
tontour maps for the 13 variables and kriging variance maps in
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both the Permian and Ogallala, weighted linear sums also were Adeta
considered. Two different weightings were considered, the "andeth
weights were determined by a discriminant analysis model. - Mvers
Unusual regions were identified as those for which the krigng $& ¢ iiowt
error exceeded two kriging standard deviations. These regions . two m:
were correlated strongly with those identified by a discriminae & the on;

analysis model and by the quadrangle evaluation. L (Amars
 covera,
INTRODUCTION e

The objective of the National Uranium Resource Evaluation
(NURE) Program was "to provide a systematic appraisal of the
uranium resources of the conterminous United States and Alas’
Everhart (1977). It was envisioned that geologic, radiometric, -
hydrogeochemical, and stream-sediment data would be
and analyzed systemically in an appropriate manner and
evaluations prepared for various geographical regions. The
Hydrogeochemical and Stream Sediment Reconnaissance (HSSk
Program was one facet of the data collection process. As 5
indicated by Roach (1978) it was expected that statistical ansh
would play an important role but the types of techniques to be
used were not specified. Kane (1977) has described the . .
application of standard statistical techniques such as cluster 8§
factor analysis to HSSR data. This paper will present the resd’
of applying kriging to hydrogeochemical data from the Plainv®
(Texas) Quadrangle (NTMS). _

Kriging is a linear estimation technique that incorporates the
spatial dependence of the variable in question. Kriging was .- 3.
investigated as a tool to delineate geochemical patterns, Wently :
anomalous areas, and dispersion properties of hydrogeochﬂi /

variables in a quantitative way. -

THE PLAINVIEW QUADRANGLE AND HSSRDATA "
As a part of the HSSR Program, water samples were ODIR
approximately 900 wells in the Plainview Quadrangle whld
were analyzed at the ORGD analytical laboratory. Each samplt
location was identified by latitude and longitude and obﬂd, {
values recorded for some thirty hydrogeochemical =
complete listing is given in the open-file quadrangle
(URE, 1978) and the data also are available. o

S
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A detailed discussion of the geology of the Plainview Quadrangle ,
and the reasons for its selection for this study is contained in 4
Myers and others (1980). Briefly, the reasons include the ‘-
following: (1) relative simplicity of the geology, there being only
two major geologic formations; (2) the Plainview Quadrangle was
the only one for which the quadrangle evaluation was complete
(Amaral, 1979); and (3) good overall groundwater sample
coverage. There are 473 sites in the Permian units and 375 in
the Ogallala Formation. Data for twelve variables were considered ?_
in the Permian and thirteen in the Ogallala. These will be listed :
later.

L R R R I

KRIGING

The statistical technique known as kriging was developed by
Matheron (1965, 1971, 1973) and his associates at the Centre de
Geostatistique, ENSMP, France to provide an improved method of
ore-grade estimation. It also has been used as a contouring
technique in hydrology and more recently for soil mapping
(Journel and Huijbrechts, 1978; Burgess and Webster, 1980).

The application to hydrogeochemical data reported here
apparently is new and utilizes kriging for more than just
contouring.

The reader is referred to Journel and Huijbrechts (1978) or
Myers and others (1980) for a more complete derivation of the
kriging estimator and its properties; the following is a brief
summary.

Let x be a geographical position and z(x) the value of a
hydrogeochemical variable such as uranium concentration at x.

zx) can be considered as a function defined on a

two-dimensional region, well and aquifer depths were not used.

If the form of the function were known it would be sufficient to
substitute simply the coordinates for x and compute z(x). z(x) is
in general an irregular function and its form is not known; only

~ the values z(x}), ... .z(xp) at sample locations xj, X2, ... .Xpn. The
problem then is to estimate or predict the value at an unsampled
location. Inverse Distance Weighing (IDW) and Polygonal are two
widely used methods both of which incorporate local influences.
The parallel study of the Plainview Quadrangle data using IDW is
reported in Kane and others (1982) and is also in Myers and
others (1980). Trend-Surface Analysis (TSA) attempts to fit a

vy
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smooth function to the data and does not incorporate local
influences. To derive the kriging estimator it is assumed that
z(x) is a realization of a random function Z(x). It then is
necessary to determine appropriate statistical characteristics o
Z(x) to proceed with estimation. Matheron determined that tw
conditions were sufficient »

E[Z(x)-Z(x +h)]=0 (1)
for all x, h ( h a vector)

