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Abstract

Statistical modeling techniques have been applied successfully to natural lan-

guage processing tasks such as automatic speech recognition (ASR) and statistical

machine translation (SMT). Since most statistical approaches rely heavily on avail-

ability of data and the underlying model assumptions, reduction in uncertainty is

critical to their optimal performance.

In speech translation, the uncertainty is due to the speech input to the SMT

system whose elements are represented as distributions over sequences. A novel ap-

proach to statistical phrase-based speech translation is proposed. This approach is

based on a generative, source-channel model of translation, similar in spirit to the

modeling approaches that underly hidden Markov model(HMM)-based ASR sys-

tems: in fact, our model of speech-to-text translation contains the acoustic models

of a large vocabulary ASR system as one of its components. This model of speech-to-

text translation is developed as a direct extension of the phrase-based models used

in text translation systems. Speech is translated by mapping ASR word lattices to

lattices of phrase sequences which are then translated using operations developed for

text translation. Efficient phrase extraction from ASR lattices and word and phrase

level pruning strategies for speech translation are investigated to reduce uncertainty

in translation of speech.

In order to achieve good translation performance it is necessary to find optimal

parameters under a particular training objective. Two different discriminative train-

ing objective functions are investigated: Maximum Mutual Information (MMI) and

Expected BLEU. A novel iterative optimization procedure, using growth transfor-

mations is proposed as a parameter update procedure for the training criteria. The

translation performance using growth transformation based updates is investigated

in detail.
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Training a highly accurate ASR systems requires availability of speech corpora

with reliable verbatim transcripts. However, accurately transcribed training data

are not always available and manually generating them is not always a feasible op-

tion. A novel lightly supervised approach to training acoustic models is presented

that leverages information from non-literal transcripts. In particular, a method for

discriminatively training acoustic models using non-literal transcripts is presented.

Reliable segments in the acoustic frame are automatically identified and the unreli-

able frames are filtered during model parameter estimation.
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Chapter 1

Introduction

1.1 Motivation

Statistical modeling approaches to natural language processing have been re-

markably successful over the last two decades. Speech recognition, for example, has

benefitted vastly from the various statistical learning approaches applied to language

modeling, acoustic modeling, pronunciation modeling, data clustering, and hidden

Markov models [1, 2]. Statistical modeling techniques have also been applied suc-

cessfully in other areas of natural language processing, machine translation being

one of them.

Most statistical modeling approaches rely heavily on the availability of data. The

availability of large amount of text and speech corpora have played a critical role in

the success of many of these approaches to natural language processing. However,

all of these statistical learning approaches have to deal with uncertainty. Sparsity of

data, information loss due to noise, ambiguity in natural language, incorrect mod-

eling assumptions and errors during inference are just some sources of uncertainty

in statistical modeling approaches.

For example, in the case of automatic speech recognition (ASR), large amounts

of speech and text corpora are needed to accurately train acoustic models capable

of reliably recognizing a test utterance. It is easy to collect tens of thousands of

hours of speech data, for example from broadcast news television feeds. However,

manually transcribing all of this speech data accurately is both a time consuming
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and a very expensive process. Although an off the shelf speech recognizer can be ap-

plied to transcribe the speech and then retrain the model, this approach is prone to

errors and might result in unreliable model estimates. A careful approach is needed

to correctly train the speech recognizer that can leverage any domain knowledge or

additional information into the training process. The statistical learning approach

must be able to identify and filter out the unreliable information during model pa-

rameter estimation.

Statistical models are prone to errors either due to modeling incorrectness or

due to approximations during inference. This problem is compounded further in a

cascaded architecture where the output of one statistical system forms the input to

another system in the pipeline. In such a complex information processing pipeline

the errors in one system adversely affects the performance of the other systems in the

pipeline. Speech translation is one such example of a complex information process-

ing system. A typical speech translation architecture consists of an ASR component

followed by a statistical machine translation (SMT) component. The ASR system

is prone to recognition errors due to pruning of the hypothesis space and various

modeling assumptions that go in to the system. Hence, there is uncertainty due to

errors which severely degrades the translation performance of the SMT system in

the pipeline. Hence, it is generally desirable that the ASR component should pass

on as much information as possible for use by the SMT system.

1.2 Research Objective

In this thesis, methodologies to cope with uncertainty in two areas of natural

language processing - speech translation and automatic speech recognition are dis-

cussed.

A novel approach to statistical phrase-based speech translation is presented. This

approach is based on a generative, source-channel model of translation, similar in

spirit to the modeling approaches that underly HMM-based ASR systems - in fact,

our model of speech-to-text translation contains the acoustic models of a large vocab-

ulary ASR system as one of its components. This model of speech-to-text translation
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is developed as a direct extension of the phrase-based models used in text translation

systems. Speech is translated by mapping ASR word lattices to lattices of phrase

sequences which are then translated using operations developed for text translation.

The uncertainty in speech translation is due to the ambiguity in selecting the op-

timal translation candidate from the ASR lattice for translation. In order to deal

with uncertainty, efficient phrase extraction from ASR lattices and word and phrase

level pruning strategies for speech translation are investigated.

In order to achieve good translation performance it is necessary to find optimal

parameters under a particular training objective. In this thesis, two discriminative

training criteria are presented for learning the SMT parameters - maximum mutual

information (MMI) criterion and expected BLEU criterion. A novel optimization

procedure, using growth transformations is introduced as a parameter update pro-

cedure for the training criteria. Furthermore, the problem of training with multiple

references is also investigated under the MMI framework. Finally, translation per-

formance is evaluated for the MMI and expected BLEU training procedure and

compared with the state of the art minimum error training procedure.

Training Automatic Speech Recognition (ASR) systems require availability of

training transcripts for the speech data. Although, it is easy to obtain several hours

of speech data, obtaining the corresponding transcripts is a time consuming and

costly process. However, partial data transcripts might be available in the domain

the loosely correspond to the spoken utterance. For example, in the medical domain

the medical reports which are generated as a by-product of the normal medical

transcription workflow are available easily. In this work, a novel method for the

automatic generation of transcripts from these non-literal transcript is presented.

In particular, reliable regions in the transcript that can be used for training acous-

tic models are identified. Furthermore, a lattice based frame filtering approach is

discussed for discriminatively training the acoustic models from these non-literal

transcripts.
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1.3 Thesis Organization

This thesis is divided into three parts. In Part I, a generative source-channel

model for speech translation is presented. Discriminative training for machine trans-

lation is also investigated. In Part II, a discriminative training technique for training

acoustic models from non-literal transcripts is presented. Finally, in Part III, con-

clusions and possible directions for future research are explored.

• Chapter 2 begins with a brief description of text translation. The translation

template model (TTM) [3] is presented and the BLEU evaluation criteria for

evaluating translation performance is discussed. Next, the noisy channel model

formulation for speech translation and the various architectures proposed to

solve this problem are discussed. A detailed formulation of the speech trans-

lation phrase based generative model implemented using weighted finite state

machines is presented. Methods for extracting phrases from lattices, pruning

at word and phrase level are also discussed.

• Chapter 3 introduces various discriminative training objectives to optimize

the MT parameters. Also, Chapter 3 discusses minimum error training and

growth transformation based parameter updates in great detail. Chapter 4

shows how the growth transformations can be applied to training the various

MT objective functions.

• Translation experiment results for discriminative training using growth trans-

forms and speech translation are reported in Chapter 5 and Chapter 6 respec-

tively.

• Chapter 7 gives a brief overview of the models underlying the ASR system and

the various training procedures. Chapter 8 addresses the problem of training

acoustic models from non-literal transcripts. An automatic transcript genera-

tion strategy is discussed. Also a novel discriminative training procedure based

on filtering of unreliable frames is presented. Chapter 9, presents recognition

experiments to evaluate the novel training procedure.

• Finally, in Chapter 10 the research goals achieved in this thesis are discussed.

Also, future directions for research are outlined.
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Part I

Statistical Machine Translation of

Speech
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Chapter 2

Statistical Phrase-Based Speech

Translation

2.1 Overview of Machine Translation of Text

2.1.1 Statistical Machine Translation

Statistical machine translation has achieved significant advancement in recent

years. This is attributed to increased availability of parallel corpora and the progress

of statistical modeling and automatic evaluation [4]. The most widely used model

in statistical MT systems is the source-channel model [5]. The source string, say

an English sentence eI1, goes through a stochastic noisy channel and generates the

target string, say a foreign sentence fJ1 . It typically includes two components: a

monolingual language model P (eI1), which assigns probabilities to source language

strings, and a translation model P (fJ1 |eI1) that assigns probabilities to target lan-

guage strings given a source string. Bilingual sentence pairs are required to learn

the statistical parameters of the translation model, and the translation process is

usually implemented by source decoding algorithms, for instance, Maximum A Pos-

teriori (MAP)

êÎ1 = argmax
eI1,I

P (fJ1 |eI1) P (eI1) (2.1)

Translation can be carried out based on word identity [5, 6]. Target words are

translated into source words, and source words are reordered to produce grammat-

ical sentences. Translation performance can be improved, though, when based on
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phrases [7, 8]. For instance, the target sentence is segmented into target phrases,

and each target phrase is translated into a source phrase, and finally the source

phrases are reordered to produce the final output source word hypothesis. We next

briefly introduce the Translation Template Model (TTM) [3], which is a phrase-

based, weighted finite state [9] implementation of the source-channel translation

template model. Later, in Section 2.7, the speech translation model is discussed

which is a straightforward extension of the TTM.

2.1.2 Translation Template Model

The Translation Template Model (TTM) [3] is a source-channel model of trans-

lation with joint probability distribution over all possible segmentations and align-

ments of target language sentences and their translations in the source language.

Translation is modeled as a mapping of source language phrase sequences to target

language sentences. The model considers whole phrases rather than words as the

basis for translation.

First, the source sentence is segmented into source phrases; source phrases are

then mapped onto target phrases, which form the target sentence naturally. Target

phrases are allowed to be inserted in the generative process. This corresponds to

the deletion of target phrases during translation. Translation is in monotone phrase

order. Each of the conditional distributions that make up the model is realized

independently and implemented as a weighted finite state acceptor or transducer.

Translation of sentences under the TTM can be performed using standard Weighted

Finite State Transduce (WFST) operations involving these transducers.

2.2 Evaluating Translation Performance

Evaluating translation is inherently a difficult problem as there are many possi-

ble “right” translations in the source language for a given target language sentence.

These translations may vary in word choice or in word order even when they use the

same words. Although humans can recognize good translations from bad ones, using

humans in the evaluation of machine translation is a slow and expensive process.

A quick, inexpensive, and language-independent evaluation criterion that correlates
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highly with human evaluation,and that has little marginal cost per run is needed.

Although automatic translation evaluation is a debatable problem, it is valuable

in significantly accelerating MT system development and enabling experiments with

many models and algorithms that might otherwise not be tested. Accordingly, many

different automatic translation metrics have been proposed in literature - BLEU-

score [10], NIST-score [11], F-measure [12], multi-reference Position-independent

Word Error Rate (mPER) [13], multi-reference Word Error Rate (mWER) [13] and

Translation Error Rate (TER) [14]. Each of these criterion assumes that human

references exist for machine-generated translations against which to be compared.

It is unlikely that any one of these metrics would perform better than the others

for all translation tasks. In this thesis, we will use the BLEU criterion to measure

translation performance, which we introduce briefly below.

BLEU [10] is an automatic machine translation evaluation metric that has been

widely recognized in the research community. It was adopted in NIST MT evalu-

ation [15] from 2002 to 2005 and has been found to correlate highly with human

judgments in terms of fluency and adequacy. BLEU score computes the geometric

mean of the modified n-gram precisions pn(E,E+) (typically upto n-grams of length

4) between a hypothesis E and a reference sentence E+, and includes a brevity

penalty γ(E,E+), if the hypothesis is shorter than the reference,

BLEU(E,E+) = γ(E,E+) ∗ exp

(
1

4

4∑
n=1

log pn(E,E+)

)
(2.2)

The brevity penalty is defined as

γ(E,E+) =

1− |E
+|
|E| , |E| ≤ |E

+|

1, |E| ≥ |E+|
(2.3)

BLEU is defined over all the sentences in the test set i.e. the E and E+ are

concatenation of all the hypotheses and reference sentences respectively, in the test

set.

2.3 Speech Translation Noisy Channel Model

The goal of a speech translation system is to translate a speech utterance in one

language to text in the desired language. A precise mathematical formulation of
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speech translation is needed if we are to discuss the problem of speech translation

system design.

Target
Speech

A ←−

Target
Sentence

fJ1 ←−

Source
Sentence

eI
1

Figure 2.1: Speech Translation noisy-channel model

We begin by formalizing the source-channel model for speech translation [16]

shown in Figure 2.1. The source-channel model is a generative model that describes

how a source string (e.g English text), eI1 generates a target speech signal (e.g spoken

language Mandarin), A. Strictly speaking, the target sentence fJ1 is not of interest

in the decoding process. Mathematically, fJ1 is introduced as a hidden variable in

the Bayes’ decision rule. The decoding problem is to recover the source sentence eI1,

which can be obtained by the MAP decoder

êÎ1 = argmax
I,eI1

P (eI1|A) (2.4)

= argmax
I,eI1

∑
fJ1

P (eI1, f
J
1 |A) (2.5)

= argmax
I,eI1

∑
fJ1

P (A|fJ1 , eI1) P (fJ1 |eI1) P (eI1) (2.6)

= argmax
I,eI1

P (eI1)
∑
fJ1

P (A|fJ1 ) P (fJ1 |eI1) (2.7)

∼= argmax
I,eI1

P (eI1)

{
max
fJ1

P (A|fJ1 ) P (fJ1 |eI1)

}
(2.8)

= argmax
I,eI1

max
fJ1

P (eI1)︸ ︷︷ ︸
Language

Model

P (fJ1 |eI1)︸ ︷︷ ︸
Translation

Model

P (A|fJ1 )︸ ︷︷ ︸
Acoustic

Model

(2.9)

In Equation 2.7, it is assumed without loss of generality that the target language

speech signal A given the target language string fJ1 is independent of the source

string eI1i.e. P (A|fJ1 , eI1) = Pr(A|fJ1 ). Equation 2.8 follows by approximating the

complete likelihood by the likelihood of the most likely path i.e. the summation is

replaced by a maximum over the target string fJ1 . The source-channel formulation
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neatly decomposes the speech translation problem in to three sub-components : the

monolingual source language model that assigns probabilities to the source language

word string, the translation model that assigns probabilities to a target language

word string given the source language word string, and a target language acoustic

model that assigns probability to the target language speech utterance given the

target language word string.

2.4 Speech Translation Architectures

The main difference from the text translation case is the introduction of the target

language acoustic model, as observed by comparing the noisy-channel formulations

in Equation 2.1 and Equation 2.9. The acoustic model component can interact in

varying degrees with the translation model component of the system. Depending on

the level of interaction speech translation can be broadly classified in to two different

architectures - serial architecture and integrated architecture

2.4.1 Serial Architecture

In a serial architecture the translation process is broken down into two separate

decoding steps. First, a conventional speech recognizer in the target language is

used to obtain the target language hypotheses. Then, the decoded target language

sentence is input to a translation system which finds the best possible translation in

the source language. The formulation is as follows:

1. Target Language ASR Decoding

The best target language sentence (possibly multiple hypotheses) fJ1 is searched

for given a target acoustic model P (A|fJ1 ) and a target language model P (fJ1 )

f̂ Ĵ1 = argmax
fJ1 ,J

P (A|fJ1 ) P (fJ1 ) (2.10)

2. Translation of Target Language Sentence

This is the translation component where the target language sentence obtained

from the ASR decoder f̂ Ĵ1 is input to a statistical text translation system to

obtain the best possible translation in the source language.

êÎ1 = argmax
eI1,I

P (eI1) P (f̂ Ĵ1 |eI1) (2.11)
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This approach is clearly sub-optimal as there is no interaction between the ASR

and SMT components. Any errors made by the decoder during search are propa-

gated to the SMT component. This can be mitigated to some extent by translating

multiple hypotheses (N-best lists) instead of a single 1-best string from the ASR

decoder. One disadvantage of using N-best lists is that the translation performance

is largely limited by the ASR N-best word error rate. Searching over a much larger

hypothesis could help the SMT component to better recover from ASR search errors.

Furthermore, the SMT system can possibly exploit the target language information

provided by the ASR system - target acoustic model and target language model

probabilities - in searching for the best possible target language candidate to be

translated.

2.4.2 Integrated Architecture

In an integrated architecture, there is no decoupling of the ASR component

and the SMT component . The translation is obtained in a single pass by jointly

searching for the best source sentence and target sentence. The formulation of the

integrated architecture is specified below:

êÎ1 = argmax
I,eI1

P (eI1)

{
max
fJ1

P (fJ1 |eI1) P (A|fJ1 )

}
(2.12)

The maximization in Equation 2.12 is over both the target language sentence fJ1 and

the source language sentence eJ1 indicating that the search for the target sentence

and the source sentence are coupled in this framework.

In this thesis, the tight coupling between the ASR and SMT components is

achieved by modeling P (A|fJ1 ) as a word lattice. The ASR word lattice compactly

represents the distribution over the target language sequences hypothesized by the

ASR recognizer and encodes a much larger hypothesis space than the N-best lists.

The goal is to aid the SMT component in searching for the best translation in

the source language, by allowing it to explore a larger search space of candidate

sentences to be translated guided by the target language information (e.g. acoustic

model scores). In the following sections we discuss the various approaches to speech

translation in more detail.
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2.5 Previous Approaches to Speech Translation

Various approaches to speech translation have been investigated - serial archi-

tecture [17, 18, 19] and integrated architecture [20, 16, 21]).

In the serial architecture, there is very little interaction between the SMT com-

ponent and the ASR component. The JANUS III system [17] uses a N-best list

based approach. First the ASR system produces a N-best transcription list. The

N-best list is then passed on to a rule-based translation module which generates

the final translation. A similar example based translation approach is presented

in [18]. The IBM MASTOR system [19] is a speech to speech translation system for

translating conversational speech from English to Mandarin, in limited domains. In

this approach, a large vocabulary ASR system produces a single transcript which is

analyzed by a statistical parser to extract semantic and lexical features. The fea-

tures are then used in a sentence-level maximum entropy framework to generate the

translations.

In an integrated architecture, the objective is to allow the SMT system to search

among many likely ASR hypotheses and hopefully produce a better translation than

if it had been restricted to the single, best ASR hypothesis. In practice, the close

coupling of ASR and SMT can be realized by translating ASR N-Best lists [22, 23]

or word lattices [24, 25]. N-Best translation is straightforward: a text-based SMT

system can be used without modification to translate each entry, and the resulting

translations can be sorted by some combination of ASR and SMT scores. The unified

approach to speech translation presented in [22], uses N-best lists for the close cou-

pling between the ASR and SMT systems. A log-linear modeling framework is used

to integrate features from the ASR system (acoustic and language model scores)

and the features from the SMT system ( e.g. word translation probability, word

reordering, word length). The translation hypotheses generated are then rescored

using additional language models to obtain the final translation. An integrated N-

best re-ranking approach using N-best lists is presented in [23], which is similar to

the approach presented in [22]. In addition, the authors in [23] explore the effect of

parameter optimization in re-ranking the translation hypotheses.
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Although it is a complicated modeling and implementation problem, lattice-

based translation offers potential advantages over translation of N-Best lists. Lat-

tices provide larger search spaces, as well as detailed, sub-sentential information,

such as word-level acoustic and language model scores, that can be passed directly

to the SMT system. However it is not trivial to obtain gains in lattice-based trans-

lation relative to simply translating the ASR transcription. Initial attempts at

incorporating word lattice information in translation did not yield consistent im-

provements in translation performance [24]. A significant drawback of the approach

is that it did not incorporate the ASR language model scores in to the translation

process. However approaches have subsequently been developed by which lattices

and confusion networks can be translated with improvements in translation qual-

ity [26, 25]. The speech translation system presented in [25] models the components

as weighted finite state machines and uses a tuple based decomposition of the trans-

lation model. Instead of using lattices, the authors in [26] used a confusion network

based decoding approach. The confusion network is a compact representation of the

word lattice, where the word graph representing the lattice is reduced to a series

of adjacent segments, such that the arcs in each segment represents a word and its

associated posterior probability [27].

Stochastic Finite-State Transducers (SFSTs) and their generalization - Weighted

Finite State Transducers (WFSTs) [28, 29], have been applied successfully to vari-

ous speech and language tasks. Apart from their simplicity, they lend themselves to

easy integration of conventional ASR (lattices are easily represented as finite state

machines (FSMs)) and SMT systems, thereby allowing the use of standard Viterbi

style (with beam pruning) decoding to search for the optimal translation candidate.

Various WFST based approaches have been successfully used in speech translation

systems [20, 30, 25]. In the AT&T approach, the translation component is decom-

posed into lexical choice and lexical reordering modules, and integration with the

ASR component is achieved using finite state machines [30]. The speech translation

approach used in [21], uses SFSTs directly inferred from bilingual data based on

specialized maximum likelihood style learning approaches for finite state machines.
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2.6 Weighted Finite State Transducers

The speech translation system used in this thesis is a weighted finite state trans-

ducer (WFST) based implementation. We give a brief introduction of the various

definitions and operations used to model the various translation components follow-

ing the presentation in [29].

A system (K,⊕,⊗, 0̄, 1̄) is a semiring if (K,⊕, 0̄) is a commutative monoid with

identity element 0̄, (K,⊗, 1̄) is a monoid with identity element 1̄, ⊗ distributes

over ⊕, and 0̄ is an annihilator for ⊗: ∀a ∈ K, a ⊗ 0̄ = 0̄ ⊗ a = 0̄. Thus, a

semiring is a ring that may lack negation. The two most commonly used semirings

are the tropical semiring: (R ∪ {−∞,+∞},min,+,+∞, 0) and the log semiring:

(R ∪ {−∞,+∞},⊕log,+,+∞, 0), where x⊕log y = − log(e−x + e−y).

A WFST T over a semiring K is an 8-tuple T = (Σi
T ,Σ

o
T , Q, I, F, E, λ, ρ) where:

Σi
T is the finite input alphabet of the transducer; Σo

T is the finite output alphabet;

Q is a finite set of states; I ⊆ Q is a set of initial states; F ⊆ Q is a set of final

states; E ⊆ Q× (Σi
T ∪ ε)× (Σo

T ∪ ε)×K×Q is a finite set of transitions; λ : I → K
the initial weight function; and ρ : F → K the final weight function.

A WFSA A over a semiring K is an 8-tuple T = (ΣA, Q, I, F, E, λ, ρ) where: ΣA

is the finite vocabulary; Q is a finite set of states; I ⊆ Q is a set of initial states;

F ⊆ Q is a set of final states; E ⊆ Q × (ΣA ∪ ε) × K × Q is a finite set of transi-

tions; λ : I → K the initial weight function; and ρ : F → K the final weight function.

Weighted Finite State Acceptors (WFSAs) can be obtained by simply omitting

the input or output label of a WFST. Accordingly, Π1(T ) denotes the projection of

the transducer T onto the input label (i.e. omitting the output label) and Π2(T )

denotes the projection of the transducer T onto the output label.

Given a transition e ∈ E, let p[e] denote its origin or previous state, n[e] the desti-

nation state, i[e] the input label, o[e] the output label, and w[e] its weight. In case the

automaton is a WFSA, l[e] denotes simply the label of e. A path π = e1, e2, . . . , ek is

an element of E∗ with consecutive transitions : n[ei−1] = p[ei], i = 1, 2, . . . , k. Here
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E∗ is the set of all strings consisting of symbols in E. Also, for a path π, we can de-

fine n[π] = n[ek], p[π] = n[e1] and w[π] = w[e1]⊗· · ·⊗w[ek] and l[π] = l[e1], . . . , l[ek].

For an weighted finite automaton (WFA) A, a path π is a complete path if

n[π] ∈ I and e[π] ∈ F . Henceforth, we will define the set of all such complete paths

for the WFA A as ΠA. Also, the language of the WFA A is denoted by LA, where:

LA = {sn1
∣∣ l[π] = sn1 , π ∈ ΠA}

Also, a transducer T is regulated if the weight associated by T to any pair of

input output strings (x, y) is given by:

[[T ]](x, y) =
⊕
π∈ΠT

λ[p[π]]⊗ w[π]⊗ ρ[n[π]]

We now define some WFST operations on transducers used in the speech trans-

lation model:

1. Composition

The composition of two weighted transducers A ◦ B is also a weighted trans-

ducer defined for all input-output label pairs (x, y)

[[A ◦B]](x, y) =
⊕

z∈ΣoA ∩ ΣiB

A(x, z)⊗B(z, y)

2. Best Path

The best path of a transducer T is the path π in the transducer with minimal

cost. Usually, the transducer is represented in the tropical semiring. So we

have

BestPath(T ) = min
π∈ΠT

λ[p[π]]⊗ w[π]⊗ ρ[n[π]]

where, P (I, F ) is the set of all complete paths in T .

The composition and best path operations can be defined analogously for accep-

tors.

2.7 Generative Models for Translation of Speech

2.7.1 Statistical Phrase-Based Speech Translation

The statistical speech translation model is a simple extension of the text trans-

lation system described in Section 2.1.2. Speech translation is formulated as a gen-



16

erative source-channel model of translation that describes how the source sentence

eI1 generates the target language acoustics A. The transformation is effected via a

series of transformative operations specified by conditional probability distributions.

grains       exports       are    expected   to    fall    by   25 %

grains      exports          are_expected_to    fall       by_25 %

grains     exportations           doivent          fléchir    de_25_%

1 exportations    1   grains          doivent          fléchir    de_25_%

les exportations  de    grains         doivent         fléchir    de_25_%

les exportations  de    grains         doivent         fléchir   de  25  % Target Language
Sentence

Target Language
Phrase

with Insertion

Target Language
Phrase

with Reordering

Target Language
Phrase

Source Language
Phrase

Source Language
Sentence

Target Language
Speech

Target Speech
Generation

Target Phrase
Segmentation

Target Phrase
Insertion

Target Phrase
Reordering

Phrase
Transduction

Source Phrase
Segmentation

Figure 2.2: An example showing the generative process for speech translation: a
source language sentence is transformed in to a target language speech utterance
via a series of intermediate transformations

Figure 2.2 illustrates the generative process through which the source language

sentence is transformed in to the target language speech. In this example, the source

language model generates the source language sentence grain exports are expected

to fall by 25 %. This sentence is segmented into a source phrase sequence: grain

exports are projected to fall by 25 % under the Source Phrase Segmentation Model.

This source phrase sequence is then translated into a target language phrase se-

quence grains exportations doivent fléchir de 25 % under the Phrase Transduction

Model. The target phrase sequence obtained is still in source language order. The

target phrase sequence is then reordered into the target language order 1 exporta-

tions grains 1 doivent fléchir de 25 % under the Target Phrase Reordering Model.

The integer markings indicate placeholders for the length of the target phrases to
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be inserted. The insertion is governed by the Target Phrase Insertion Model which

gives us the target phrase sequence les exportations de grains doivent fléchir de 25 %.

Next, the target phrase is segmented in to a target word sequence les exportations

de grains doivent fléchir de 25 %. Finally, the target word sequence is transformed

in to the corresponding speech utterance.

The joint distribution over the target language speech A and the source language

sentence eI1 is specified as:

P (A, fJ1 , v
R
1 , y

K
1 , x

K
1 , u

K
1 , e

I
1) =

P (A|fJ1 ) Target Acoustic Model

P (fJ1 |vR1 ) Target Phrase Segmentation Model

P (vR1 |yK1 ) Target Phrase Insertion Model

P (yK1 |xK1 , uK1 ) Target Reordering Model (2.13)

P (xK1 |uK1 ) Phrase Transduction Model

P (uK1 |eI1) Source Phrase Segmentation Model

P (eI1) Source Language Model

Each of the conditional distributions are modeled independently as WFSTs and are

presented in detail in Section 2.7.3.

2.7.2 Phrase Pair Inventory

The Speech Translation Model relies on an inventory of target language phrases

and their source language translations. The phrase pairs are not unique, which im-

plies there can be multiple translations of phrases in either language. Before we go

on to describe the phrase pair extraction procedure we will cover a few preliminary

definitions.

A phrase in the context of machine translation is defined as a substring (i.e.

a contiguous sequence of words). In order to extract phrase pairs we begin with

parallel training data which is a corpus of target language sentences along with the

corresponding source language translations. Next we define a set of word alignment

between each sentence pair in the parallel training data. An alignment is simply
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a function that maps a word position in the source (target) language sentence to

a word position in the target (source) language sentence. The word alignment is

obtained from a corpus of aligned sentence pairs in an unsupervised fashion using

Expectation Maximization (EM) [5, 31, 32, 33].

Given these word alignments we can now extract phrase pairs which align well

according to a set of heuristics [13]. Let u = f j+mj be a length m target phrase and

v = ei+ni be a length n source phrase. Then for a sentence pair (fJ1 , e
I
1) the phrase

pair inventory BP according to some underlying word alignment A is specified by

the set:

BP(fJ1 , e
I
1, A) = {(u, v) : ∀(i′, j′) ∈ A : j ≤ j′ ≤ j +m ∧ i ≤ i′ ≤ i+ n, fj′ ↔ ei′}

(2.14)

To restrict the memory requirements of the model, we extract only the phrase

pairs which have at most five words in the target phrase. Furthermore, we restrict

the phrase-pair extraction to only a subset of target phrases that are actually needed

during translation i.e. we extract the phrase-pairs from the parallel text only if the

target phrase occurs in the target language sentences we want to translate. Finally,

we augment the phrase-pair with single source word to target word translations ob-

tained by retaining the best alignment under A, so as to get complete coverage all

single word translations.

Before applying the phrase-pair extraction procedure to build the phrase inven-

tory, we first have to define a candidate set of target language phrases. However,

in the case of speech translation, where we are interested in translating from tar-

get language word lattices, extracting phrases is a non-trivial task. Extracting all

possible substrings from a lattice can be computationally very expensive. Later, in

Section 2.8.4 we address this issue and discuss an efficient procedure for extracting

phrases from a lattice.

2.7.3 Speech Translation System Components

Figure 2.3 illustrates the generative process for translation of speech and the

underlying components of the generative model. A (simplified) description of the

generative process has the following steps.
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Figure 2.3: A detailed view of the component models used in the generative process
for speech translation

Step 1 Source Language Model

The source language sentence e1, . . . , eI is generated by the Source Language

Model, P (eI1). The source language model is modeled as an n-gram language

P (eI1) =
I∏
i=1

P (ei|ei−1
i−n+1) (2.15)

trained on monolingual source language data.

Step 2 Source Phrase Segmentation

The source language sentence eI1 is segmented into a series of source language

phrases, uK1 . There are many possible sequences of phrases that can be derived

from a single sentence, as defined by the Source Phrase Segmentation distri-

bution, P (uK1 |eI1). This distribution assigns a uniform likelihood to all phrase

segmentations of the source sentence that can be obtained using the phrase

inventory. In practice, however, this probability is degenerate i.e.

P (uK1 |eI1) = 1(eI1, u
K
1 ) (2.16)

where 1(eI1, u
K
1 ) enforces the constraint that the words in eI1 agree with the

words in uK1 .

Step 3 Phrase Transduction

The sequences of source language phrases uK1 are translated into the tar-

get language phrase sequence vK1 under the Phrase Transduction distribution

P (vK1 |uK1 ). The target phrases are conditionally independent of each other
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and depend only on the source language phrase which generated each of them.

This gives us the following distribution:

P (vK1 |uK1 ) =
K∏
k=1

P (vk|uk) (2.17)

The probability P (v|u) is simply a maximum likelihood estimate of the fre-

quency of occurrence of the phrase pair (v, u) in the phrase-pair inventory.

Step 4 Target Language Reordering

The target language phrase sequence we obtained after the transduction step

is still in source language order. However, there is no reason to believe that the

target language has the same ordering as the source language. This is certainly

the case in language pairs such as Chinese-English and Arabic-English where

there is long distance phrase movement between the languages. Hence we

need to construct a model that basically reorders the target language phrase

sequence xK1 in to a sequence yK1 in target language order. The reorder-

ing is controlled by a parameterized Target Phrase Reordering distribution

P (yK1 |xK1 , uK1 ) that expresses a preference for swapping target phrases within

a certain window [34]. Given an input phrase sequence xK1 , we associate a

unique jump sequence bK1 with each permissible output phrase sequence yK1 .

The jump bk measures the displacement of the kth phrase xk. The jump se-

quence bK1 is constructed such that the sequence yK1 is a valid permutation of

xK1 . In our model we constrain bK1 so that bk ∈ {0,+1,−1}. We can then

redefine the model in terms of the jump sequence

P (yK1 |xK1 , uK1 ) =
K∏
k=1

P (bk|xk, uk) (2.18)

Step 5 Target Phrase Insertion

The processes described thus far allow a mapping of a source language sentence

into a reordered sequence of target language phrases, whose order is the phrase

order of the target language. The constraint that the target language phrase

sequence have the same number of phrases as the source language phrase se-

quence is overly restrictive. Our goal is to construct a model to allow insertion

of target language phrases anywhere in the reordered source language phrase

sequence. This process is governed by the Target Phrase Insertion proba-

bility distribution P (vR1 |yK1 ) such that the likelihood of inserting a phrase is
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inversely proportional to the number of words in the phrase. Therefore, a

greater penalty is assigned for the insertion of longer phrases. Given an input

phrase sequence yK1 , we associate a sequence cK1 such that

P (vR1 |yK1 ) =
K∏
k=1

P (ck|yk) (2.19)

where

ck = yk · pk[1] · pk[2] · · · pk[i] pk[i] ∈ {1, 2, . . . ,M}

Here, i is the number of phrases being spontaneously inserted immediately

following target phrase yk and pk[i] specifies the length of the target phrases

being inserted and M is the maximum number of words in an inserted phrase.

Also, |cK1 | = |vR1 |. For example, if vk = terms of reference and ck =

terms of reference ·1 ·2 ·3, this specifies that three phrases are spontaneously

inserted after vk of lengths one word ,two words and three words respectively.

We define

P (ck|yk) =


α0, ck = yk · ε

α
PM
i=1 pk[i], ck = yk · pk

0, else

(2.20)

The tendency towards phrase insertion is controlled by a single parameter,

the Phrase Exclusion Probability (PEP) α which is set manually to a specified

value. Typical range for the PEP is 0 ≤ α ≤ 1. Also, α0 is chosen such that∑
k P (ck|yk) = 1.

Step 6 Target Phrase Segmentation

The target language phrase sequences which is now in target language order are

transformed to target language word sequences, f1, f2, . . . , fJ , under the Target

Phrase Segmentation distribution, P (fJ1 |vR1 ). In practice, this is a degenerate

transformation which maps every target phrase sequence to its unique word

sequence i.e.

P (fJ1 |vR1 ) = 1(fJ1 = vR1 ) (2.21)

where 1(fJ1 = vR1 ) enforces the requirement that words in the target sentence

agree with those in the target phrase sequence.
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Step 7 Target Speech Generation

Finally, the target language sentence fJ1 is transformed in to the target lan-

guage speech which is governed by the acoustic model probability P (A|fJ1 ). In

practice, P (A|fJ1 ) is modeled as a word lattice.

Taken together, these distributions form a joint probability distribution over the

source and target language sentences, and over the possible intermediate source and

target phrase sequences as given in in Equation 2.13.

2.8 Speech Translation under the Generative Model

Given a target language acoustic sequence A we can obtain the source language

translation using the MAP decoder:

êÎ1 = argmax
I,eI1

{max
fJ1 ∈L

max
vR1 ,y

K
1 ,x

K
1 ,u

K
1 ,K

P (A, fJ1 , v
R
1 , y

K
1 , x

K
1 , u

K
1 , e

I
1) } (2.22)

= argmax
I,sI1

{max
fJ1 ∈L

max
vR1 ,y

K
1 ,x

K
1 ,u

K
1 ,K

P (A|fJ1 )︸ ︷︷ ︸
Acoustic

Lattice

P (fJ1 , v
R
1 , y

K
1 , x

K
1 , u

K
1 , e

I
1)︸ ︷︷ ︸

Text

Translation

} (2.23)

where P (A, fJ1 , v
R
1 , y

K
1 , x

K
1 , u

K
1 , e

I
1) is the joint probability distribution defined in

Equation 2.13. In the above decoder, we maximize over both the source and tar-

get language jointly, which indicates that the ASR component is integrated in to

the translation search. Furthermore, the generative model for speech translation

is a straightforward extension of the text SMT system, we simply add the acoustic

model as one of the components in the generative model, to describe how the spoken

language is generated from the source text.

2.8.1 Proper Inclusion of the Target Language Model

In the case of text translation, we are given the input target string fJ1 that we

want to translate. Translating from speech poses a different modeling problem - the

SMT system is given a lattice of target strings, and is asked to select one of these to

translate. Given this, it would be appropriate to replace the acoustic lattice with a

lattice containing posterior distributions over target language sentences: P (fJ1 |A) =

P (A|fJ1 ) P (fJ1 ) / P (A). The main benefit is that the target language sentence
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selection would benefit by considering the strong monolingual target language model

P (fJ1 ) used in ASR [35]. Simply replacing the acoustic score lattice in Equation 2.22

by a lattice containing posterior scores, yields the following decoder

êÎ1 = argmax
I,eI1

{max
fJ1 ∈L

max
vR1 ,y

K
1 ,x

K
1 ,u

K
1 ,K

P (A|fJ1 ) P (fJ1 )︸ ︷︷ ︸
Target

Lattice

P (fJ1 , v
R
1 , y

K
1 , x

K
1 , u

K
1 , e

I
1)︸ ︷︷ ︸

Text

Translation

} (2.24)

Whether the posterior distribution is actually added as P (A|fJ1 ) P (fJ1 ) or simply as

P (A|fJ1 ) it is clear that, relative to the correct model, there is a free-floating P (fJ1 ) to

be accounted for. However, this quantity does not appear in either translation model

training from parallel text or in translation from text; it only appears in translating

from speech, where there is uncertainty as to what target language sentence should

be translated. Operationally, only the weights of target language sentences within

the lattice change.

2.8.2 Translation using Weighted Finite State Machines

Referring to Figure 2.3, the component distributions are formulated so that each

can be implemented as a WFST. To translate a given target language speech ut-

terance A into the source language, we construct an acceptor L containing target

acoustic model scores P (A|fJ1 ) P (fJ1 ). In theory, we could then create a lattice of

translations via the following sequence of FSM compositions

T = G ◦W ◦ Y ◦R ◦ Φ ◦ Ω ◦ L (2.25)

In order to obtain the translation ŝÎ1, we simply project the transducer T onto the

output labels and find the highest scoring path (or lowest cost path) in the composite

translation network. In terms of the WFST operation this is a best path search.

ŝÎ1 = BestPath[Π1(T )] (2.26)

2.8.3 Transforming ASR Word Lattices into Phrase Lattices

The framework presented thus far takes as input the ASR word lattice and pro-

duces a sentence translation in the source language. The TTM however, is a phrase

based model and in practice the ASR word lattice is first converted in to a target
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phrase sequence lattice. It is this target phrase sequence lattice that is the input

to the translation system. The lattice of target phrase sequences is generated by

applying the target phrase segmentation transducer to the ASR word lattice : as

the target sentences are segmented into phrase sequences, the acoustic scores and

language model scores are retained. Figure 2.4 illustrates the conversion of a Spanish

language ASR lattice in to a Spanish language phrase sequence lattice. Substituting

P (A|vR1 ) = P (A|fJ1 )P (fJ1 )P (fJ1 |vR1 ) in Equation 2.27 gives the phrase based MAP

decoder in Equation 2.28.

êÎ1 = argmax
I,eI1

{
max

fJ1 ,v
R
1 ,y

K
1 ,x

K
1 ,u

K
1 ,K

P (fJ1 )P (A|fJ1 )P (fJ1 |vR1 ) P (vR1 , y
K
1 , x

K
1 , u

K
1 , e

I
1)

}
(2.27)

= argmax
I,eI1

{
max

vR1 ,y
K
1 ,x

K
1 ,u

K
1 ,K

P (A|vR1 )︸ ︷︷ ︸
Target

Phrase Lattice

P (vR1 , y
K
1 , x

K
1 , u

K
1 , e

I
1)︸ ︷︷ ︸

Phrase

Translation

}
(2.28)

In terms of the corresponding transducer we build the target phrase sequence lattice

Q via the following operation:

Q = Π1(Ω ◦ L)

The projection of the composition onto the output labels gives us the desired target

phrase lattice, with the appropriate target acoustic scores on each of the arcs in the

lattice. So, now we can obtain the source language translation via the composition:

ŝÎ1 = BestPath[Π1(G ◦W ◦ Y ◦R ◦ Φ ◦Q)] (2.29)

2.8.4 Phrase Extraction from a Lattice

A simple method for extracting phrases from a lattice is to simply traverse the

lattice arcs and output the substrings encountered thus far. However, this approach

is very slow and inefficient due to the large number of word sequences the lattice

encodes. A more efficient algorithm to extract phrases from the lattice is outlined

below.