Var [Z(x) - Z(x +h)] = 2y(h) (2) t BhalR ]
moduce

where y(h) depends only on h. y(h) quantifies the spatial e to de

dependence. Equation (1) implies the absence of drift. If

vth) = v(1hl), Ihl = length of h, Z(x) 1s said to be isotropic. ‘lh
kriging estimator is of the form

Z (=Y, \x) 2(x) (8)
j=1

where the Aj 's are selected so that Z* is an unbiased esmat®.
that is E

E[Z (%) - Z(x)] =0

and the variance of the error is minimal

Var [Z (%) - Z(x)] = 0§ (x)

are obtained from the linear system
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where Tij = yixy - xj), % = v{x - xj) and pis a Lagrange multiplier
introduced to solve the minimization problem. To apply kriging it
is necessary to test whether conditions (1) and (2) are satisfied

and to determine y(h) which is termed the variogram. y(h) can be
estimated by the sample variogram

Y(b) = = D (alx + b) - 2(x) (7)

where N is the number of pairs of sample locations at "distance"” h
and the sum is over all such pairs. It is known that - y(h) must be
conditionally positive definite and the usual procedure is to try to
fit y*(h) to one of several known standard functional types. For
ore-grade estimation there is a moderate amount of accumulated
experience which provides guidance on selecting a functional
form for y(h). For example, if a spherical model is used for y(h),
then the parameters are related in a direct way to the graph of

Y*(h). Because this was a new application there are no references
to previous studies. It was determined that the sample

variograms also provided insight into the hydrogeochemical
groupings.

SAMPLE VARIOGRAMS
Because the HSSR data were collected for the purpose of aiding in

the assessment of uranium resources the principal variable of
interest was uranium, the other variables were selected because of
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their usefulness in jdentifying Of predicting uranium occurrencs
sample variograms (svg) were computed and plotted for the
following elements OF variables: Uranium, Boron, Barium,
Lithium. Magnesium. Molybdenurm. Sodium. vanadium.

, and ArseniC (Ogallalauﬂ
Becaust of the small number of sample Jocations in the Dockus
Group these were omitted. The sVES were computed and ploost
separately for the Permian and the Ogallala. To test whether @

/

made. B ause le locations were not on uniform
few pairs b distance although the total num
pairs jarge. For plotting purposes: tak be

the plotted val s an average ecause it 18 general P

fit geoche o alog normal di tribution vg's
comput a plotted for 10 thmic tr formed data
Figure 1 shows the plots for ur directional an

for the gallala on. Figur h

pPermian Figure 3 {llustrates the possible contras tween 08

As described 10 Myers and others (1983) the variograni!tﬂ' )
four graphical types: . £

1t is of interest t0 note that all of the plots exhibited 8
effect’. A complete set of the svg plots and a descriptio®
computer program is presented in Myers and others
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To compute these residuals for al] sample locations and al]
Proposed models would have required large amounts of computer
time. In order to select the final functional forms to be used, only

Three statistics were computed for each functional model. These
were

T T
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Table 1. S, S*, S Values
”

S S* S Unit
U 2.033 0.105 1.330 Ogallala
L-U 0.933 1.354 0.888 Permian

. (Z,-z:)zlc,2
S'= 7% (9)

Y (z-02%/s
i=1

2(21'2.1)2

§ _ 1eD (10)

> (z-2)

1eD

z; represents the observed value at location Xy, zj* the kriged
estimated and z the sample mean. o;2 is the estimation variss®
for Jocation xq and D= {i / 1z - "1 / 6i< 2). The denominsi®®
are almost the sample variance. S, S*, S provide a comparisos .
between the kriging estimator and the sample mean asan .
estimator. Table 1 tabulates the values for S, S*, S for Urani
(Ogallala) and Log-Uranium (Permian) for the models that we®
used subsequently (for the 100 test locations). _ :
The use of transformed data does introduce a bias, that -_
nonlinear transformation such as the logarithm is u the 597,
estimator is nonlinear and in general not an unbiased Gﬂ"‘“ -

Journel and Huijbrechts (1978) suggest ways to
but this was not incorporated in the preliminary study.
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INTERPRETATION OF PLAINVIEW DATA

One of the ways that kriging can be used to interpret geochemical
data is to produce contour plots. This was done for all 13
variables in the Ogallala and the 12 in the Permian. Those for
uranium have been combined into one plot as shown in Figure 5.
By overlaying these plots on the plot of favorable areas as
determined by Amaral (1979), it is seen that there is strong
coincidence of high concentration contours with areas A and B in
the Ogallala.