Let L be the acoustic word lattice represented as a WFST. Let C(wk1 |L) represent

the count of the word sequence (phrase) wk1 in L. Then

C(wk1 |L) =
∑
π∈L

C(wk1 |π) [[L]](wk1) (2.30)



25

1
2es/359.0

3
un/0

4
un/0

13
cr�dito/0

5
cr�dito/0

6del/203.5

14
de/0

de/0

del/203.5
7

compromiso/0

8

un/0

9
determinado/0

10
a�o/0

11
pues/0

15
compromiso/0

a/476.1
un/0

1

2
un/0

3

un_cr�dito/0
4

un_cr�dito_de/0

cr�dito_de/0

5cr�dito/0

6

cr�dito_del/203.5

de/0

7

de_compromiso/0

compromiso/0 9

compromiso_un/0de/0

de_compromiso/0

8
del_compromiso/203.5

14compromiso_un/0

un/0

10un_determinado/0 11

un_determinado_a�o/0

determinado/0
determinado_a�o/0

un_determinado/0

un_determinado_a�o/0

determinado_a�o/0

a�o/0
12

pues/0

Q = Ω ◦ L

TARGET PHRASE SEGMENTATION TRANSDUCER (Ω)

ASR WORD LATTICE (L)

TARGET PHRASE LATTICE (Q)

Figure 2.4: Transforming ASR word lattice L to a target sequence phrase lattice Q
via the composition Ω ◦ L

where, C(wk1 |π) denotes the number of occurences of the sequence wk1 in the path π

and [[L]](wk1) denotes the weight assigned by the WFST L to the sequence wk1 .

The GRM Library [36] tool grmcount provides and efficient implementation of the

above procedure. Given an input WFST L, grmcount generates a count automaton

that contains all the phrases observed in the WFST along with their associated

counts.

2.9 ASR Lattice Pruning for Translation

We need to control for the complexity of the ASR lattice, since composing the

ASR word lattice with the translation components will most likely result in an

explosion in the number of paths in the resulting transducer. In order to reduce the

computational effort and memory requirements, it is necessary to prune the unlikely

translation candidates from the ASR lattice. Pruning can either be at the word level

or at the phrase level.
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2.9.1 Forward-Backward Pruning

Forward-backward pruning is a posterior based pruning strategy that retains

strings that are likely under the target acoustic and language models. The impor-

tant point is that the pruning strategy accounts for entire path scores and not just

partial scores.We will now describe the lattice forward-backward based pruning pro-

cedure [27].

We start with a WFSA L. Borrowing the notation from Section 2.6 , the WFSA

has a designated start state q0 ∈ I and an end state qf ∈ F . Let i[e] be the label

associated with edge e ∈ E; w[e] is the weight associated with the edge e and is

the combination of the target acoustic probability and the target language model

probability; p[e] is the previous state and n[e] is the next state for the edge e.

We then define a forward probability, which is the sum of partial path probabilities

of all the partial paths starting from q0 and ending at node n[e].

F (n[e]) =
∑

p[e]:e∈E

F (p[e]) w[e] (2.31)

We also define a backward probability, which is the sum of all partial paths

starting from the current node p[e] and ending at qf .

B(p[e]) =
∑

n[e]:e∈E

B(n[e]) w[e] (2.32)

We can then obtain the posterior probability q(l[e]|L) where l[e] is the label

associated with edge e:

q(l[e]|L) =
F (p[e]) w(e) B(n[e])

B(q0)
(2.33)

The probability q(l[e]|L) is the posterior probability of the arc and is the sum of

the probabilities of all paths in the word graph that pass through the edge e with

label l[e]. Hence, q(l[e]|L) accounts for complete path scores in the lattice. We can

now assign a threshold τ and prune all arcs that fall below this threshold i.e. prune

an edge e with label l[e] if q(l[e]|L) < τ . This will restrict the size of the lattice and

retain only the high probability arcs as translations candidates.

2.9.2 Phrase posterior pruning

As discussed in Section 2.8.3, translation is from a lattice of target phrase se-

quences. In order to build this target phrase sequence lattice phrases need to be
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extracted form the lattice. An efficient procedure for this was discussed in Sec-

tion 2.8.4. The goal is to build a phrase sequence lattice as described in Section 2.8.3

consisting of only high confidence phrases. Consequently, during the phrase extrac-

tion procedure, the low confidence phrases need to be filtered out.

The posterior probability of the phrase can easily be calculated by simply nor-

malizing the counts in Equation 2.30. Let p(wk1 |L) denote the posterior probability

of the phrase wk1 in the ASR lattice L. The posterior probability is specified as:

p(wk1 |L) =
C(wk1 |L)∑

wk1∈L
C(wk1 |L)

(2.34)

A threshold γ can now be defined below which the phrases are pruned i.e. extract

a phrase from a lattice if p(wk1 |L) > γ.

2.10 Summary

In this chapter, we presented a generative source-channel model for translation

of speech. The generative source-channel model is a simple and straightforward

extension of the text translation system and describes how the source language sen-

tence generates the target language acoustic utterance througha series of underlying

transformations. Next, we presented a detailed description of the conditional dis-

tributions underlying the generative process. We also showed that modeling the

conditional distributions as WFSTs allows us to build a translation newtork using

just WFST composition; the final translation is then a search for the highest scor-

ing path in this network. We emphasize that the WFST based approach to speech

translation neatly avoids the difficult problem of developing specialized statistical

translation decoders that can process ASR word lattices. That problem is replaced

instead by a modeling problem, namely how to extract phrase sequences from word

lattices. We outlined our approach to extracting phrase sequences from lattices

and methods for transforming the ASR word lattice into a target phrase sequence

lattice. In order to filter the low confidence hypotheses in the ASR lattice, we pre-

sented a forward-backward pruning procedure to reduce the lattice density. We also

introduced a method to extract high quality phrases directly from the target phrase
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sequence lattice.

This concludes the discussion of speech translation until Chapter 6. In the next

chapter we will address the problem of parameter estimation for SMT.
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Chapter 3

Parameter Optimization for

Machine Translation

3.1 Discriminative Objective Functions for MT

3.1.1 Parameter Estimation

Let us assume we have a model of translation with the parameter set θ =

{θ1, θ2, · · · , θQ}. Furthermore, let {(f1, e
+
1 ), (f2, e

+
2 ), . . . , (fS, e

+
S )} be a corpus of S

sentence pairs where fs is the target language sentence and e+
s is the corresponding

reference translation in the source language. Let F (θ) be a real-valued scalar func-

tion that characterizes particular aspects of a training procedure that we wish to

use in order to optimize our parameters θ. The optimization problem of interest is

then formally stated as:

θ̂ = argmax
θ

F (θ) (3.1)

This is known as the training problem: how do we estimate the parameters θ of the

translation model given the data ?

3.1.2 Maximizing the posterior distribution

As an alternative to the source-channel maximum likelihood framework we could

choose to maximize the posterior distribution pθ(es|fs) directly. The training objec-

tive FMMI(θ) is equivalent to maximum mutual information (MMI) training crite-
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rion [37] and is specified by:

FMMI(θ) =
S∑
s=1

log pθ(e
+
s |fs) =

S∑
s=1

log
pθ(e

+
s , fs)∑

es
pθ(es, fs)

(3.2)

Ideally, we would like to find a θ, such that

e+
s = argmax

es

pθ(es|fs) (3.3)

In practice this is not possible, because the model pθ(es|fs) is an approximation of

the true unknown distribution P (es|fs). Instead, we settle for maximizing pθ(e
+
s |fs);

with the idea (in theory) that if pθ(e
+
s |fs) is increased sufficiently, then pθ(e

+
s |fs) >

pθ(es|fs), ∀es 6= e+
s , which ensures the desired result Equation 3.3.

The MMI training criterion attempts to separate the class conditional probabil-

ities of the correct class e+
s from the alternative classes es, so that it is better able

to recover from incorrect modeling assumptions. Since the objective function is con-

tinuous and differentiable with respect to the parameters we can use any gradient

based approach to optimize this objective function.

3.1.3 Minimizing Direct Loss

In machine translation tasks, the translation performance is evaluated using spe-

cific evaluation metrics such as BLEU [10], METEOR [38], and NIST score [11]. The

training criterion discussed in Section 3.1.2 does not explicitly model the translation

performance under a specific evaluation metric. Instead, it relies on the ability of

the estimate pθ(es|fs) to correctly rank the space of translations, while achieving

separation between the correct class and the incorrect ones. We want to adjust the

model parameter set θ so as to minimize the decision errors under specific evaluation

metrics.

Let us posit the existence of a loss function L(e+, e) that assesses a penalty

for choosing the hypothesis e when the reference e+ is correct. Furthermore, let

us assume that this loss function is the sum of losses over individual sentences in

the test corpus i.e. L(e+, e) =
∑S

s=1 L(e+
s , es). One such training objective that
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minimize the direct loss is given by

FMET (θ) = −
S∑
s=1

L(argmax
es

pθ(es|fs), e+
s ) (3.4)

The negative sign indicates that in order to minimize the loss we need to maximize

FMET (θ). This training criterion, adjusts the model parameters so as to minimize

the loss incurred by choosing the best hypothesis (1-best) according to the current

model. Also, since the objective function is not smooth and differentiable with

respect to the parameters, it cannot be optimized using gradient based techniques.

In Section 3.3 we discuss the line search based approach which is a gradient free

optimization approach and is the current state of the art in MT.

3.1.4 Minimizing Expected Loss

Instead of looking at only the top hypothesis, we can also choose to minimize the

expected loss under pθ(es, fs) across all hypotheses es ∈ E. The objective function

of interest is then

FMBR(θ) = −
S∑
s=1

∑
es∈E

L(e+
s , es) pθ(es|fs) (3.5)

If we assume the loss function to be the 0/1 loss function

L(e+
s , es) =

{
0 if es = e+

s

1 else

then minimizing the expected loss in Equation 3.5 is equivalent to maximizing the

posterior in Equation 3.2. Also, the objective function is continuous and differ-

entiable and we can use any gradient based approach to optimize this objective

function.

3.1.5 Enumerating the joint distribution pθ(es, fs)

Throughout this discussion, the following form of the joint distribution is as-

sumed

pθ(es, fs) =

Q∏
q=1

Φq(es, fs)
θq (3.6)
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In this framework, we have a set of Q feature functions Φq(es, fs), q = 1 . . . Q. For

each feature function there exists a model parameter θq, q = 1 . . . Q that we are

interested in estimating. For example, the feature can be the various components of

the MT generative model - source language model log probability, translation model

log probability etc. The features need not be a component of the generative model.

Additional features such as length of the sentence, additional larger language models

can be introduced. The modeling problem involves defining a suitable set of feature

functions that captures various aspects of the translation task and is beyond the

scope of this discussion.

3.2 Previous Approaches to Discriminative Train-

ing

Automatic evaluation techniques such as BLEU [10] and evaluation-specific op-

timization [39] have significantly improved machine translation performance. The

authors in [40] proposed a framework for MT based on directly maximizing the pos-

terior probability pθ(e|f) using maximum entropy modeling techniques. A small set

of feature functions were defined over the source and target language sentences and

the generalized iterative scaling algorithm was applied to optimize the features on

an N-best list of translation candidates generated from a baseline MT system.

The minimum error training approach proposed in [39] directly optimized the

translation model parameters for the BLEU evaluation criterion. The authors in [39]

observed that the objective function is piecewise constant and so it can be charac-

terized exhaustively along any line in parameter space. By calling this global one-

dimensional line minimization procedure as a subroutine of the multidimensional

minimization routine, they obtained significant improvements in translation perfor-

mance under different evaluation criteria.

Instead of considering only the top hypothesis when minimizing the loss, an ap-

proach to minimize expected loss was presented in [41]. A risk based annealing

procedure with entropy regularization was used as the objective function to opti-
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mize the translation parameters. Since the BLEU criterion in the objective function

involves a non-linear combination over the sentences in the training corpus, a first

order approximation was used to approximate BLEU in the training objective. Sig-

nificant improvements in BLEU were obtained over standard minimum error training

and maximum likelihood.

More recently, a systematic comparison of the various training criteria used in

training statistical machine translation systems was presented [42]. The authors

in [42] used simplex search for optimizing the MMI and Expected BLEU criteria.

The expected BLEU training criteria was shown to give significant performance im-

provements as compared to MMI and minimum error training.

A discriminative re-ranking algorithm using a variant of perception training was

also investigated [43]. The authors introduced a new perceptron-like splitting algo-

rithm to achieve separability of the good translation candidates from the bad ones.

Ordinal regression with uneven margins was used to re-rank the hypothesis in the

N-best lists. In the experiments, translation performance similar to minimum error

training was obtained.

In the following sections, we will discuss Minimum Error Training (MET) which

is a line search based multidimensional search procedure that optimizes the direct

loss objective function presented in Equation 3.4.

3.3 Minimum Error Training

Minimum Error Training (MET) is the current state of the art in discriminatively

training the parameters of the MT system [39]. Following the development in [39],

we outline the MET procedure in detail.

Let BLEU be the evaluation criterion used to measure translation performance.

The goal is to maximize BLEU over a representative corpus of S sentence fs with

given reference translations es and a set of Ks different translation hypotheses Cs =
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{es,1, . . . , es,Ks}. Restating the objective function in Equation 3.4:

θ̂ = argmax
θ

S∑
s=1

K∑
k=1

BLEU(esk, e
+
s )δ(ês(fs; θ), esk) (3.7)

where,

ês(fs; θ) = argmax
e∈Cs

pθ(es|fs) (3.8)

The optimization function defined in Equation 3.7 is not straightforward to op-

timize:

• It includes an argmax operation. Therefore, it is not possible to compute a

gradient and gradient descent methods cannot be used to perform optimiza-

tion.

• The objective function has many different local optima. The optimization

algorithm must yield robust parameter estimates despite this.

There exist gradient free optimization methods such as Nelder-Mead simplex and

Powell’s method [44] to solve this Q dimensional optimization problem. A random Q

dimensional point in parameter space is initialized and then a search is carried out to

find a better scoring point in the parameter space by making a one-dimensional line

minimization along the directions given by optimizing one parameter while keeping

all other parameters fixed. To avoid finding a poor local optimum, we start from

different initial parameter values. A major problem with the standard approach is

the fact that grid-based line optimization is hard to adjust such that both good

performance and efficient search are guaranteed. If a fine-grained grid is used then

the algorithm is slow. If a large grid is used then the optimal solution might be

missed.

The authors in [39] observed that the objective function is piecewise constant

and can be exploited to speed up the optimization. Each candidate ês(fs; θ) has the
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functional form:

ês(fs; θ) ∝ argmax
e∈Cs

Q∑
q=1

θq log Φq(es, fs) (3.9)

∝ argmax
e∈Cs

Q∑
q 6=p,q=1

θq log Φq(es, fs)︸ ︷︷ ︸
t(es,fs)

+ θp log Φp(es, fs)︸ ︷︷ ︸
m(es,fs)

(3.10)

t(es, fs) ∝ argmax
e∈Cs

{
t(es, fs) + θp m(es, fs)

}
(3.11)

Thus, each candidate in the N-best list of translation hypotheses represents a line

in R2 with respect to the parameter θp. As a consequence, the error only changes

when we move θd from a one line to another, which in turn implies that we need

to evaluate errors only at the intersection of the candidate lines in the N-best list,

to get a complete representation of the error surface. When searching for the inter-

section points we start from a line with minimum slope and calculate intersection

points at all lines with a steeper slope. These intersection points form the “critical

set” of points at which the objective function is evaluated for a particular sentence.

In addition a record of the incremental change in error counts involved at the corre-

sponding intersection point is also kept. Specifically we define a pair (θp,i,∆iError)

that associates the change in error with the critical point θp,i when crossing the

ith intersection. For the BLEU score the error counts correspond to the sufficient

statistics: the number of correct and suggested n-grams, as well as the length of the

closest reference. Error deltas are then a set of deltas for each relevant statistic.

When the (θp,i,∆iError) pairs are merged over all source sentences and sorted

according to the intersection, the error deltas are simply summed over, when crossing

intersection boundaries to track the current value of each statistic. If there are

duplicate intersection points in the merged list, the error is only considered once to

filter out duplicate intersection points. Finally, a new θ∗d is selected as the midpoint of

the interval corresponding to the lowest error and the search for the next parameter

dimension is continued. Termination conditions can be based on the number of

iterations or successive reduction of error across iterations.

Thus in MET, the Q dimensional optimization problem is solved by calling a

global line based optimization as a subroutine of a multidimensional optimization

procedure. In the next section, a update procedure to estimate the parameters
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θq, q = 1, . . . , Q is introduced as an alternative to MET.

3.4 Growth Transformations

The line search algorithm discussed in 3.3 was introduced to solve the optimiza-

tion problem when the objective function is not smooth and differentiable. However,

the objective functions presented in Equation 3.2 and Equation 3.5 are differentiable

with respect to the parameters and so we can use any gradient based methods to

optimize them. In this thesis, we introduce growth transformations which is a gra-

dient based iterative update procedure to locally optimize differentiable objective

functions.

First, a the general theory of growth transformation based updates is presented

for the case of polynomial functions and then later extended to general functions.

3.4.1 Growth Transforms for Rational Functions

The well known Baum-Eagon inequality [45] provides an effective iterative schema

for finding the local maximum for homogenous polynomials with positive coefficients

defined over a domain of probability values. However, for a growing class of prob-

lems (employing conditional maximum likelihood or maximum mutual information

parameter estimation) we are interested in maximizing a general (rational) function.

In [46], the authors extended the Baum-Eagon inequality to the case of rational

functions over linear domains. The main theorem can be restated as follows:

Theorem 3.4.1. Let R(Θ) = N(Θ)
D(Θ)

, where N(Θ) and D(Θ) are polynomials in

variables {Θq}, q = 1, . . . , Q defined over a domain D : {θq ≥ 0,
∑Q

q=1 θq = 1} and

D(Θ) > 0, ∀Θ ∈ D. For some point θ ∈ D, let us define the polynomial

Pθ(Θ) = N(Θ)−R(θ)D(Θ) + C

where, C is some constant that ensures that the polynomial Pθ(Θ) has positive coef-

ficients. Furthermore, let θ̂ = T (θ) be a point in D whose qth coordinate is

θ̂q = T (θ)q =

θq

(
∂Pθ(Θ)
∂θq

+ C

)
∑Q

q=1 θq

(
∂Pθ(Θ)
∂θq

+ C

) (3.12)
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For a sufficiently large C > 0, T defined by Equation 3.12 is a growth transform in

D, which in turn implies R(θ̂) > R(θ), unless θ̂ = θ

Theorem 3.4.1 outlines a general procedure for maximizing a rational function (

ratio of homogenous polynomials). The growth transform defined in Equation 3.12

specifies a general iterative procedure to find parameter updates that guarantee an

increase in the objective function at each iteration, for a sufficiently large C.

3.4.2 Growth Transform for General Functions

However, in many applications we might be interested in maximizing the objec-

tive function over a more general (not necessarily rational) function. This is the case

in our current setup where the joint distribution defined in Equation 3.6 is not a

polynomial in the parameters θ that we wish to estimate. So, for example, if we want

to apply growth transformations towards maximizing the MMI objective defined in

Equation 3.2 Theorem 3.4.1 does not apply.

However, the particular form of the joint distribution, makes it possible to express

it as a polynomial in θ. First, note that the joint distribution can be written as:

pθ(es, fs) =

Q∏
q=1

exp

(
θq log Φq(es, fs)

)
(3.13)

Then a Taylor series expansion of the joint distribution is:

p
(n)
θ (es, fs) ≈

Q∏
q=1

n∑
k=0

(
θq log Φq(es, fs)

)k
k!

(3.14)

Here, p
(n)
θ (es, fs) is the nth order polynomial approximation of pθ(es, fs).

Similarly, let F (n)(θ) be the nth order polynomial approximation of an objective

function F (θ) and T (n)(θ) be the nth order polynomial approximation of the growth

transformation defined as

T (n)(θ)q =

θq

(
∂F (n)(θ)
∂θq

+ C

)
∑Q

q=1 θq

(
∂F (n)(θ)
∂θq

+ C

) (3.15)
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Then, for a sufficiently large C and using Theorem 3.4.1 we have

F (n)(T (n)(θ)) ≥ F (n)(θ)

.

Now, for a sufficiently large n if

lim
n→∞

T (n)(θ)→ T (θ) (3.16)

lim
n→∞

F (n)(θ)→ F (θ) (3.17)

we want to prove

lim
n→∞

F (n)(T (n)(θ)) ≥ lim
n→∞

F (n)(θ)↔ F (T (θ)) ≥ F (θ)

This would allow us to apply growth transforms to objective functions that can

be expressed locally as a power series. In [47], the authors showed that the growth

transforms could indeed be extended from the case of rational functions to the more

general case of functions defined on general manifolds provided they can be expressed

as a power series. The following theorem encapsulates the basic premise discussed

above.

Theorem 3.4.2. Let the function F (θ) be differentiable at θ ∈ D. Furthermore, let

F be analytic at θ (i.e. F can be represented locally by a power series) and let C be

a non-negative constant. Also, let us define the projection

T (θ)q =

θq

(
∂F (θ)
∂θq

+ C

)
∑Q

q=1 θq

(
∂F (θ)
∂θq

+ C

) (3.18)

There exists a constant C ≥ 0 such that the following holds: T (θ)q ∈ D and

F (T (θ)) ≥ F (θ)

Theorem 3.4.2 states that under very general assumptions on a manifold D, T

is a growth transform for a sufficiently large C. We will make use of these results

to define growth transformation based parameter updates for the various training

objective functions we have discussed so far.
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3.4.3 Convergence Factor

There is still the issue of defining the convergence factor C. By definition, C

should be sufficiently large to guarantee that the updates derived are actually a

growth transformation. Furthermore, the constant C controls the speed of conver-

gence of the iterative algorithm - too high a value leads to slow convergence, and a

very low value might result in instability of the optimization process. Hence, it is

desirable to use a smaller C, provided that (3.18) is still a growth transform. In [46],

the author suggested a practical value of C that works well in practice but there

is no longer a theoretical guarantee of convergence. A modified version is provided

here:

C = Nc ∗
[
max

{
max
q
{−∇F(Θ)|θ=θq}, 0

}
+ ε

]
(3.19)

The intuition behind this formulation is to select a value of C that is equal to

the most negative derivative component. This ensures that the growth transform

based updates are always non-negative. Furthermore, the Nc adds an additional

multiplicative constant to control convergence rate of the iterative procedure. Nc is

fixed by experimentation for the particular task.

3.4.4 Iterative Training Algorithm

Theorem 3.4.2 suggests a simple iterative procedure that finds the local maxi-

mum of F (Θ).

Algorithm 1 Growth Transform Update Procedure

1. Initialize the parameter vector θ = {θ1, · · · θQ}, such that
∑Q

q=1 θq = 1, and i = 0.

2. For each parameter θ
(i)
q , calculate the gradient ∇F(Θ(i))|

θ=θ
(i)
q

3. For each parameter θ
(i)
q , calculate the parameter update

θq
(i+1) =

θ
(i)
q

(
∇F(Θ(i))|

θ=θ
(i)
q

+ C

)
∑Q

q=1 θ
(i)
q

(
∇F(Θ(i))|

θ=θ
(i)
q

+ C

) (3.20)

4. If F(Θ(i+1)) ≤ F(Θ(i)) or if i == MAXITER, then terminate. Else, i ← i + 1,

goto Step 2.
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Thus once we have calculated ∇F(Θ), the first order derivatives of our objective

function F(Θ) we can easily calculate the parameter updates using growth trans-

formations. In the following chapter we will show how the growth transform based

update procedure can be applied to estimate the parameters of a machine translation

system.
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Chapter 4

Growth Transformations for

Machine Translation

In this chapter, a detailed derivation of growth transformation based parameter

updates is provided for the two objective functions we will consider - MMI and

Expected Loss. The general procedure is to calculate the derivatives of the objective

function and plug these into Equation 3.20 to obtain the parameter updates.

4.1 Growth Transformations for MMI Training

4.1.1 MMI for single reference system

The objective function is assumed to be of the form given in Equation 3.2 where

the objective is to maximize the posterior of the true class (reference translation e+
s )

given the input sentence fs. Here, we assume that for each sentence fs there is only

one available reference translation e+
s .

We begin by calculating the derivative of Equation 3.2

∇θFMMI(θ)) =
S∑
s=1

∇θ log pθ(e
+
s , fs)−

S∑
s=1

∑
es∈E

1∑
e′s∈E pθ(e′s, fs)

∇θpθ(es, fs) (4.1)

Observe that

1∑
e′s∈E

pθ(e
′
s, fs)∇θpθ(es, fs)

= pθ(es|fs)∇θ log pθ(es, fs) (4.2)
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Plugging this into Equation 4.1 , we have:

∇θFMMI(θ) =
S∑
s=1

∇θ log pθ(e
+
s , fs)−

S∑
s=1

∑
es∈E

pθ(es|fs)∇θ log pθ(es, fs) (4.3)

The derivative of the joint defined in Equation 3.6 is:

∇θ log pθ(es, fs)

∣∣∣∣
θ=θq

= log Φq(es, fs) (4.4)

Substituting Equation 4.4 in Equation 4.3 we obtain

∇θFMMI(θ)
∣∣∣∣
θ=θq

=
S∑
s=1

log Φq(e
+
s , fs)−

S∑
s=1

∑
es∈E

pθ(es|fs) log Φq(es, fs) (4.5)

Finally, in all our experiments we approximate the translation hypothesis space

by an N-best list. Let Ns be the N-best list of translations associated with the input

sentence fs. This simplifies the objective function to:

FMMI(θ) =
S∑
s=1

log
pθ(e

+
s , fs)∑Ns

k=1 pθ(esk, fs)
(4.6)

and also the derivative:

∇θFMMI(θ)
∣∣∣∣
θ=θq

=
S∑
s=1

log Φq(e
+
s , fs)−

S∑
s=1

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs) (4.7)

Substituting the derivative in Equation 3.20, results in the following growth

transform

θ̂q =

θq

( S∑
s=1

log Φq(e
+
s , fs)−

S∑
s=1

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs) + C

)
Q∑
q=1

θq

( S∑
s=1

log Φq(e
+
s , fs)−

S∑
s=1

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs) + C

) (4.8)

In MT evaluation, translation performance is usually evaluated against multiple

references. In order to account for this we need to modify the MMI objective function

appropriately. In the following section, two choices for MMI objective functions

with multiple references are evaluated - MMI sum of references and MMI product

of references.
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4.1.2 MMI sum of references

Let Rs be the number of reference translations for sentence es. Then, e+
s,r denotes

the rth reference for sentence es. The modified objective approximated over N-best

lists is

FMMIsum(θ) =
S∑
s=1

log

(
1

Rs

Rs∑
r=1

pθ(e
+
s,r, fs)∑Ns

k=1 pθ(esk, fs)

)
(4.9)

This objective function attempts to maximize the posterior over any ( but not nec-

essarily all) of the references. It can be viewed as a ’logical OR’ operation over the

reference posteriors - the parameters are update towards the reference with maxi-

mum posterior probability.

The derivative of the objective function is:

∇θFMMIsum(θ)

∣∣∣∣
θ=θq

=

S∑
s=1

Rs∑
r=1

pθ(e
+
s,r, fs)∑Rs

r′=1 pθ(e
+
s,r′ , fs)

log Φq(e
+
s,r, fs)−

S∑
s=1

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs)

(4.10)

Substituting this derivative into (3.20) gives us the desired updates.

θ̂q =

θq

({∑
s,r

pθ(e
+
s,r, fs)∑

r′ pθ(e
+
s,r′ , fs)

log Φq(e
+
s,r, fs)−

∑
s,k

pθ(esk|fs) log Φq(esk, fs)

}
+ C

)
Q∑
q=1

θq

({∑
s,r

pθ(e
+
s,r, fs)∑

r′ pθ(e
+
s,r′ , fs)

log Φq(e
+
s,r, fs)−

∑
s,k

pθ(esk|fs) log Φq(esk, fs) + C

})
(4.11)

4.1.3 MMI product of references

Another alternative to the MMI objective function is maximizing the posterior

with respect to all the references simultaneously ( equivalent to ‘logical AND‘ oper-

ation) which gives us the following objective function:

FMMIproduct(θ) =
S∑
s=1

1

Rs

Rs∑
r=1

log
pθ(e

+
sr, fs)∑Ns

k=1 pθ(esk, fs)
(4.12)
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The derivative of the objective function FMMIproduct(θ) is given by:

∇θ(FMMIproduct(θ))
∣∣∣∣
θ=θq

=
S∑
s=1

{
1

Rs

Rs∑
r=1

log Φq(e
+
sr, fs)−

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs)

}
(4.13)

Again, we can use the update rule defined in (3.20) to calculate the parameter

updates.

θ̂q =

θq

( S∑
s=1

{
1

Rs

Rs∑
r=1

log Φq(e
+
sr, fs)−

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs)

}
+ C

)
Q∑
q=1

θq

( S∑
s=1

{
1

Rs

Rs∑
r=1

log Φq(e
+
sr, fs)−

Ns∑
k=1

pθ(esk|fs) log Φq(esk, fs)

}
+ C

)
(4.14)

The MMI objective functions introduced above for the case of multiple references

are just two of the possible choices we consider here. We will evaluate our choice of

objective functions by measuring translation performance on different tasks.

4.1.4 Labeling the correct class for MMI Training

Since, MMI training attempts to separate the class conditional probability of the

true class from all the other competing classes we need to identify the “correct“ can-

didate translation from the hypotheses space of each sentence we want to translate.

An obvious choice for the correct class is to choose a candidate from the hypoth-

esis space that is identical to the reference translation provided for each sentence

in the training corpus. However, there is the problem that none of the candidate

translations in the hypothesis space might match the provided reference translation.

In such a case, the candidate from the hypothesis space that has the fewest errors

under the particular evaluation criterion (also known as oracle reference) being used

to measure performance, can be labeled as the correct class.

MMI using reference translations as the correct class is inherently problematic

because a proposed translation that differs from a reference translation need not
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be incorrect. It may differ in word choice or style, and yet be a fully acceptable

translation. Pushing our system to avoid such alternate translations is undesirable.

It is also possible that the reference translation is unreachable by the decoder. Since,

in our training framework we need to extract a set of relevant features we can attempt

to force align the reference under the current translation models. However, it may do

so by abusing the hidden structure (sentence segmentation and phrase alignment).

We can therefore never be entirely sure whether or not a proposed output is safe to

update towards.

Another alternative is to select a candidate from the space of translations that

is closest to the true reference, as the correct class. In machine translation, we use

BLEU to measure translation performance and so we can measure the “closeness” of

the hypothesis to the reference translation under BLEU: the candidate hypothesis

with the highest sentence level BLEU score is chosen as the correct class. We call

this the oracle-BLEU hypothesis. The parameters are now updated so as to maxi-

mize the likelihood of the oracle-BLEU hypothesis under the model.

Note that BLEU computation as discussed in Section 2.2 involves a non-linear

combination over the sentences in the corpus [41]. However, for the training cri-

terion we use BLEU measured at the sentence level and note that this is just an

approximation to the true document level BLEU.

4.1.5 Growth Transformations for Expected BLEU Training

Following the discussion in Section 3.1.4, the goal is to minimize the expected

risk (or maximize the expected gain) for the evaluation criterion under consideration.

Since we are using the BLEU criterion for measuring translation performance, and

since an improved translation performance corresponds to an increase in BLEU,

minimizing expected loss is equivalent to maximizing expected BLEU. The objective

function we are interested in is

FMBR(θ) =
S∑
s=1

∑
es∈E

BLEU(e+
s , es) pθ(es|fs) (4.15)

Restricting the hypothesis space to N-best lists we obtain:

FMBR(θ) =
S∑
s=1

Ns∑
k=1

BLEU(e+
sk, es) pθ(esk|fs) (4.16)
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The objective function of interest is continuous and differentiable, and so we can

obtain the derivatives

∇θFMBR(θ)

∣∣∣∣
θ=θq

=
S∑
s=1

Ns∑
k=1

BLEU(e+
sk, es) ∇θpθ(esk|fs)

∣∣∣∣
θ=θq

(4.17)

The derivative for the posterior distribution can be written as

∇θpθ(esk|fs) =

(∑Ns
l=1 pθ(esl, fs)

)
∇θpθ(esk, fs)− pθ(esk, fs)

(∑Ns
l=1∇θpθ(esl, fs)

)
(∑Ns

l=1 pθ(esl, fs)

)2 (4.18)

= pθ(esk|fs)
{
∇θ log pθ(esk, fs)−

Ns∑
l=1

pθ(esl|fs)∇θ log pθ(esl, fs)

}
(4.19)

Substituting Equation 3.6 in the derivative we obtain:

∇θFMBR(θ)

∣∣∣∣
θ=θq

=
∑
s,k

BLEU(e+
sk, es) (4.20)

pθ(esk|fs)
{

log Φq(esk, fs)−
∑
l

pθ(esl|fs) log Φq(esl, fs)

}
Finally, substituting this derivative in to the update rule defined in (3.20) gives

us the desired parameter updates.

θ̂q =

θq

(∑
s,k

BLEU(e+
sk, es)pθ(esk|fs) ∆Φq(esk, fs) + C

)
Q∑
q=1

θq

(∑
s,k

BLEU(e+
sk, es)pθ(esk|fs) ∆Φq(esk, fs) + C

) (4.21)

where,

∆Φq(esk, fs) = log Φq(esk, fs)−
∑
l

pθ(esl|fs) log Φq(esl, fs) (4.22)

4.2 Regularization

In order to avoid overfitting the training data, regularization terms are introduced

into the objective function. The convergence factor C already controls overfitting

to some extent by controlling the speed of convergence. In addition to this, we
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would also like that the distribution defined by the parameters not be too peaked.

We can express directly the optimization objective in terms of a preference for a

higher entropy over the parameters [41]. A higher entropy corresponds to a flatter

distribution over the parameters. The form of the modified objective function is:

G(θ) = F(θ) + T H(pθ) (4.23)

A scaling factor T > 0 is introduced to weight the contribution of the regularization

term. T is manually set by experimentation on a development corpus. Furthermore,

since the growth transform based update involves calculation of the derivative we

need to modify the updates accordingly. The derivative of the modified objective

function is then:

∇θG(θ) = ∇θF(θ) + T ∇θ H(pθ) (4.24)

where, the entropy over the N-best list is expressed as

H(pθ) = −
S∑
s=1

Ns∑
k=1

pθ(esk|fs) log pθ(esk|fs) (4.25)

and the derivative is expressed as

∇θH(pθ) = −
S∑
s=1

Ns∑
k=1

(
1 + log pθ(esk|fs)

)
∇θpθ(esk|fs) (4.26)

= −
S∑
s=1

Ns∑
k=1

(
1 + log pθ(esk|fs)

)
pθ(esk|fs){

∇θ log pθ(esk, fs)−
Ns∑
l=1

pθ(esl|fs)∇θ log pθ(esl, fs)

}
(4.27)

And so, we have

∇θH(pθ)

∣∣∣∣
θ=θq

= −
S∑
s=1

Ns∑
k=1

(
1 + log pθ(esk|fs)

)
pθ(esk|fs){

log Φq(esk, fs)−
Ns∑
l=1

pθ(esl|fs) log Φq(esl, fs)

}
(4.28)

Finally, the update equations for the growth transformations are of the form:

θ̂q =

θq

(
∇G(θ)|θ=θq + C

)
∑Q

q=1 θq

(
∇G(θ)|θ=θq + C

) (4.29)
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4.3 Posterior scaling

A scaling factor α is introduced as an additional free parameter to scale the pos-

terior probabilities. A large α leads to very peaked distributions, and most of the

probability mass is concentrated towards the top scoring hypothesis. In this case,

the objective function maximization will focus only on the top scoring hypotheses in

the N-best list. A small α leads to a flatter posterior distribution and the probability

mass is distributed over a larger set of hypotheses in the N-best list. A small α leads

to a flatter decision surface where a larger set of N-best list candidates affect the

parameter optimization.

Since, we do not have access to the true posterior probability, we approximate

the posterior distribution under the current model parameters. The normalized

posterior probability for a N-best candidate esk i.e the kth candidate for sentence s,

can we written as:

pθ,α(esk|fs) =
pθ(esk, fs)

α∑Ns
k=1 pθ(esk, fs)

α
(4.30)

The optimal α is chosen by experimentation.

4.4 Parameter Estimation for log-linear models

The growth transformation based update is a general procedure for iteratively

estimating the parameters of a model by locally optimizing a particular objective

function. The particular form of the joint distribution expressed in Equation 3.6

allows us to define the following conditional probability distribution

pθ(es|fs) =
exp θ̄ · h(es, fs)∑
es

exp θ̄ · h(es, fs)
(4.31)

where,

θ̄ = [θ1, θ2, . . . , θQ] is the parameter vector,

h(es, fs) = [log Φ1(es, fs), log Φ2(es, fs), . . . , log ΦQ(es, fs)]
T is the feature vector

θ̄ · h(es, fs) =
∑Q

q=1 θq log Φq(es, fs) is the dot product of the feature vector and

parameter vector.

This is the form of the log-linear model used in most feature-based SMT sys-

tems [40, 48, 43]. Consequently, growth transform based updates can be employed
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as an alternative estimation technique for maximizing the log-linear model based

conditional likelihood objective.

4.5 Summary

In this chapter, a detailed derivation of the growth transformation based updates

was provided for the two discriminative objective functions for training the param-

eters of a SMT system - MMI and Expected BLEU. The MMI objective function

maximizes the posterior of the correct class and attempts to separate it from the

incorrect class. The expected BLEU training criterion on the other focuses on max-

imizing the expected BLEU over a training set.

For MMI, growth transformation based updates were derived for the case of a

single reference system. Since, in SMT evaluation it is typical to use multiple ref-

erences during evaluation two different MMI objectives explicitly incorporating the

multiple references into the objective function were introduced - MMI with sum

over references and MMI with product over references. The MMI objective with

sum over references attempts to increase the likelihood of at least one, though not

all of the references simultaneously while driving down the likelihood of the com-

peting classes. The MMI objective with product over references on the other hand

attempts to drive up the likelihood of all the references simultaneously. Finally, the

problem of labeling the correct class for MMI training was addressed. In the case

where the true reference is not a part of the hypothesis space, choosing the highest

BLEU score hypothesis was suggested as an alternative.

An objective function for maximizing the expected BLEU over a N-best list was

introduced. During training, the BLEU score is calculated over sentence pairs in-

stead of over the entire corpus. This is an approximation to the true BLEU score.

Finally, additional parameters were introduced to control the optimization pro-

cess. A posterior scaling factor α was introduced which controls the peakedness of

the decision surface by distributing the probability mass over different regions in the

hypothesis space. Also, a entropy based regularization factor was introduced in to

the training objective in order to avoid overfitting. The parameter T controls the
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contribution of the regularization term to the entire objective function optimization.
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Chapter 5

Experiments with Discriminative

Training for Text Translation

In this chapter, experimental results for the different discriminative training cri-

teria are presented. Translation performance of expected BEU training and MMI

training are compared against the state-of-the-art line-based MET search proce-

dure. The experiments are divided into two sections: static re-anking and dynamic

re-ranking. In the static re-ranking experiments the N-best lists are kept fixed for

the various experiments. The learned parameters merely re-rank the translation

hypotheses. This is done for convenience and also to do a fair comparison of the

various optimization strategies. Dynamic re-ranking involves an iterative procedure

where the decoder utilizes the optimized parameters to re-generate N-best lists in

an iterative fashion.

5.1 Experimental Setup

Translation performance is evaluated for three different language pairs - Arabic-

English (AR-EN), Chinese-English (ZH-EN) and Spanish-English (ES-EN). Table 5.1

gives the corpus statistics used for training the various translation models. The

training data is lower-cased and sentence aligned.