There is some coincidence with area D in the Permian but it
seems that area D should be extended southwest. In the NURE
quadrangle report correlations are tabulated for each pair of
variables. Those showing the highest correlation with uranium,
magnesium, vanadium, lithium, total alkilinity. and arsenic
(Ogallala only) do not exhibit similar contour patterns as uranium.
Of perhaps equal interest are the dissimilarities between the
Ogallala and Permian as exhibited in the contour plots.

The residuals described earlier also can be used to identify
unusual patterns. An observed value will be termed unusual if the
normalized residual is large, for example, in absolute value greater
than two. The term unusual is used in contrast to anomalous
because the residuals can be positive or negative. In particular for
hydrogeochemical data large negative residuals may to correspond
to locations where precipitation from the groundwater is taking
place and may be as significant as large positive residuals. The
normalized residuals have been coded onto Figure 5 and
particularly in the Ogallala, exhibit a pattern which correlates with
Areas A and B. ,

Identifying unusual values by the size of normalized residual is
justified for several reasons. In Figure 6, the histograms of the
normalized residuals, it is seen that the empirical probability of
large residuals is small. If the normalized residuals were
distributed normally then the probability of large residuals could
be obtained from a normal table. If the residuals are assumed
symmetric, then Chebyshev's Inequality asserts that the
probability of residuals greater than 2 is less than 0.11. The
symmetry that is exhibited in Figure 6 also is indicative of the
unbiasedness that should be characteristic of the kriging
estimator.

[P
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The original motivation for studying the variables other than
uranium was because of their usefulness in predicting uranium
mineralization. However the kriging described does not explicitly
incorporate such information. There is a form of joint estimation
known as cokriging which was described by Myers (1982, 1983).
A somewhat simpler approach was used instead in this
preliminary work. Kane (1978) has described the use of weighted
sum contouring, using data from the Crystal City and Beeville
Quadrangles. When a single variable such as uranium is of
principal interest but is known to be related to other variables,
weighted sums provide a simple way to incorporate the
dependency.

One way to utilize both weighted sums and kriging would be to
combine the separate contoured plots but the kriging variances
generally would be large. The simpler technique of forming a new
variable was used instead, termed Natural Factors. The variables
incorporated and the weights are as follows

Permian
1.460* [L-U + (-2.040)] +
2.100* [L-SP + (-8.230)] +
0.610* [L-NA + (-4.540] +
0.610* [L-V + (4.540] +

0.920* [L-MO + (-1.910)]

Ogallala
158 o [L-U + (1.80)] +1.30 s [L-LI + (-4.52)] +
169 o [L-AJ + (-1.38)] +1.07  [L-V + (-2.75)] +
151 « [L-MO + (-1.98)] + 2.09 » [L-MG + (-3.38)]

In each formation svg's were computed and plotted for the
Natural Factors variable. These are shown in Figure 7. A
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functional model was fitted and used to compute the coefficients
in the kriging estimator. Figure 8 shows the composite of the
Ogallala/ Permian Natural Factors Kkriged contours overlain with
the Amaral favorable areas A. B, C, D and also those identified by
Beauchamp and others (1980). Amaral area B is delineated
clearly by oné or more +4 contours. It is interesting t0 note that
at approxlmately Lat. 340 20'N and Long. 1910 10' W there art
geveral +4 contours (Fig. g8). This corresponds to 8 pattern of -
large positive normalized residuals and high-level kriged uraniu®
contours as shown in Figure 5. This region does not CorTes

o

TIC identified by Beauchamp and others (1980).

The Natural ‘Factors contours do not seem 10 indicate any
correspondence with Area D in the Permian. This is not
unexpected because the favorable units in Area D are

Pennsylvanian in age and ar¢ present only at greater depths o
are not penetrated by the sampled wells.

Another weighted sum. termed Subjective Mineralization glso¥®
kriged but was not as useful.

CONCLUSIONS i

Kriging was determined o be a viable geostatistical tool for
analyzing geochemical dispersion patterns. The vario L
estimated from the sample variogram plots clearly delineatt
tween variables and geologic units and provide grouping®

naturally related to predicting Uranium occurrences. - A

As a tool to jdentify favorable areas for exploration for uraniu® 3
geveral aspects of kriging wer€ utilized; contour plots M
residuals, and weighted sum contouring. Coincidence
determined with two areas identified by Amaral (1979 and
areas identified by Beauchamp and others (1980)- -

Kriging of linear combinations by forming a NEW variable, 8
done with Natural Factors. is not optimal. Neither 18 g%
each component. The optimal method is cokriging 85

presented in Myers (1982, 1983, 1984) and CarT,
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