5.1.1 Translation Model Training

As mentioned earlier in Section 2.7.2, the TTM relies on an underlying inventory

of phrase-pairs. Before building the phrase pair inventory, word alignments need to
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Language Pair Statistics
Arabic-English(Ar-En) # of Sentence Pairs 6.3M

# of Arabic words 127M
# of English words 142M

Chinese-English(Zh-En) # of Sentence Pairs 10M
# of Chinese words 204M
# of English words 220M

Spanish-English(Es-En) # of Sentence Pairs 1.4M
# of Spanish words 36M
# of English words 37M

Table 5.1: Statistics for the parallel training data used to train the translation model
components

be obtained from the sentence aligned parallel corpora. A word alignment is simply

a function mapping the words in one sentence to the words in another sentence ,

for the given pair of sentences in the parallel corpus. Since the word alignment is

just a function mapping, it can be obtained in two directions: words in the source

sentence map to a particular word in the target sentence or a word in the target

sentence maps onto a word in the source sentence. Word to phrase alignment models

are trained using MTTK [49] tool. A set of word alignment models are trained in

two directions: source language to target language (E → F ) and target language

to source language (F → E). In order to improve the word alignment coverage and

allow for many-to-many alignments, the final word alignment set is the union of the

two directions i.e (F → E)
⋃

(E → F ).

Next, a set of heuristics as discussed in Section 2.7.2 are used to extract the

phrase pairs. The phrase pair inventory contains a list of source phrases and their

corresponding translations along with a probability associated with the translation.

The translation probability is simply a maximum likelihood estimate of the fre-

quency of occurrences of the phrase pairs in the training corpus. The phrase pair

inventory thus obtained is used to build the TTM components - the target phrase

segmentation model, the target phrase insertion model, the target phrase reordering

model, the source segmentation model and the source-to-target phrase transduction

model. The component models are modeled as WFSTs.

In addition, a source word language model is also built from the source language
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side of the parallel training corpus. In our experiments, the English language model

component of the TTM is a 4-gram language model trained on the english side of

the parallel text corpus using the SRILM toolkit [50].

5.1.2 Discriminative Training Setup

All the discriminative training experiments are carried out by optimizing the

parameters on a development (DEV) set and finally evaluating on a blind test (TST)

set. Table 5.1.2 gives the statistics of the development and test data sets for the

three language pairs on which translation performance is reported in terms of the

BLEU score.

Language Pair Statistics DEV TST

Arabic-English(Ar-En) Arabic Sentences 2,075 2,040
Arabic words 56K 55K
Arabic vocabulary 13K 13K
English References/Sentence 4 4

Chinese-English(Zh-En) Chinese Sentences 2,347 2,320
Chinese words 70K 67K
Chinese vocabulary 9K 9K
English References/Sentence 4 4

Spanish-English(Es-En) Spanish Sentences 1,452 1,780
Spanish words 54K 58K
Spanish vocabulary 6K 7K
English References/Sentence 2 2

Table 5.2: Translation Task Data Statistics

For the static re-ranking experiments the following general procedure is followed.

First the TTM component models are used to obtain a set of 1000-best translation

lists for each target language sentence. Also, a set of real-valued sentence level

features are extracted for each entry in the N-best list. The seven features used are:

1. Source (English) language language model log probability.

2. Log probability of target (Zh, Es or Ar) phrase given source phrase (En)

3. Log probability of target phrase given source phrase

4. Log probability of target phrase reordering
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5. Log probability of target phrase insertion

6. Source word length

7. Target phrase length

Such a 1000-best list with the associated sentence level feature vectors is extracted

for every sentence in both the development and the test set. In addition to the

feature vectors the BLEU score statistics for each translation candidate - number

of correct and matched n-gram matches and shortest reference length - are also

extracted and stored in the list. Once this feature file is constructed the various

training criteria are used to optimize the parameters on this feature file. There are

seven parameters one for each of the features mentioned above that are optimized

in our experiments. Finally, the translation performance in terms of the document

level BLEU score is measured over the development set and the blind evaluation set

under the optimized parameters.

The direct corpus BLEU objective function (described in Section 3.1.3) is non-

differentiabe and so we cannot use the growth transformation based optimization

in this case. Instead minimum error training based line search is used to optimize

the corpus level BLEU score. The MMI and Expected BLEU training criterion

(described in Section 3.1.2 and Section 3.1.4) are continuous and differentiable and

so the growth transform based update procedure is applicable in these cases.

5.2 Static Re-Ranking Experiments

In the static re-ranking experiments the optimization is carried out over a fixed

N-best list. The goal is to compare the different training and optimization criteria -

MET line search based BLEU maximization and growth transformation based MMI

training and expected BLEU training.

5.2.1 Expected BLEU Training

The goal is to maximize the Expected BLEU objective function given in Equa-

tion 4.16 using the growth transformation based update given in Equation 4.21.

Figure 5.1, shows the plots of the expected BLEU objective function at each epoch
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Figure 5.1: Arabic-English set: Expected BLEU Training over 1000-best list: Epochs
vs 1-best BLEU. Nc = [20, 50, 100] and α = 3
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(each iteration on a fixed N-best list is called an epoch) of the growth transform

updates for both the development and test sets for the Ar-En translation task. The

top two plots show the trend of the objective as a function of the epochs. The

bottom two plots show the trend of the BLEU score evaluated for the development

and test sets respectively.

For each epoch, there is an increase in the objective function value on both

the development and test sets. This suggests that the growth transformation based

updates result in a locally increasing objective function, as expected. The translation

performance measured under BLEU on both the development set and test set shows

that the BLEU score significantly increases after about two iterations as compared

to the baseline ( the BLEU score at epoch 0). From the top two plots in Figure 5.1,

we observe that the objective function increases as the epochs progress both for

the development and test sets. The bottom two plots in Figure 5.1 show translation

performance measured under the BLEU criterion, over the entire test (development)

corpus. The BLEU score peaks just after two iterations on both the development

and test sets. For a posterior scale factor of α = 3 and convergence factor of Nc = 20

there is a +1.6 absolute increase in BLEU when compared with the baseline for the

development set and on the test set there is a +2.0 point improvement in BLEU

over the baseline. As expected, MET line search performs significantly better (+1.8

increase in BLEU) on the development set as it exactly optimizes our test objective.

However, on the test set both MET ( +1.7 increase in BLEU) and expected BLEU

(+2.0 increase in BLEU) achieve comparable performance.

5.2.2 MMI training with true reference

In order to handle multiple references, two different MMI objective functions

were proposed - MMI with sum of references( Section 4.1.2) and MMI with product

of references (Section 4.1.3). Furthermore, the true references are force aligned under

the TTM to obtain the sentence level feature scores. The MMI training procedure

uses the true references as the correct class to update towards. The MMI sum of

references uses the objective function defined in Equation 4.9 with the parameter

updates defined in Equation 4.11 while the MMI product of references uses the

objective function defined in Equation 4.12 and the corresponding parameter update
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Figure 5.2: Arabic-English set: MMI sum or references vs MMI product of references
training over a fixed 1000-best list using the true reference as correct class
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in Equation 4.14.

In Figure 5.2, the growth transformation update is reported for a posterior scal-

ing factor of α = 1 and a convergence rate scaling factor of Nc = 20. The top figure

plots the MMI objective functions as a function of the epochs. The middle figure

plots the translation performance in BLEU as a function of the epochs over the de-

velopment set and the bottom figure plots the same over the test set. The objective

function increases smoothly with each epoch for both the MMI training criteria. For

the MMI with product over references a +0.4 increase in BLEU over the baseline

corresponds to a +0.6 increase in BLEU over the test set. For the MMI with sum

over references objective function an increase of +0.8 BLEU over the development

set corresponds to a +0.8 increase in BLEU over the test set. This suggests that

there is no significant difference in the two objective criteria for MMI training.

However, both the MMI training criteria significantly underperform as compared

to the MET training procedure as observed in Figure 5.2. This suggests that using

the true references as the correct class in the MMI objective function is not a good

choice in terms of translation performance when compared with MET.

5.2.3 MMI training with oracle-BLEU reference

Following the discussion in Section 4.1.4 and from the translation performance

observed in Section 5.2.2 correctly identifying the correct class from the translation

hypothesis space is crucial for MMI training to be effective. Instead of choosing the

true reference as the correct class we choose the oracle-BLEU hypothesis (described

in Section 4.1.4) as the correct class for MMI training. Again we use the form of the

objective functions defined in Equation 4.12 and Equation 4.9 and their respective

growth transform based updates defined in Equation 4.14 and Equation 4.11.

Figure 5.3, plots the MMI training results using the oracle-BLEU as the correct

class for a posterior scaling factor of α = 1 and a convergence rate scaling factor of

Nc = 20. Using the oracle-BLEU hypothesis, significantly improves the performance

of MMI training as observed in Figure 5.3. On the development set a +1.8 increase

in BLEU relative to the baseline is observed which corresponds to an increase of +2.0
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Figure 5.3: Arabic-English set: MMI sum or references vs MMI product of references
training over a fixed 1000-best list using the oracle BLEU hypothesis used as the
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BLEU on the test set. This is comparable to the MET translation performance as

observed in Figure 5.3. Furthermore, since the correct class is a single oracle-BLEU

hypothesis both the MMI sum of references and MMI product of references gives

identical updates and consequently identical translation performance.

5.2.4 Growth transform hyper-parameter tuning
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Figure 5.4: Chinese-English set: Effect of entropy regularization on translation per-
formance α = 3, Nc = 20

The growth transform based update procedure that we have presented so far have

three hyper-parameters that we need to tune- posterior scaling(α), rate of conver-
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gence scaling(Nc) and entropy regularization scaling (T ). These hyper-parameters

control different aspects of the optimization process. In this section we will evaluate

the effect of these hyper-parameters on translation performance.
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Figure 5.5: Chinese-English set: Effect of posterior scaling on translation perfor-
mance T = 0, Nc = 100

In Equation 4.28 the entropy regularization term is added to the objective func-

tion. However, since there is no reason to believe that the regularization term should

contribute equally to the optimization objective, a entropy regularization scaling fac-

tor T is introduced. Figure 5.4 illustrates the effect of T on translation performance.

T = 0 implies that there is no regularization. For 0 ≤ T ≤ 1, we observe that the
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regularization term helps improve translation performance over both the develop-

ment and test set. Also, we notice that the peak translation performance occurs

after a few more iterations than at T = 0, suggesting that the regularization term

also effects the convergence rate. By slowing down the rate of convergence, the

optimization procedure is prevented from overfitting the decision surface.
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Figure 5.6: Chinese-English set: Effect of convergence rate on translation perfor-
mance T = 0, α = 3

Figure 5.5, shows the plot of translation performance on the development and

test sets for different posterior scaling factors α. For the Chinese-English task there

is no change in the peak translation performance for the different scale factors α.

For higher values of α, since the probability mass is shifted towards the top few
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hypotheses in the N-best lists, only the scores of these hypotheses will have an ef-

fect on the optimization procedure. For α = 3, we observe that after about three

iterations the translation performance does not drop significantly, evidence of the

fact that the optimization procedure is focussed on the hypotheses closer to the top

scoring hypothesis.

Figure 5.6, plots the translation performance on the development and test sets

for different convergence rates Nc. The convergence rate scale factor Nc controls

the rate of convergence of the growth transformation based updates. Thus as Nc

increases we observe that it takes more iterations to achieve optimal translation

performance on both the development and test sets.

5.2.5 Comparison with MET

Language Pair Training Criterion Optimization DEV BLEU TST BLEU

Es-En MET Line Search 43.4 42.5
Expected BLEU Growth Transform 43.1 42.3
MMI w/ oracle Growth Transform 43.5 42.8

Table 5.3: Comparison of MMI Training and MET and Expected BLEU training
over fixed 1000-best list for Spanish-English language pair

In this section, the translation performance for the three language pairs - Ar-En,

Es-En and Zh-En - are reported. We compare the 3 different objective criterion-

MET (Equation 3.7) , MMI (Equation 3.2) and Expected BLEU (Equation 4.16),

translation performance. From the experiments in Section 5.2.3 and Section 5.2.2,

choosing the oracle-BLEU hypothesis performs significantly better than using the

true reference. So, all the MMI training experiments reported henceforth will use

the oracle as true reference.

Table 5.3 and Table 5.4 and Table 5.5 summarize the translation performance of

the various training criteria over the different language pairs. In general, the growth

transform based procedures outperform MET on the test set. However, growth

transform based updates do not necessarily result in better translation performance

over the training set when compared to MET. The reason is that MET optimization
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Language Pair Training Criterion Optimization DEV BLEU TST BLEU

Ar-En MET Line Search 48.4 48.8
Expected BLEU Growth Transform 48.0 49.1
MMI w/ oracle Growth Transform 48.3 48.9

Table 5.4: Comparison of MMI Training and MET and Expected BLEU training
over fixed 1000-best list for Arabic-English language pair

exactly optimizes the criterion used for the final evaluation and hence performs best

on the trainig set. However, Expected BLEU and MMI training generalize better

over the test set.

Language Pair Training Criterion Optimization DEV BLEU TST BLEU

Zh-En MET Line Search 31.8 31.9
Expected BLEU Growth Transform 31.6 32.1
MMI w/ oracle Growth Transform 31.4 32.0

Table 5.5: Comparison of MMI Training and MET and Expected BLEU training
over fixed 1000-best list for Chinese-English language pair

Furthermore, we observe for Ar-En and Zh-En language pairs, expected BLEU

training outperforms MET on the test set, while for the Es-En translation task the

MMI algorithm outperforms the other training criteria. One possible reason for this

is that the Es-En task has only two references/sentence ( as opposed to the usual

4 references/sentence) resulting in a less robust BLEU estimate, and consequently

a poorer representation of the error surface over which both MET line search and

expected BLEU training procedures perform parameter search. The MMI objective

function, is not prone to this problem as it attempts to directly maximizes the

posterior probability of the “true” class, irrespective of the evaluation criterion being

used.

5.3 Dynamic Re-Ranking

Thus far, the translation optimization has been on a fixed N-best list i.e. the

optimization merely re-ranks the N-best list. This limits the performance of the op-

timization to the underlying hypothesis space which is fixed. Instead, the optimized
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parameters can be used to re-generate a better set of N-best lists that better char-

acterize the decision surface. Re-optimizing on this new set of N-best lists should

result in further improvements in translation performance.

Language Pair Training Criterion DEV BLEU TST BLEU

Es-En Baseline(no optimization) 40.6 40.0
MET 45.9 44.9

Expected BLEU 45.7 44.7
MMI w/ oracle 45.8 45.1

Table 5.6: Dynamic Re-Ranking: Comparing MMI Training and MET and Expected
BLEU training

However, re-generating N-best lists with the updated parameters might generate

a totally new set of N-best lists. In such a case, N-best lists are merged across

iterations to obtain a more complete representation of the translation hypothesis

space. The parameters are then re-optimized on this new merged N-best list to

obtain a new set of parameter updates. This procedure can be iterated as follows:

1. Initialize the parameter vector θ and an empty set of N-best lists N

2. For each sentence run the decoder to produce an N-best list under parameter

θ, calculate the various loss statistics and add this to the set N .

3. If the N-best list size does not change, or if we reached the maximum limit of

iterations, stop. Else go to Step 4.

4. Adjust θ to maximize our objective function (MMI or expected BLEU or MET)

over the current N-best list. Go to Step 2.

Finally, the iterative optimization procedure is evaluated by measuring translation

performance in terms of the BLEU score. The iterative tuning is carried out over

the development set. After the optimized parameters are obtained the translation

performance is measured on a blind test set. Table 5.6, summarizes the transla-

tion performance for a Spanish-English translation task under the various training

objective functions. Both Expected BLEU training and MMI training translation

performance is comparable to MET line search.
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5.4 Experiment Summary

We considered three different objective functions for training the parameters of

an MT system - BLEU, Expected BLEU and MMI. For the BLEU training criterion

we used MET line search was used to optimize the parameters. Growth transforma-

tion based updates were used to optimize the MMI and Expected BLEU training

criteria. The translation performance was evaluated over three different language

pairs- Arabic-English, Spanish-English and Chinese-English.

Translation performance was measured for two different setups - static re-ranking

and dynamic re-ranking. In both the setups the growth transform based optimiza-

tion gave comparable results to MET. Furthermore,the MMI training criteria was

investigated in detail. Two MMI training objectives were considered for a multiple

reference system - MMI sum of references and MMI product of references. Exper-

iment results showed o significant difference in terms of translation performance

on an Arabic to English translation task. In addition, the issue of choosing the

correct class was also discussed. Experimentally it was observed that choosing the

oracle-BLEU hypothesis as the correct class resulted in significantly better trans-

lation performance when compare to choosing the true reference as the correct class.

Finally, the effect of the various hyper-parameters in the growth transform based

update procedure on translation performance was also investigated. In particular,

the effect of the posterior scaling α, convergence rate scaling Nc and the regulariza-

tion scaling T was studied. Entropy based regularization was shown to help improve

translation performance.
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Chapter 6

Experiments in Speech Translation

In this chapter, we investigate the performance of the generative model approach

to speech translation on the Spanish to English translation task. The goal is to

compare translation performance when translating from an ASR lattice as opposed

to a single 1-best ASR output. First a detailed description of the data resources

used in the task is presented. Next we highlight the difficulty of translating from

ASR lattices. We also investigate the various pruning strategies for ASR lattices

outlined in Section 2.9. Translation performance is measured under the BLEU [10]

metric.

6.1 Experimental Setup

6.1.1 Training Corpus

We investigate the performance of the speech translation system on the TC-

STAR Spanish to English (Es-En) European Parliamentary Speeches (EPPS) trans-

lation task 1. The training corpus consists of final text editions of the European

parliamentary sessions from April 1996 to October 2004. The corpus statistics for

the bilingual sentence-aligned training data is given in Table 6.1. The training data

is lower-cased and sentence aligned.

1http://www.tc-star.org
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Spanish English

Sentences 1.28M
Running Words with Punctuation 39M 37M

Running Words without Punctuation 35M 34M
Vocabulary 138K 95K
Singletons 48K 34K

Table 6.1: European Parliamentary Speeches Spanish-English Training Corpus
Statistics

6.1.2 Translation Model Training

The speech translation system relies on an underlying phrase pair inventory that

is extracted from the parallel training corpus. The translation model training is

similar to the procedure outlined in Section 5.1.1. First, the MTTK toolkit [49] is

used to generate word alignments for the parallel text in the Spanish to English and

English to Spanish directions. Then phrase translation pairs are extracted using the

union of the two sets of word alignments. The phrase pair inventory thus obtained

is used to build the translation component models.

6.1.3 Speech Translation Data Setup

The speech-to-text translation corpus is based on seven Spanish parliamentary

audio documents- two for development and five for test, as specified by the 2005

TC-STAR evaluation. The corpus statistics of the reference Spanish transcriptions

provided for these audio documents is given in Table 6.2. Two English translations

of each Spanish sentence transcription were commissioned for translation system

scoring.

Spanish DEV set Spanish EVAL set

Sentences 2643 1073
Running Words with Punctuation 25704 21057

Running Words without Punctuation 25679 21054
Vocabulary 3032 3333

OOVs 113 157

Table 6.2: EPPS Development and Test Corpus Statistics

In addition to the seven audio documents, their Spanish text transcriptions, and



69

their corresponding English translations, we also have Spanish ASR word lattices in

HTK format [51]. These were generated by the LIMSI ASR system similar to the

Broadcast News system described in [52], incorporating cross-word triphone acoustic

models and a 4-gram language model. The audio is segmented such that there is

one lattice per sentence - there are 2643 and 1073 lattices for the development and

test sets respectively.

6.1.4 ASR Lattice Pre-Processing

The ASR lattices which are in HTK format are first converted to a weighted

finite state acceptor in ATT format [53]. However, the ASR lattices need to be pre-

processed before converting them to the ATT format. A typical ASR lattice contains

disfluencies which are usually present in speech (such as hesitations, repetitions and

filler words such as uh, uhm etc.); and silence and pause markers which identify the

unvoiced regions in the ASR lattice. Since these do not occur within the sentences

in our bilingual text collections, it is difficult to extract phrases which cover such

events in the ASR lattice. We map these symbols to ε. Consequently, some of the

phrases extracted will span what the ASR system hypothesized as sentence breaks.

For the translation experiments, the timing information present in the lattice is

ignored. Furthermore, the lattices which are converted to ATT format are reduced

in size by applying ε-removal, determinization, and minimization [28, 29]. The arcs

in the WFSA have word labels and the arc cost is the sum of the target acoustic

model and target language model negative log likelihood probabilities. The acoustic

model probabilities and the language model probabilities are combined using the ap-

propriate word insertion penalty and language model scale factor optimized for ASR

word error rate (WER) by LIMSI. The ASR word lattices are pruned as necessary,

and after composition with the target phrase segmentation transducer, phrases are

extracted up to five target words in length.
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Figure 6.1: BLEU vs WER comparison for the oracle ASR Path

6.2 Oracle WER Experiments

The main motivation for translating from ASR word lattices is that the larger

search space would allow the translation system to recover from ASR search errors,

as opposed to translating a single 1-best string. In this experiment, the goal is to in-

vestigate if better translations can be produced by looking at translation candidates

in the ASR lattice other than the ASR 1-best. More specifically, the objective is to

evaluate if lower WER correlates positively with improved translation performance.

Also, of interest is to characterize the degree of difficulty of the translation task:

how dense the ASR lattice must be to obtain significant translation performance

gains.

In this experiment, the translation performance in terms of the BLEU score is

plotted as a function of the lattice oracle WER. The lattice oracle WER is the path

in the lattice that is closest to the reference ASR transcription under the leven-

shtein distance [54]. The path corresponding to the oracle WER is called the oracle

ASR path. In our experiments, the ASR lattice is first pruned to obtain a set of

lattices at different densities. Next, for each pruned set of lattices a set of oracle
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translation candidates is translated and the translation performance is noted for the

corresponding oracle WER.

Figure 6.1 shows plots of the translation performance as a function of the oracle

WER for both the development and test sets. We observe that reduction in the

oracle WER results in improved BLEU performance. This is consistent with our

hypothesis that exploiting the larger search space encoded by the lattice can help

improve translation performance by allowing the SMT component to select better

translation candidates. However, a 60% decrease in ASR WER corresponds to only

a 13% relative improvement in BLEU. This implies that speech translation is a

difficult task.

6.3 Evaluating Translation of ASR Lattices

In this section, ASR word lattices translation experiments on the EPPS corpus

described in 6.1.1 are presented. Parameter optimization using MET line search

over a 1000-best list is used to tune the translation performance on a development

set. The optimized parameters are then used to evaluate translation performance

on a blind test set.

Spanish Source DEV BLEU EVAL BLEU

Reference Transcription 48.6 42.4

ASR 1-best 39.5 32.5
ASR Lattice w/ word posterior pruning 40.7 33.6

ASR Lattice w/ phrase posterior pruning 40.6 33.3

Table 6.3: EPPS Spanish-English Translation Performance

Table 6.3 , reports the translation performance over the development and test

sets for the different input conditions - manual reference transcriptions, ASR 1-best

hypothesis, ASR lattice with word level and phrase level pruning.

The manual reference transcriptions correspond to the truth. Hence the trans-

lation performance obtained from translating these correspond to the best possible

translation performance if the speech translation had access to the true transcript.
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Translating the ASR 1-best is significantly worse than the reference transcriptions.

The errors in the ASR 1-best output severely limit the translation performance. A

+1.1 improvement in the BLEU score is obtained over the test set by translating the

ASR lattice. This suggests that the SMT system is able to take advantage of the the

larger search space of the ASR lattice in searching for a suitable candidate transla-

tion. Finally, the two pruning strategies performed similarly in terms of translation

performance.

Table 6.4 shows a translation example for the ASR 1-best and the ASR lattice for

a particular sentence in the EPPS test corpus. The highlighted words in the table

inidicate the regions that differ from the ASR 1-best translation. As observed the

ASR Lattice translation is closer to the reference than the ASR 1-best translation.

Input Translation

Reference

1. in accordance with the committee on budgets the period for tabling
amendments for the second reading of the european union budget
will end on wednesday the first of december at twelve noon.

2. in agreement with the committee on budgets the deadline for the
presentation of projects of amendment for the second reading of the
european union budget will finish on wednesday first of december at
twelve noon.

ASR 1-best
according to the committee on budgets of the deadline for the submission
of projects amendment concerning the second reading of the budget union
will end on wednesday , one of the twelve noon

ASR Lattice
in accordance with the committee on budgets of the deadline for the
submission of projects amendment concerning the second reading
of the budget union will end on wednesday , one of the twelve noon

Table 6.4: Translation examples for the EPPS Eval05 test set : ASR 1-best and
ASR Lattice with MET line search based optimization

6.4 Evaluating Translation Quality

In comparing the speech and text translation systems, we are interested in quan-

tifying the benefit of translating ASR word lattices vs. a single string (ASR 1-best

or reference transcription). Two sets of measure are provided to evaluate the trans-

lation quality - Average Phrase Density and N-best list translation quality.
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6.4.1 Average Phrase Density

Improved phrasal coverage is known to correlate with improved translation per-

formance [55]. Phrasal coverage is defined as the proportion of phrases in the test

set covered by the underlying phrase-pair inventory. The Average Phrase Density

measures the phrase coverage of the test set under a particular phrase-pair inventory.

So the higher the average phrase density, the better the phrasal coverage. For each

word in a target (source) segment, the number of phrases that covered that word in

alternative segmentations of that segment are obtained. The number of phrases per

word is then averaged over the test set. The average phrase density is expressed as

the average number of phrases per word per acoustic segment.

Average Phrase Density =
1

Ntrg

Ntrg∑
i=1

(∑Nwi
wi=1 np(wi)

Nwi

)
(6.1)

where, Ntrg is the number of target (source) acoustic segments, Nwi is the number

of words in segment i, and np(wi) is the number of phrases containing the word wi.

Average phrase density is calculated over both the source and target segments.

Phrase Pair Inventory Statistics Average Phrase Density
Translation # Spanish # English # Phrase-Pairs Spanish English

Input Phrases Phrases

ASR 1-best 20.3K 15.6K 38.6K 5.1 4.1
ASR Lattice 26.3K 16.8K 51.1K 6.0 4.9

w/ word pruning
ASR Lattice 27K 16.9K 52.8K 5.8 4.7

w/ phrase pruning

Table 6.5: Phrase Pair Inventory Statistics and Average Phrase Density for EPPS
test set

From Table 6.5, the phrase extraction procedure is able to extract a substantially

larger number of target phrases from the ASR lattice relative to the ASR 1-best

string. Also, the phrase-pair inventory is larger in the ASR lattice case (34% relative

to that of ASR 1-best). This corresponds to a relative increase in the average target

phrase density (17% relative to the ASR 1-best) and the average source phrase

density (19% relative to the ASR 1-best). The relative increase in the average phrase

density for both the source and target language suggests that extracting phrases

from lattices leads to improved phrase coverage. Furthermore, this correlates with
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the improved translation performance observed in Table 6.3. There is no significant

difference in the average phrase density and the size of the phrase pair inventory for

the two ASR pruning strategies, suggesting that the two approaches result in similar

phrasal coverage and hence similar translation performance.

6.4.2 N-best List Translation Quality

Translation oracle-best BLEU
Input DEV TST

Reference Transcription 68.4 60.3
ASR 1-best 55.6 48.1

ASR Lattice w/ word pruning 57.8 49.7
ASR Lattice w/ phrase pruning 57.8 49.4

Table 6.6: Oracle-best BLEU for EPPS development and test set measured over a
1000-best translation list

The goal of this experiment is to evaluate the quality of the translation hy-

potheses generated by the translation system for a fixed phrase pair inventory and

different input conditions - Reference transcriptions, ASR 1-best and ASR lattice.

The quality of the N-best translation space is measured in terms of the oracle-best

BLEU. The oracle-best BLEU for a set of N-best lists is obtained using the following

procedure:

• For each sentence to be translated, the oracle-BLEU hypothesis is selected from

the corresponding N-best list of translations for that sentence. The oracle-

BLEU hypothesis in the N-best list of translations is defined as the translation

candidate with the highest sentence level BLEU score.

• Next, the oracle-BLEU hypotheses are collected over all sentences in the devel-

opment (test) corpus and the corpus level BLEU thus obtained is the oracle-

best BLEU.

The oracle-best BLEU over N-best lists quantifies the quality of the translation

hypotheses generated by the translation system for a fixed phrase pair inventory. In

Table 6.6, the oracle BLEU for the ASR lattice is higher than that of the ASR 1-

best, which suggests that translating from ASR lattices results in a better translation

hypothesis space and consequently better translations as observed in Table 6.3. Also,



75

for the word and phrase level pruning strategies the translation hypothesis space is

similar in quality and hence there is no appreciable difference in the BLEU score in

Table 6.3.

6.5 Discriminative Training for Speech Transla-

tion

Translation Training BLEU
Input Criterion DEV TST

ASR 1-best MET 39.5 32.5
MMI 35.8 33.2

Expected BLEU 38.1 32.3

ASR Lattice w/ word pruning MET 40.7 33.6
MMI 36.8 34.3

Expected BLEU 37.2 34.6

ASR Lattice w/ phrase pruning MET 40.6 33.3
MMI 36.9 34.1

Expected BLEU 37.8 34.5

Table 6.7: Comparing MMI and Expected BLEU and MET training criteria for the
Spanish-English ASR translation task

In the speech translation experiments thus far, MET line search (Equation 3.7)

has been applied to optimize the MT parameters. In this experiment, the two dis-

criminative training criteria proposed in Chapter 3 - MMI Training (Equation 3.2)

and Expected BLEU Training (Equation 4.16) - are compared with MET. For MMI

training the oracle reference is chosen as the correct class. Growth transformation

based updates (Equation 3.20) are used to optimize the MMI and Expected BLEU

training criteria.

For the ASR 1-best input, the MMI training criterion gives the best translation

performance over the test set. Although on the development set the MET procedure

gives the best translation performance it does not generalize well over the test set.

This suggest that the MET optimization has led to overfitting of the MT parameters.

Even when optimizing for the ASR lattice translation case, MET optimization seems

to overfit on the development set resulting in a poorer translation performance on
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the test set. The MMI and Expected BLEU training perform significantly better.

Specifically, for the ASR lattice translation the Expected BLEU training algorithm

results in the best translation performance. Overall, there is a gain of +1.4 BLEU

points when translating from the ASR lattice as opposed to the ASR 1-best.

6.6 Experiment Summary

In this chapter speech translation experiments were presented. First, the oracle

WER experiments were investigated to characterize the degree of difficulty translat-

ing from speech entails. It was shown that obtaining about 13% relative improvement

in BLEU required about a 60% drop in the lattice oracle WER. Although, this is a

difficult objective it does suggest that improvements in translation can be obtained

by looking deeper in to the lattice.

Following the oracle WER experiments, translation of ASR 1-best was compared

with translation of the ASR lattice. Significant improvements in the BLEU score

was observed when translating from lattices. Also, the word level and phrase level

pruning of the ASR lattices resulted in similar translation performance. In addi-

tion, experiments were provided to analyze the quality of the translation N-best

lists and the phrasal coverage. It was observed that translation from ASR lattices

resulted in significant improvement in phrasal coverage and also improvements in

the translation hypothesis list quality, two factors that are known to correlate well

with improved translation performance [55].

Finally, discriminative training experiments were presented for the speech trans-

lation task. Both MMI and Expected BLEU were shown to significantly outperform

MET optimization.
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Part II

Statistical Speech Recognition
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Chapter 7

Overview of Statistical Speech

Recognition

Automatic Speech Recognition (ASR) is a sequential pattern recognition problem

in which the patterns to be hypothesized are words while the evidence presented to

the recognizer is the acoustics of a spoken utterance. Given an acoustic signal, a

speech recognizer attempts to classify it as the sequence of words that was spoken.

One of the main applications of speech recognition is to transform spoken utterances

in to a written and structured document. In this chapter, we will present a brief

overview of the statistical approach to ASR.

7.1 Mathematical Formulation Review

The goal of a speech recognition system is to automatically transcribe speech

to text. A precise mathematical formulation of the speech recognition problem is

needed if we are to discuss the problem of speech recognizer design. Let O be the

acoustic evidence or observations on the basis of which we will make a decision about

which words were spoken. We can assume that

O = o1, o2, · · · , oT oi ∈ O

is a sequence of symbols drawn from some (possibly infinite) space O. Let

W = w1, w2 · · ·wn wi ∈ V

denote a n word sequence drawn from a vocabulary V . Then given P (W|O), the

posterior probability that the words W were spoken given the acoustic evidence
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O, the Maximum a Posteriori (MAP) decoder [2] chooses the word sequence Ŵ

satisfying

Ŵ = argmax
W

P (W|A) (7.1)

In other words, the recognizer will pick the most likely word string Ŵ given the

observed acoustic evidence. Applying Bayes’ rule, the posterior probability P (W|O)

can be re-written as

Ŵ = argmax
W

P (O|W)P (W)

P (O)
(7.2)

Since, the maximization in Equation 7.2 is independent of the acoustic evidence O,

we have the following search problem

Ŵ = argmax
W

P (O|W)︸ ︷︷ ︸
Acoustic

Model

P (W)︸ ︷︷ ︸
Language

Model

(7.3)

The search problem is now conveniently decomposed in to two different modeling

problems - acoustic modeling and language modeling. In the next section we will

briefly describe the different components of the MAP decoder.

7.1.1 Language Modeling

The main task of the language model is to assign a probability to the word

sequence W = w1, w2, · · · , wn. The language model helps in guiding and reducing

the acoustic search space by providing contextual information. The probability

P (W) can be decomposed as

P (W) =
n∏
i=1

P (wi|w1, w2, · · · , wi−1)

where P (wi|w1, w2, · · · , wi−1) is the probability that wi will be spoken given that

words w1, w2, · · · , wi−1 were said previously. The sequence w1, w2, · · · , wi−1 is re-

ferred to as the history and is denoted by hi. In most ASR systems, the language

model most frequently used is the n-gram language model where the history is re-

stricted to a context of n− 1 previous words. For such a n-gram model,

P (W) =
n∏
i=1

P (wi|wi−n+1, · · · , wi−1)

In most present-day speech recognizers, 4-gram and 5-gram models are frequently

used.
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7.1.2 Acoustic Modeling using HMMs

The acoustic likelihood is typically modeled by a Hidden Markov Model (HMM) [56],

which forms the central component of most speech recognizers today. A HMM is a

statistical model well suited for modeling a sequence of observation symbols (discrete

or continuous) and has been quite successful in capturing the acoustic and temporal

characteristics of speech. We will now describe how the HMM can be use to model

speech. Formally, an HMM is defined by:

1 2 3

p(1|1) p(2|2) p(3|3)

p(2|1) p(3|2)

o1 o2 o3 o4 o5 o6

q(o6|3)q(o5|2)q(o4|2)q(o3|2)q(o2|1)q(o1|1)

Figure 7.1: 3-state left to right HMM with discrete observations

• A finite state space S = {1, 2, · · · , S}. A state st at time t takes values st ∈ S

• An observable output alphabet O = {1, 2, · · · ,M}. If the observation space is

continuous then we define O ∈ Rd.

• A set of state transition probabilities p(st|st−1), defined as the probability of

transitioning from state st−1 at time t− 1 to state st at time t.

• A set of output probability distributions q(o|st), defined as the probability of

observing observation symbol o at time t in state st. If the observation space
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is discrete, then the output probability distribution is given by:

q(k|st = j), 1 ≤ k ≤M, 1 ≤ j ≤ S

If the observation space is continuous then we specify the output probability

distribution as a probability density function. The probability density function

is typically approximated by a mixture of M gaussians.

q(o|st = j) =
M∑
m=1

cjmN (µjm,Σjm) (7.4)

=
M∑
m=1

cjm
1

(2π)d/2|Σjm|
exp−

1
2

(o−µjm)TΣ−1
jm (o−µjm) (7.5)

where,

o = a real valued observation vector drawn from Rd,

cjm = is the mixture weight for gaussian component m in state j,

µjm = is the mean vector for gaussian component m in state j,

Σjm = is the covariance matrix for gaussian component m in state j,

and
∑M

m=1 cjm = 1 cjm ≥ 0, 1 ≤ j ≤ S

The HMM is thus parameterized by the state distribution and the output distribu-

tion. Furthermore, when using the HMM to model speech we make the following

independence assumptions:

• The probability of being in state st at time t depends only on the previous

state st−1 at time t− 1, regardless of the previous state transition history.

• The output probability at time t depends only on the current state st at time

t.

In most large vocabulary speech recognizers, the HMM is modeled at the sub-word

level as triphones, which are phonemes with left and right context. Each triphone

is associated with a HMM according to some predefined topology. Figure 7.1 is a

typical topology used in most ASR systems. The word level HMM is then obtained

by concatenating the phonetic HMMs that constitute that word.

Let M = {m1,m2, · · · ,mU} be the set of elementary phonetic HMMs and let

θ = {θ1, θ2, · · · , θU} be the set of associated HMM parameters. Then Mw is the

HMM corresponding to word w obtained by concatenating the phonetic HMMs from
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the set M associated with the word w.

Given an observation sequence O = o1,o2, · · · ,oT and the HMM model M
with parameters θ we can obtain the likelihood of the HMM having generated that

particular observation sequence:

P (O|M, θ) =
∑

s1,s2,··· ,sT

T∏
t=1

p(st|st−1) q(ot|st) (7.6)

Here, s1, s2, · · · , sT is the state sequences associated with the observations sequence

O.

7.2 Estimating the HMM Parameters

The HMM parameters need to be estimated from data, before we can use the

HMM in a speech recognizer. The learning problem can be state thus: Given the

acoustic evidence O and the transcript W̄ corresponding to the acoustic evidence, we

need to estimate the HMM parameters θ ( the state transition distributions and the

output probability distribution parameters). The two most common approaches to

estimating the HMM parameters are Maximum Likelihood (ML) [2] and Maximum

Mutual Information (MMI) [37] criteria. The following sections give a brief overview

of these two approaches.

7.2.1 Maximum Likelihood Estimation (MLE)

Given a training corpus of R acoustic observations O(1),O(2), · · · ,O(R) and the

corresponding transcriptions W̄(1),W̄(2), · · · ,W̄(R), the maximum likelihood esti-

mation procedure attempts to find the HMM parameters θ∗ which maximizes the

likelihood of the observed acoustic data

θ∗ = argmax
θ

R∑
r=1

logPθ(O
(r)|MW̄(r)) (7.7)

= argmax
θ

R∑
r=1

∑
sT1 ∈S(r)

logPθ(O
(r), sT1 |MW̄(r)) (7.8)

where, S(r) is the set of all possible state sequences through the HMM network

MW̄(r) corresponding to the observation sequence O(r).
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In general, it is difficult to optimize the likelihood in Equation 7.8 directly. In-

stead, we use Expectation Maximization (EM), an iterative procedure that locally

maximizes a lower bound on the likelihood. The EM algorithm is a general method

of finding the maximum-likelihood estimate of the parameters of an underlying dis-

tribution from a given data set when data are incomplete or have missing values [57].

The EM algorithm is a two-step iterative procedure described as follows:

E step The expectation step (E-step) computes the expectation of the complete data

likelihood Pθ(O
(r), sT1 |MW̄(r)) with respect to the hidden state sequence given

the observation and the current parameter estimate θ(i). We define the auxil-

iary function

Q(θ, θ(i)) =
R∑
r=1

∑
sT1

P (sT1 |O(r),MW̄(r) ; θ(i)) logP (O(r), sT1 |MW̄(r) ; θ) (7.9)

Here, θ(i) are the current parameters that we evaluate the expectation un-

der and θ are the new parameters we optimize to increase Q(θ, θ(i)) In the

remaining discussion we will use the notation Pθ(O
(r), sT1 |MW̄(r)) instead of

P (O(r), sT1 |MW̄(r) ; θ).

M-step In the maximization step (M step) we maximize the expectation calculated in

the E-step.

θ(i+1) = argmax
θ

Q(θ, θ(i)) (7.10)

These two steps are repeated as necessary. Each iteration is guaranteed to increase

the log-likelihood and the algorithm is guaranteed to converge to a local maximum

of the likelihood function. The ML criterion is the most widely used criterion in

training a speech recognition due to its simplicity, ease of implementation and due

to attractive statistical properties of the MLE such as consistency and efficiency [58].

However, the MLE approach gives optimal estimates (in the sense of minimum

variance unbiased estimates) under three assumptions. First, the model correctly

represents the underlying stochastic process. In the case of ASR, it is well known

that an HMM is not the true model for speech; in fact the true model is unknown.

The problem arises due to the various conditional independence assumptions that
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underlie HMM models. Given these assumptions, it is unlikely that the processes

that actually generate speech can be closely modelled by HMMs. Second, we have an

infinite amount of training data which is of course impossible to satisfy in practice.

Lastly, we can find the true global maximum of the likelihood surface. However,

the likelihood defined for the speech recognition case is riddled with various local

maxima and so we can only guarantee a local maximum. Furthermore, MLE is

only concerned with maximizing the likelihood of the training data given the model

corresponding to the data. The models from other classes do not participate in the

parameter re-estimation. Therefore, under MLE each HMM is trained only to gen-

erate high probabilities for its own class, without discriminating against competing

classes. Consequently, the MLE objective function is not directly related to the

objective of reducing the error rate of the recognition task.

As an alternative we can use discriminative estimation procedures that directly

attempt to optimize recognition performance. In general, discriminative criteria not

only try to maximize the class conditional probability of the acoustic evidence given

the correct classes but, also try to minimize the class conditional probabilities of

the corresponding competing classes. In the next section we briefly describe one of

the most popular discriminative criterion, i.e. the Maximum Mutual Information

criterion

7.2.2 Maximum Mutual Information Estimation (MMIE)

Maximum mutual information estimation [37], attempts to find the HMM pa-

rameters θ that maximizes the mutual information between the acoustic observation

sequence O and the corresponding word sequence W.

Iθ(O,W) =
Pθ(O,W)

Pθ(O)P (W)
(7.11)

If the language model is assumed to be independent of the acoustic model parame-

ters, then maximizing the MMI criterion is equivalent ot maximizing the Conditional

Maximum Likelihood (CML) criterion [59]. Throughout this dissertation the term

MMI and CML will be used interchangeably. The CML criterion tries to improve

the a posteriori probability of the correct sentence hypothesis given the acoustic ev-

idence. Since this is also the probability used in MAP decoding (Equation 7.1), the

relation of the CML objective and the Sentence Error Rate on the acoustic training
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set is much more intuitive than it is with MLE.

Then for R training observation sequences O(1),O(2), · · · ,O(R) and the corre-

sponding transcriptions W̄(1),W̄(2), · · · ,W̄(R) the CML objective function is given

by:

θ∗ = argmax
θ

R∑
r=1

logPθ(O
(r)|MW̄(r)) (7.12)

= argmax
θ

R∑
r=1

log
Pθ(O

(r)|MW̄(r))P (W̄(r))∑
W′∈W Pθ(O

(r)|MW′)P (W′)
(7.13)

Here, the composite HMM modelMW̄(r) is called the numerator model correspond-

ing to the correct transcription. The summation in the denominator of Equation 7.13

is taken over all possible word sequences W′ allowable in the task and it can be re-

placed by

Pθ(O
(r)|Mgen) =

∑
W′∈W

Pθ(O
(r)|MW′)P (W′) (7.14)

where Mgen is a model constructed such that for all paths in every MW′ there is

a corresponding path of equal probability in Mgen. It is usually assumed that the

model used for recognition is a reasonable approximation of Mgen.

Maximizing the MMI criterion (Equation 7.13) leads to discriminant models since

it implies that the numerator HMM parameters are adapted to increase the term

Pθ(O
(r)|MW̄(r)) while simultaneously trying to drive down the likelihood of the de-

nominator term Pθ(O
(r)|Mgen). The denominator term dominates the computation

and this will depend on the size of the vocabulary, the grammar and any contextual

constraints. In many practical situations, for example where cross-word context de-

pendent acoustic models are used in conjunction with a long span language model,

the construction of a complete model for Mgen is intractable. In practice, the de-

nominator term is approximated either by N-best lists [60] or lattices [61, 62]. The

N-best lists or the lattices are generated via a recognition pass on each of the training

utterances.

The most widely used algorithm for MMIE is the Extended Baum Welch (EBW)

algorithm introduced in [46], to optimize rational objective functions. The authors

in [46], applied the EBW algorithm to discriminatively train the parameters of a
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discrete HMM. Later,the EBW algorithm was extended to the case of continuous

Gaussian densities [63]. The idea was to create a discrete approximation of the

Gaussian density so that the EBW algorithm can be applied. More recently, an

auxiliary function for discriminative model estimation analogous to the EM auxiliary

function was used to derive the EBW style updates [64]. The main advantage of

this novel approach is that it does not require discrete density approximations and

extends the EBW algorithm to arbitrary continuous density HMMs with arbitrary

parameterizations. Finally, the update rules for the means µjm, the covariance Σjm

and the mixture weight cjm for the gaussian mixture component m associated with

the HMM state j are:

µ̂jm =

∑R
r=1

∑T (r)

t=1 γ
′(r)
jm(t; θ(i))o

(r)
t +Djmµjm∑R

r=1

∑T (r)

t=1 γ
′(r)
jm(t; θ(i)) +Djm

(7.15)

Σ̂jm =

∑R
r=1

∑T (r)

t=1 γ
′(r)
jm(t; θ(i))o

(r)
t (o

(r)
t )T +Djm(Σjm + µjmµ

T
jm)∑R

r=1

∑T (r)

t=1 γ
′(r)
jm(t; θ(i)) +Djm

− µ̂jmµ̂Tjm (7.16)

ĉjm =

∑R
r=1 γ

′(r)
jm(t; θ(i)) + cjm C∑

m′
∑R

r=1 γ
′(r)
jm′(t; θ

(i)) + cjm′ C
(7.17)

where, γ′
(r)
jm(t; θ(i)) = γ

(r)
jm(t; θ(i))−γ(gen)

(r)
jm(t; θ(i)) and γ

(r)
jm(t; θ(i)) is the probability

of occupying the gaussian component m in state j at time t.

7.3 Evaluating Recognition Output

To measure the accuracy of the speech recognizer we compare the true transcrip-

tion W̄, which is obtained manually from humans, to the output of the recognizer

Ŵ (referred as hypothesis). This comparison is usually performed on the sentence

level using the Sentence Error Rate (SER) metric or on the wold level using the

Word Error Rate (WER) metric. The SER is defined as the percentage of correctly

transcribed sentences. However, the accuracy of a speech recognizer at the sentence

level may not be a good indicator of performance. This is because the SER metric

yields the same value without taking into account whether there is one or more in-

correctly hypothesized words in a sentence between the true transcription and the
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hypothesis. Instead we use WER which is a function of the cost involved to trans-

form the true word string into the hypothesis by using three elementary operations:

deletion (DEL), insertion (INS) and substitution (SUB) of a word. We use a dy-

namic programming procedure [54] to efficiently calculate the number of INS, DEL

and SUB between the reference and the hypothesis. The WER is then given by:

WER =
INS +DEL+ SUB

N
× 100%

where, N is the total number of words in the reference. WER is more informative

than the SER since it allows to identify specific ASR errors, i.e. the most frequently

confusable words.



88

Chapter 8

Lightly Supervised Discriminative

Training

In this chapter, a method for training acoustic models using automatically gen-

erated transcripts is presented. The central idea is to automatically transform the

non-literal transcripts to verbatim transcripts, then identify reliable regions in these

transcripts that can be used for acoustic model (AM) training. Since, discrimina-

tive training techniques such as MMI have been shown to outperform ML training

in speech recognition tasks [61], the efficacy of using the automatically generated

transcripts in MMI training is investigated. More specifically, a lightly supervised

approach of frame-based filtering for lattice-based MMI training that takes advan-

tage of the reliability information available at the frame level is discussed.

8.1 Speech Recognition for Document Transcrip-

tion

It is desirable in many contexts to record human speech in a written document. In

general, the term transcription refers to the process of recording speech in a textual

document referred to as a transcript of the speech. One example is in the medical

profession, where transcripts are produced of diagnoses, prognoses, prescriptions,

and other information dictated by doctors and other medical professionals. Tran-

scripts in these and other fields need to be highly accurate (as measured in terms

of the degree of correspondence between the original speech and the resulting tran-
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script) because of the reliance placed on the resulting transcripts and the harm that

could result from an inaccuracy (such as providing an incorrect prescription drug to

a patient). Humans are very good at transcribing documents since they may have

domain-specific knowledge, such as knowledge of medicine and medical terminology,

which enables them to interpret ambiguities in speech and thereby to improve tran-

script accuracy. Human transcriptionists, however, have a variety of disadvantages.

For example, human transcriptionists produce transcripts relatively slowly and are

subject to decreasing accuracy over time as a result of fatigue. ASR systems on the

other hand can improve this workflow by providing faster transcriptions with less

human intervention. However, ASR systems are prone to recognition errors and so

it is very important that we train speech recognizers in the domain of interest which

are capable of producing highly accurate transcripts.

8.2 Challenges in Acoustic Model Training

Training highly accurate ASR systems requires speech corpora with accurate

time-aligned orthographic transcriptions, which we will call verbatim transcripts.

Furthermore, large amounts of acoustic training data can potentially help reduce

recognition errors, by allowing more robust estimation of the ASR system model

parameters. However, accurately transcribed training data are not always available.

Manually generating transcripts for the vast amounts of raw acoustic data is both a

time consuming and prohibitively expensive task and not always a feasible option.

On the other hand, there might be some accompanying textual information that

loosely corresponds to the speech utterance. We will call such textual information

non-literal transcripts. For example, in the medical transcription domain there are

thousands of hours of medical reports available accompanying the speech data. Hu-

man medical transcriptionists listen to dictated recordings made by physicians and

other healthcare professionals and transcribe them into medical reports. The final

medical reports with the grammatical error corrections, removal of disfluencies and

repetitions, addition of non-dictated sentence and paragraph boundaries, rearranged

order of dictated paragraphs, formatting and other edits, reflect only partially the

speech in the original audio recordings. However, depending on the speaker, the

editing of medical reports could account for a significant portion of the speech. Fig-

ure 8.1 gives the example of one such medical report. The top block in Figure 8.1
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Patient Name Ms. Jane Doe
Date 07/14/03
Chart No 815D
Synopsis Ms. Jane Doe today complains of a right watery and itchy eye.

Going on for several months now.
PMHx Significant for hysterectomy, BSO
Meds Estratest 1 mg q.d.
Allergies NKDA

next patient is ms jane doe PAUSE chart number 815D PARTIAL−WORD
ms jane doe comes in today complaining of a right watery itching eye %PERIOD%
the patient states that it has been going on for several months now %PERIOD%
past medical history is NOISE is significant for hysterectomy PARTIAL−WORD and bso %PERIOD%
medicines are estratest one mg q.day allergies are FILLED−PAUSE no known drug allergies %PERIOD%

next patient is ms jane doe PAUSE chart number eight DEL:nine SUB:none:one five DEL:d
ms jane doe comes in today complaining of a DEL:right DEL:watery itching eye INS:coronary INS:HPI
the patient states that it DEL:has DEL:been INS:nothing going on for several months now %PERIOD%
past medical history is NOISE is significant for SUB:extremity:hysterectomy and BSO

Figure 8.1: Example of written non-literal transcript (Top) and its corresponding
verbatim transcript (Middle) and the Partially Reliable Transcript with annotations
(Bottom)

shows a typical non-literal transcript in the medical domain. The middle block in

Figure 8.1 shows the verbatim transcript corresponding to the non-literal transcript.

The verbatim transcript is generated by humans and corresponds exactly with the

spoken utterance and highlights the significant difference in the transcripts that are

needed to train a speech recognizer and the available non-literal transcript. Simply

training a speech recognizer with these non-literal transcripts would lead to a sub-

optimal acoustic model due to the severe mismatch between the written document

and the spoken utterance. It would be advantageous, however, to train the acoustic

models using such non-literal transcript because of their abundance in domains such

as medicine. In the medical domain at least, the non-literal transcripts are easy to

obtain as it is a normal by-product of the medical transcription workflow. In order

to use the non-literal transcript in training of acoustic models it first needs to be

converted into a form closely resembling the verbatim transcript. The bottom block

in Figure 8.1 gives an example of the partially reliable transcript that is automati-

cally generated and resembles to some extent the manual verbatim transcript. By

partially reliable we mean that the words in the transcript annotated as substitu-

tions (SUB), insertions (INS) and deletions (DEL) are the unreliable segments and

the rest are the reliable segments. In this thesis, we will present a novel method for
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generating the partially reliable transcript from non-literal transcripts and using the

reliability annotations to train acoustic models.

In summary, we need improved techniques for training speech recognition systems

and, in particular, improved techniques for training transcription systems based on

non-literal transcripts of speech. Since, the non-literal transcripts are still used when

training the acoustic model we will call such an approach lightly supervised training.

8.2.1 Lightly Supervised Training Approaches

Recently, there has been considerable interest in lightly supervised acoustic model

training [65, 66]. A lightly supervised approach to discriminatively train the acoustic

models was investigated for broadcast news domain for which only closed caption

transcriptions are available [65]. In particular, the authors in [65] used language

models biased to the closed caption (CC) transcripts to recognise the audio data, and

the recognized transcripts were then used as the training transcriptions for acoustic

model training. The biased language model was generated by interpolating the lan-

guage model built on only the CC data with a general background language model.

Two methods for training data selection were investigated. In the first method, the

CC transcripts were Viterbi aligned with the recognized transcripts and all segments

different from the CC transcript were filtered out. In the second method, data fil-

tering based on confidence measure (CM) was investigated. In this approach, the

confidence score of a word was obtained from the word posterior probability in the

confusion network (CN) [27]. The sentence confidence (per frame) for each segment

was then calculated by averaging the word confidences. Finally, a threshold was

set to remove the segments with low sentence confidence. No significant gains were

reported when compared to training using the unfiltered training data.

A confusion network based approach in the context of lightly supervised training

was also investigated for the broadcast news domain [66]. The closed-captions were

aligned, under edit distance, with the word lattices created by the decoding proce-

dure, and if the closed-caption matched one of the paths through the word lattice,

then the corresponding speech segment was retained. The basic idea was that even if

a path does not correspond to the best hypothesis, if it could survive beam pruning
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and at the same time match the closed-caption, then it was still likely to correspond

to the correct transcript of the speech. In order to reduce the complexity of exploring

all paths in the lattice, confusion networks were used to approximate the hypothesis

space. For every position in the aligned closed caption and consensus network, if the

posterior probability of the best candidate word in the consensus network was higher

than a threshold the word was retained at that position. If the posterior probability

was below the threshold, the CN was searched for another candidate in the same

position which matched the CC transcript in the same position. If no matches were

found the speech segment was discarded.

The approaches mentioned above filter either at the segment level or at the word

level. This has the disadvantage of throwing away large amounts of data. We can

possibly retain more data by employing filtering at the frame level. We will explore

such a frame-level approach for lightly supervised training in our work.

8.3 Automatically Generating Reliable Transcripts

In Section 8.2, the importance of verbatim transcripts to train the acoustic mod-

els was discussed. Furthermore, the need to transform the non-literal transcripts

into something resembling verbatim transcripts was pointed out. However, these

automatically generated verbatim transcripts are likely to contain errors and so we

would like to flag portions of the transcripts as reliable. Acoustic models can then

be trained only on the reliable portion of the transcripts.Next, the procedure used

to transform the non-literal transcripts in to partially reliable transcripts will be

described. This can be achieve in two steps. First, the non-literal transcripts are

transformed into automatic verbatim transcripts. Next, the automatic verbatim

transcripts are converted into partially reliable transcripts by flagging reliable and

unreliable portions of the transcript.

8.3.1 Partially Reliable Transcript

Automatically generating training verbatim transcripts from the non-literal tran-

scripts can be seen as an iterative procedure, where at each iteration the currently

available best acoustic models are used to generate the automatic verbatim tran-
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Figure 8.2: Transforming non-literal transcripts to partially reliable transcript
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scriptions, given the non-literal transcripts associated with the decoded speech. The

reliable segments in the automatic verbatim transcripts are then identified by filter-

ing against the document grammar to generate partially reliable transcripts. The

acoustic models are then re-trained on the reliable segments and then used to gen-

erate the next set of verbatim transcripts. This procedure is usually run for 2-3

iterations using MLE techniques to train the HMM parameters. This procedure is

illustrated in Figure 8.2

The steps to generate partially reliable transcripts are outlined below:

Step 1: Normalization The non-literal transcript is first tokenized. Various tech-

niques are employed in processing the text - normalizing dates (e.g. to mm/dd/yy

format) , converting punctuation marks to their spoken form(e.g., changing . to

%period%), lowercasing text and and changing blank lines to the text %new-

paragraph%.

Step 2: Document Grammar Generation Various concepts in the normalized

text are then identified. The concepts can either be low level concepts (such as

dates, numbers, currency, etc.) or higher level concepts ( sentence boundaries,

paragraph boudaries, etc.). The identified concepts are then replaced with

appropriate finite state grammars encoding the plurality of such concepts. For

example, the concept “october 3 1979” is identified it is replaced by a finite

state grammar containing the original form and also forms such as 10/03/1979

and 03/10/1979 and “3rd october 1979”. The final document specific grammar

contains both flat text and finite state grammars (replacing identified concepts)

and is called the normalized grammar transcript.

Step 4: Document Language Model Generation Word counts are accumulated

for each normalized grammar transcript. These word counts are then used to

a n-gram language model [36].

Step 3: Automatic Verbatim Transcript Generation The document language

model along with the best available background language model and base

acoustic models is then used to recognize the training speech utterance to ob-

tain an automatic verbatim transcript. Note that it is not necessary to train

the initial acoustic models on domain dependent data. For example, the initial

models can be borrowed from English Broadcast news transcription systems.
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Step 4: Partially Reliable Transcript (PRT) Generation The grammar tran-

scripts are then used to flag the non-matching segments of the automatic ver-

batim transcripts as unreliable. This transformed transcript with reliability

annotations is called the partially reliable transcript (PRT).

Step 5: Re-train the Acoustic Models This procedure can be iterated by re-

aligning the partially reliable transcripts against the acoustic models, retrain-

ing the HMMs using MLE techniques and then re-decoding the normalized

transcripts.

8.3.2 Identifying reliable segments in Partially Reliable Tran-

scripts

A central component in the procedure described in Section 8.3.1, is the genera-

tion of the PRT. This process is described in more detail in this section. Decoder

search errors, lack of coverage of the background LM and inferior acoustic models all

contribute to the errors in the automatic verbatim transcript. As a result, it is not

possible to use the entire automatic verbatim transcript for re-training the acoustic

models without severely degrading the acoustic model parameter estimates. This

is especially of concern during discriminative training using the MMIE procedure.

MMIE updates the model parameters so as to increase the likelihood of the truth

and decrease the likelihood of the competing classes. As a result MMIE is more

sensitive to transcription errors than MLE. Hence it is important to identify seg-

ments in the transcripts that can be used for training. Such segments are marked

as “reliable” and the rest are marked as “unreliable” Given the automatic verbatim

transcript, the annotated partially reliable transcripts are generated as follows:

1. The automatic verbatim transcript is first aligned with the document grammar

transcript under the edit distance measure which allows for insertion (INS),

deletion (DEL) and substitution (SUB) [29]. Next, the best alignment under

the edit distance is used to annotate the words with their appropriate symbols

(INS, DEL, SUB or MATCH).

2. A Viterbi alignment procedure is used to align the phone based network of

HMM acoustic models and the training utterance corresponding to the anno-

tated PRT. As a result of this process, a mapping of the acoustic frames to
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the underlying phone HMM is obtained. If a word in the PRT is annotated

as INS,DEL or SUB then the acoustic frames associated with the underlying

phone HMM are marked as ”unreliable”. Also, taking into account cross-

word context effects the frames associated with the immediate preceding and

succeeding phone are also marked as ”unreliable”. All the other frames are

marked as ”reliable”.

Finally, at the the end of this process acoustic frame level reliability markers corre-

sponding to the unreliable regions in the corresponding word transcript (the PRT)

are obtained.

8.4 MMIE with Frame Filtering

In Section 7.2.2, the general MMIE procedure was discussed and update equa-

tions for the various HMM parameters were provided. Also, the relative merits of

MMIE over MLE were also discussed. Since MMI training is more sensitive to tran-

scription errors than ML training, the entire partially reliable transcript cannot be

used for training. Hence, the MMI training framework has to be slightly modified

to exploit the reliable/unreliable frame-based annotations. Similar to the approach

in [67], we introduce the lattice based MMIE procedure with frame filtering. The

numerator statistics for state j and mixture component m are are

R∑
r=1

Tr∑
t=1

γ
(r)
jm(t; θ(i))o

(r)
t (8.1)

R∑
r=1

Tr∑
t=1

γ
(r)
jm(t; θ(i))o

(r)
t o

(r)
t

T
(8.2)

and the denominator statistics for state j and mixture component m are

R∑
r=1

Tr∑
t=1

γ(gen)
(r)
jm

(t; θ(i))o
(r)
t (8.3)

R∑
r=1

Tr∑
t=1

γ(gen)
(r)
jm

(t; θ(i))o
(r)
t o

(r)
t

T
(8.4)

The following procedure is then implemented:
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1. Initialize accumulators to zero for all parameters of all the HMMs in our in-

ventory.

2. Get the next training utterance O(r)

3. Generate a pair of numerator and denominator lattices for each utterance in

the training data, these correspond to MW̄(r) and Mgen , respectively. The

numerator lattice is produced by aligning the acoustic data against a network

of HMMs built according to the known transcription. The denominator lat-

tice corresponds to running an unconstrained recognition pass. In both cases

an appropriate N-gram language model is used. The denominator lattice is

generated only once for each training utterance. All subsequent passes use the

already generated denominator lattice.

4. Use the forward-backward procedure to calculate the state occupancy proba-

bilities γ
(r)
jm(t; θ(i)) and γ(gen)

(r)
jm(t; θ(i))

5. Accumulate the counts for the numerator and denominator statistics shown in

Equations 8.1, 8.2, 8.3 and 8.4. At this point we introduce the modification

based on the frame reliability markers. We update the counts of the numera-

tor/denominator statistics only if the observation frame o
(r)
t has been flagged

as reliable. Else, we do not increment the counts.

6. Repeat from Step 2 until all the training utterances have been processed.

7. Use the update equations defined in Section 7.2.2 to update the HMM param-

eters.

These steps, except for Step 3 are repeated several times until convergence.

8.5 Summary

In this chapter, we motivated the need for training speech recognition systems

with only non-literal transcripts starting from an initial set of acoustic models. Med-

ical transcriptioning was cited as one such domain in which we have thousands of

hours of acoustic data with corresponding medical reports in written form.
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A novel iterative procedure for transforming the non-literal transcripts to par-

tially reliable transcripts was presented. Furthermore, a procedure was described to

mark the words in the partially reliable transcripts as insertions, deletions, substitu-

tions or matches by aligning this against the non-literal transcript. All words which

are matches were identified as reliable and the rest were marked as unreliable. A

new frame filtering approach to lattice-based MMI training was investigated. The

partially reliable transcripts were Viterbi aligned with the underlying acoustic mod-

els to obtain reliability markers on the HMM phone models underlying the aligned

acoustic frames. The MMI update procedure was modified to update counts only

for the reliable acoustic frame segments.
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Chapter 9

Experiments with Frame Filtering

based MMI Training

In this chapter, we present experiment results with lightly supervised discrminia-

tive training for estimating the parameters of the HMM. The domain of application

is the radiology domain, although, the techniques described can easily be applied

to other domains. Latice-based MMIE with frame filtering is used to train the sys-

tem. The aim of the experiments is to evaluate whether speaker-dependent MMI

(SD-MMI) trained models can outperform speaker-dependent ML (SD-ML) training

when trained on the automatically generated transcripts. Also, of interest is how

much data is needed to obtain performance improvements from MMI with frame

filtering. The evaluation is done using two different trigram LMs, the speaker-

independent language models (SI-LMs) and speaker-dependent language models

(SD-LMs).

9.1 Experimental Setup

The radiology training corpus used in this study consists of about 180 hours of

recorded speech across thirty-one speakers (both male and female). The data was

recorded at 11kHz using desktop microphones [68]. The speech data is segmented

so that for each formatted medical report (non-literal transcript) there is an asso-

ciated speech utterance. The utterances are typically about two to twenty minutes

in length. For the experiments we considered a sample of four male speakers to

build our speaker dependent models. All the speakers were native English speakers.
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Approximately eight to twelve hours of acoustic training data was available for each

of the four speakers to build the speaker-dependent acoustic models. In addition,

we built speaker dependent language models from the training text corresponding

to the four male speakers. All the evaluations were performed on an independent

test set consisting of 20 utterances per speaker. Human generated verbatim tran-

scriptions were available for each of these test utterances. Finally, WER was used

to evaluate the recognizer performance.

9.2 Acoustic Model Training

First, ML estimation was used to train a speaker-independent (SI) acoustic mod-

els on only the reliable segments of the PRT generated from the 180 hours of training

data. This system had 6% lower WER than an ML system trained on the entire PRT

(both reliable and unreliable segments). The final SI system consisted of about 2000

context-dependent mixture models and 24 Gaussians per mixture. The vocabulary

size was approximately 26K. Next, the SI models were adapted using only the PRT

from the additional 8-12 hours of training data for each of the four randomly chosen

speakers to build speaker-dependent (SD-ML) models. These final SD-ML models

for each of the four speakers were chosen to be our baseline. Background trigram

and unigram speaker-independent language models (SI-LMs) were trained on all the

training text available for the 31 speakers. In addition, speaker-dependent language

models (SD-LMs) were generated for each of the four speakers by interpolating the

SI-LM with a speaker-specific SD-LM trained on the corresponding speaker’s avail-

able training text.

For discriminative training the procedure described in Section 8.4 was followed.

The SD-ML acoustic models for each of the speakers and the trigram SI-LM were

used to decode the training set and generate word level phone boundary marked

numerator and denominator lattices. To improve the generalization of the SD-MMI

models, the lattice trigram SI-LM scores were replaced by unigram SI-LM scores

and acoustic scaling was also employed to get a broader posterior probability distri-

bution [67]. Prior to the model parameter reestimation step, counts were gathered

only for the reliable frames. The unreliable frames were skipped during the count

accumulation. Typically, 1 to 2 iterations of MMI were performed to get the final
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SD-MMI acoustic models.

9.3 Speech Recognition Results

Reliable
Speaker SD-ML SD-MMI acoustic %reliable

WER WER data (hours) frames

Speaker 1 12.3 10.4 13hrs 69%
Speaker 2 14.5 12.8 7.2hrs 52%
Speaker 3 8.6 7.5 7.5hrs 77%
Speaker 4 12.2 11.3 7.1hrs 76%

Table 9.1: WER for SD-ML and SD-MMI acoustic models using speaker independent
language model

The first task was to compare the WER of the SD-MMI models with the baseline

SD-ML models on an independent test using the SI-LMs. Columns 2 and 3 in

Table 9.3 give the WER for each speaker for the SD-ML and SD-MMI models

respectively. As expected, the SD-MMI trained models outperformed the SD-ML

trained models. A significant reduction in WER was achieved (8 − 15% relative

gains ) for each of the speakers. Also, since we only trained on the reliable frames

as annotated under the PRT we were interested in quantifying the percentage of

reliable frames used in training the SD-MMI models. Columns 4 and 5 in Table 9.1

give the number of absolute hours of reliable training data and also the amount of

training data as a percentage of the total available data. It is interesting that for

Speaker 2, although only 52% of the reliable frames were retained, a 11% relative

improvement in the WER was observed.

In theory, we would like to retain as many reliable acoustic frames as possible to

obtain good gains from MMIE. However, it is a time consuming task to generate the

reliability markers for all the available speaker specific data and so we would like to

measure the amount of reliable training data frames needed (in terms of hours) in

order to obtain gains from MMIE. In Figure 9.1 the WER was plotted as a function

of the amount of reliable training data available. The reliable training data is the

portion of the training data that has been marked as reliable using the procedure

described in Section 8.3.1. The x− axis represents the number of hours of reliable

training data required for training the SD-MMI models. 0 hours represents the
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Figure 9.1: WER as a function of the amount of reliable training data for SD-MMI
models using speaker independent language models

baseline SD-ML model. From the plots, it was observed that with approximately

two hours of reliable training data per speaker we were able to achieve 6 − 14%

relative drop in WER when compared to the baseline SD-ML models.

Finally, we evaluated the system performance by replacing the speaker-independent

language models with the speaker-dependent language models. The speaker-dependent

language models were trained on the speaker specific text and then interpolated with

the speaker-independent language models. We tabulated the results of MMIE with

the speaker-dependent language models in Table 9.2. Comparing column 1 in Table

9.1 and Table 9.2 respectively we found that simply changing the language model

from speaker-independent to speaker-dependent resulted in a drop in WER for all

the speakers. This suggests that the speaker-dependent language models are better

able to capture speaker specific contextual information than the speaker-independent

language models as they are trained on speaker-specific text. Furthermore, applying

MMIE for this task gave us a maximum of 17% relative reduction in WER.
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Speaker SD-ML SD-MMI
WER WER

Speaker 1 11.7 9.6
Speaker 2 14.4 13.0
Speaker 3 7.9 6.8
Speaker 4 11.8 11.5

Table 9.2: WER for SD-ML and SD-MMI models using speaker-dependent language
models

9.4 Summary

In this section, we investigated the use of automatically generated transcripts

for MMI training of speaker-adapted acoustic models. Experimental results showed

that the MMI training with frame filtering was effective in reducing the WER by

as much as 15% relative to the baseline ML trained models. Furthermore, the gains

from MMI carried over when we use a speaker-specific LM for decoding. The main

advantage of this approach is that it does not need any kind of transcripts to seed

the initial acoustic model training. The techniques can be easily extended to other

domains where there are no verbatim transcripts available to train from but there is

some form of non-literal transcripts available (for example, in broadcast news where

closed captioning is made available).
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Part III

Conclusions and Future Work
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Chapter 10

Conclusion

In this Chapter, a summary of the work presented in this thesis and the contri-

butions are highlighted. and possible directions of future work are outlined.

10.1 Thesis Summary

The research objective of this thesis was to formulate methodologies to handle

uncertainty in natural language processing tasks. The focus was on two specific

areas - Statistical Speech Translation and Statistical Speech Recognition.

In the integrated approach to speech translation, the coupling of the ASR compo-

nent with the SMT component is achieved via an ASR word lattice which represents

a large hypothesis space of possible translation candidates to be used by the SMT

component. The ASR lattice encodes the uncertainty in the sense that no a priori

decision is made about the optimal ASR hypothesis to be used for transaltion. A

joint search is conducted for the optimal translation candidate and its corresponding

translation in the source language. In Chapter 2, we formulated a novel joint source-

channel model for the translation of speech was formulated as a direct extension of

the text translation system. The speech is translated via a series of transformations

at the word and phrase level; conditional distributions underlying the generative

model describe the process of transforming a source language string into a target

language speech utterance. We used WFSTs to model the conditional distributions

and discussed how translation can be implemented using composition and best path

operations under this framework. We presented an efficient strategy for extracting
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phrases from a word lattice. In addition, we introduced a novel phrase based prun-

ing strategy to retain only high confidence phrases (high posterior probability under

the target acoustic model and language model probability) during translation. In

Chapter 6, translating from lattices was shown to significantly outperform translat-

ing the ASR 1-best.

In Chapter 4, we studied discriminative training of the SMT parameters in de-

tail. Three different objective functions for training the SMT parameters were in-

vestigated - BLEU, expected BLEU and MMI. Furthermore, we introduced a novel

growth transformation based update procedure to discriminatively train the SMT

parameters. We also derived growth transformation based updates for the MMI

and expected BLEU training objective functions. Furthermore, we investigated the

problem of training with multiple references and proposed two different MMI train-

ing criteria for the task. In Chapter 5, growth transformation based discriminative

training was shown to be comparable to the standard minimum error training ap-

proach.

In Chapter 8, we studied the problem of automatically generating transcripts

from non-reliable transcripts. We also presented a lightly supervised discriminative

training approach to train the acoustic models from these automatically generated

transcripts. Specifically, a novel procedure for identifying reliable acoustic frames

was presented. Also, a modified MMI procedure was used to update the acoustic

model parameters using a frame based filtering strategy: the parameter counts in

MMI were accumulated only over the reliable portions of the acoustic frame. Finally,

recognition experiments in Chapter 9, showed significant gains from applying this

approach.

10.2 Future Work

10.2.1 Speech Translation

The generative model formulated for speech translation is a relatively simple and

straightforward extension of the text translation system. The ASR component forms

one of the components in the translation pipeline. Instead of using the ASR lattice,
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we could explore the use of word confusion networks as input to the decoder [26].

Confusion networks [69, 27] are a compacted representation of word lattices that

have strictly ordered word hypothesis slots, and each word as an associated posterior

probability. In addition to retaining the paths from the original lattice, confusion

networks also introduce new paths. As a result phrase extraction from confusion

network can result in a richer phrase pair inventory than the original word lat-

tice. Confusion networks can be obtained by using lattice cutting procedures [70],

to segment the lattice into sub-lattices and then concatenating these sub-lattices.

Since, we are interested in translating phrases, another extension would be to build

confusion networks at the phrase level (each arc in each segment corresponds to a

sequence of words).

10.2.2 Discriminative Training for Machine Translation

Growth transformations were presented as the optimization procedure for MMI

and Expected BLEU training. Growth transformation are an attractive optimization

procedure as it neatly sidesteps the issue of choosing an appropriate step size in

the other gradient based methods (for example, gradient descent). Furthermore,

convergence is observed in practice within a few iterations. One direction for future

research we would like to explore is optimizing for a significantly larger feature set.

Another extension, is extending the discriminative training approach from N-best

lists to lattices. Appendix A, outlines a procedure for lattice based discriminative

training under the MMI training criterion.

10.2.3 Lightly supervised training for speech recognition

We presented a novel frame filtering based approach to selectively train the acous-

tic models in a discriminative fashion. However, in the current implementation, dur-

ing MMI training we simply skip the count accumulation for the unreliable frames.

Instead of simply skipping the unreliable frames, one possibility is to explore data

re-weighting. For each frame we can associate a weight that reflect the reliability of

that frame. During the count accumulation the MMI training algorithm simply puts

more weight on the reliable portions while still using some of the acoustic evidence in

the unreliable portions. In generating the partially reliable training transcripts, only

the 1-best output of the ASR recognition pass is aligned with the document gram-
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mar. Instead we can align confusion networks with the document grammar. The

intuition is that paths other than the ASR 1-best might align better with the doc-

ument grammar under the edit distance metric, thereby resulting in more accurate

training transcripts.
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Appendix A

Lattice MMI Training under the

TTM

A.1 Growth Transforms

The goal is to obtain parameter updates for MMI training over lattices. We will

use the growth transformation based update procedure described in Chapter 4 to

calculate the updates. Furthermore, we will show how the objective function and

derivative calculations can be implemented efficiently using WFSTs.

We begin with the TTM [3] joint distribution defined as

pθ(fs,vs,ys,xs,us, es) = P (fs|vs) P (vs|ys)θ1 P (ys|xs)θ2 P (xs|us)θ3 P (us|es) P (es)
θ4

(A.1)

where,

fs is the target sentence in target language order

es is the source sentence in source language order

vs is the target phrase in target language order after insertions

ys is the target phrase in target language order after reordering xs

xs is the target phrase in source language order

us is the souce phrase in source language order
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Also,
4∑
q=1

θq = 1, θq ≥ 0

For simplicity let us assume for each sentence fs to be translated there is a

single reference translation e+
s available. Let the parameter set we are interested in

estimating be defined as θ = {θ1, θ2, θ3, θ4}. We can then define the MMI training

criteria as:

F(θ) =
S∑
s=1

log

∑
vs,ys,xs,us

pθ(fs,vs,ys,xs,us, e
+
s )∑

e′s,v
′
s,y
′
s,x
′
s,u
′
s
pθ(f ′s,v

′
s,y

′
s,x
′
s,u

′
s, e
′
s)

(A.2)

This objective function is differentiable and so we can apply the growth transform

update procedure to obtain the parameter updates:

θ̂i =

θi

(
∇θF(θ)

∣∣∣∣
θ=θi

+ C

)
∑4

j=1 θj

(
∇θF(θ)

∣∣∣∣
θ=θj

+ C

) , 1 ≤ i ≤ 4 (A.3)

We will now derive the derivative for each of the component model parameters

Phrase Transduction Model

∇θF(θ)

∣∣∣∣
θ=θ3

=
S∑
s=1

[ ∑
vs,ys,xs,us

pθ(fs,vs,ys,xs,us, e
+
s )∑

vs,ys,xs,us
pθ(fs,vs,ys,xs,us, e+

s )
log p(xs|us)

−
∑

vs,ys,xs,us,es

pθ(fs,vs,ys,xs,us, es)∑
vs,ys,xs,us,es

pθ(fs,vs,ys,xs,us, es)
log p(xs|us)

]
(A.4)

=
S∑
s=1

[∑
hs

pθ(hs|fs, e+
s ) log p(xs|us)−

∑
es,hs

pθ(es,hs|fs) log p(xs|us)
]

(A.5)

where, hs = {vs,ys,xs,us} is the set of hidden variables. Observe that

log p(xs|us) =
∑
x,u

#x,u(xs,us) log p(x|u)

where, #x,u(xs,us) is defined as the number of times the pair (x, u) was observed in

the sequence pair (xs,us).
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∇θF(θ)

∣∣∣∣
θ=θ3

=
S∑
s=1

[∑
x,u

log p(x|u)

(∑
hs

pθ(hs|fs, e+
s )#x,u(xs,us)

)
−
∑
x,u

log p(x|u)

(∑
hs,es

pθ(es,hs|fs)#x,u(xs,us)

)]
(A.6)

Similarly derivatives can be calculated for the other components

Target Phrase Insertion Model

∇θF(θ)

∣∣∣∣
θ=θ1

=
S∑
s=1

[∑
v,y

log p(v|y)

(∑
hs

pθ(hs|fs, e+
s )#v,y(vs,ys)

)
−
∑
v,y

log p(v|y)

(∑
hs,es

pθ(es,hs|fs)#v,y(vs,ys)

)]
(A.7)

Target Phrase Reordering Model

∇θF(θ)

∣∣∣∣
θ=θ2

=
S∑
s=1

[∑
y,x

log p(y|x)

(∑
hs

pθ(hs|fs, e+
s )#y,x(ys|xs)

)
−
∑
y,x

log p(y|x)

(∑
hs,es

pθ(es,hs|fs)#y,x(ys|xs)
)]

(A.8)

Source Phase Language Model

∇θF(θ)

∣∣∣∣
θ=θ4

=
S∑
s=1

[∑
he,e

log p(e|he)
(∑

hs

pθ(hs|fs, e+
s )#he,e(e

+
s )

)
−
∑
he,e

log p(e|he)
(∑

hs,es

pθ(es,hs|fs)#he,e(es)

)]
(A.9)

where, he is the history for the word e. For example, if we have a trigram

language model with probability p(e|e′, e′′) then the history is he = (e′, e′′).

A.2 WFST Implementation

We will now show how the gradient and the objective function can be calculated

using WFST operations similar to the work in [71]. Following the discussion in
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Section 2.6, we will define some additional WFST/WFSA operations over the log

semiring. We assume without loss of generality that the weights w[π] are negative

log probabilities.

1. Encode(T )

This operation converts a WFST T to its equivalent WFSA A by encoding

the input output label pair as a single string. For a WFST T , this operation

yields a WFSA A such that

ΠA = {πA
∣∣∀πT ∈ ΠT , ∃ w[πA] = w[πT ] ∧ l[eA] = i[eT ] · o[eT ]∀eT ∈ πT}

2. PathSum(A) Given a WFA A, this yields the total log probability of the sum

of all paths in the lattice.

PathSum(A) = log

( ∑
π∈ΠA

exp(w[π])

)
3. Norm(A)

Given a WFA A, this operation yields a WFA B such that LA = LB and

ΠB =

{
πB
∣∣ ∀πA ∈ ΠA, ∃ l[πA] = l[πB] ∧ w[πB] = w[πA]− PathSum(A)

}
4. ExpCount(A, sk1)

Given a WFA A and the string sk1, the expected count of wk1 in A is defined as

ExpCount(A, sk1) =
∑
π∈ΠA

C(sk1|π) [[Norm(A)]](sk1)

where, C(sk1|π) is the frequency of occurrence of sk1 in π.

In Equation A.2, let us represent the joint distribution in the numerator by Ns
and the joint distribution in the denominator by Ds. Then the objective function is

simply

F(θ) =
S∑
s=1

log(PathSum(Ns))− log(PathSum(Ds)) (A.10)

The derivative for the phrase transduction model can be calculated as:

∇θF(θ)

∣∣∣∣
θ=θ3

=
S∑
s=1

∑
x,u

log p(x|u)ExpCount(Norm(Ns, xu))

−
S∑
s=1

∑
x,u

log p(x|u)ExpCount(Norm(Ds, xu)) (A.11)

We can calculate the other derivatives in a similar fashion.
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