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ABSTRACT

We present a greedy adaptive algorithm that builds a sparse

orthogonal dictionary from the observed data. In this paper,

the algorithm is used to separate stereo speech signals, and

the phase information that is inherent to the extracted atom

pairs is used for clustering and identification of the original

sources. The performance of the algorithm is compared to

that of the adaptive stereo basis algorithm, when the sources

are mixed in echoic and anechoic environments. We find that

the algorithm correctly separates the sources, and can do this

even with a relatively small number of atoms.

Index Terms— Orthogonal transform, sparse dictionary,

adaptive dictionary, source separation.

1. INTRODUCTION

When placed in a real environment, an array of microphones

records mixtures of sound sources characterized by time de-

lays or echoes, which are determined by the mixing medium.

Source separation techniques are used to learn the original

sources, usually based on some statistical properties that

might facilitate the separation process, such as source spar-

sity. Its advantage is that sparse sources will not overlap in a

transformed domain, hence making separation much easier to

perform. Exploitation of source sparsity has motivated the de-

velopment of a wide variety of separation methods, including

in the time-frequency [1, 2] and wavelet domains [3], as well

as the derivation of the more general framework of sparse

component analysis. This is a four-step approach focused on

dictionary learning, with the aim of finding a sparse signal

decomposition from which the mixing can be estimated, and

the sources reconstructed [4].

In the time-frequency domain, the problem is typically ad-

dressed by performing source separation independently at

each frequency bin, resulting in the introduction of the well-

known permutation problem [1]. The separated components

at each frequency bin must be clustered in order to estimate

the original sources, correctly separated, and this is often

done using beamforming methods which however suffer from
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phase ambiguities in the upper frequencies. An alternative

approach is the adaptive stereo basis (ASB) method proposed

in [5]. The algorithm learns a dictionary from the observed

stereo data, simultaneously across the two channels, under the

assumption that the sources are sparse. The basis vectors are

then clustered according to the relative time-delays between

the left and right channels of the basis pairs, corresponding to

the directions of arrival (DOAs) of the sources.

In this article, we propose to separate stereo speech sig-

nals using an approach similar to that of ASB, comprising a

dictionary learning stage, followed by clustering and source

reconstruction. An orthogonal dictionary is learned directly

from the data, using a greedy adaptive sparse dictionary

(GASD) algorithm, which extracts dictionary elements from

regions of the observed data where the energy is maximum,

while maintaining a minimum L1-norm. Source separation

is also performed with the ASB algorithm, for comparison

purposes. The paper is organized as follows: Section 2 in-

troduces the source separation problem, the GASD algorithm

is presented in Section 3, while experimental results and

conclusions are given, respectively, in Sections 4 and 5.

2. SOURCE SEPARATION

We address the source separation problem for two convolutive

mixtures, x(n), of two sampled real-valued speech signals,

s(n). The q-th microphone records a mixture, xq(n), of the

source signals, sp(n), p = 1, 2, convolved with the impulse

response between each source and sensor, as follows

xq(n) =

2
∑

p=1

L
∑

l=1

aqp(l)sp(n − l), q = 1, 2 (1)

where aqp(l) is the impulse response from source p to sensor

q, and L is the maximum length of all impulse responses. The

aim is to find estimates for the unmixing filters wqp(l), using

only the sensor measurements, and to reconstruct the sources

from

yp(n) =
2

∑

q=1

L
∑

l=1

wqp(l)xq(n − l), p = 1, 2 (2)
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where yp(n) is the p-th recovered source. In matrix form, the

mixing and separating models in (1) and (2) become, respec-

tively x(n) = As(n) and y(n) = W(n)x(n).

The source separation problem is addressed here by leaning

a dictionary from the observed data, using a greedy adaptive

sparse dictionary algorithm, operating across the two chan-

nels. This is then followed by DOA based clustering, and

source reconstruction.

3. GREEDY ADAPTIVE SPARSE DICTIONARY

ALGORITHM

The GASD algorithm adaptively learns a data dependent dic-

tionary by sequentially extracting the columns of the matrix

X, which is generated by taking overlapping data frames from

the observed data. The method is inspired by the idea of re-

ducing the L2-norm of the data by a maximum amount, across

all frames, while ensuring that the L1-norm is reduced by a

minimum amount. This is achieved by setting each new atom

equal to the column of X that satisfies:

max
k

||xk||2
||xk||1

(3)

where xk the k-th column of X. In practice, the L1-norm

is not re-normalized at each step, and therefore 3 is strictly

achieved only for the first atom. The GASD algorithm learns

the dictionary atoms according to the steps outlined below.

At iteration j = 1,

• ensure that the columns of X have unit L1-norm

x̃k = xk

||xk||1
. This leads to a new data matrix X̃,

whose columns now have unit L1-norm;

• set the residual matrix R0 = X̃ where Rj = [rj
1, . . . , r

j
kmax

],

and r
j
k ∈ Rkmax is a residual column vector corre-

sponding to the k-th column of Rj .

Repeat, for all atoms to be extracted:

1. Compute the L2-norm of each frame

Ek = ||rj
k||2 =

∑

|rj
k|

2. (4)

3. Set the j-th dictionary element ψj to be equal to the

residual vector with largest L2-norm rj
k̂

ψj = r
j

k̂
. (5)

where

k̂ = arg max
k∈K(Ek) (6)

is the index corresponding to the signal block with

largest L2-norm.

4. Evaluate the coefficients of expansion, given by the in-

ner product between the residual vector r
j
k , and the

atom ψj

αj
k = 〈rj

k,ψj〉. (7)

5. Compute the new residual, by removing the component

along the chosen atom, for each element k in r
j
k

r
j
k = r

j−1
k −

αj
k

〈ψj ,ψj〉
ψj . (8)

The last step ensures that the transform is orthogonal, by re-

moving the contribution of the atom from each residual vec-

tor.

3.1. Applying GASD to source separation

Since we seek to separate a stereo mixture, prior to generat-

ing the matrix X, the samples from the observed stereo sig-

nal are interleaved, as discussed in [5]. This emphasizes the

correlations between the original source signals at the two

microphones, leading to basis pairs that encode information

about the mixing channel. This is followed by learning the

dictionary with GASD, yielding a set of basis vector pairs,

ψ
(i)
l (n), i = 1, 2; l = {1, . . . , L}, rather than individual

atoms. To obtain the separated sources, the atom pairs must

be clustered into subsets corresponding to each original sig-

nal, followed by source reconstruction. Clustering is done by

finding the time delay, or direction of arrival (DOA), between

the atoms in each pair with the generalized cross-correlation

with phase transform (GCC-PHAT) algorithm [6],

Rl(τ) =

∫ ∞

−∞

Ψ
(1)
l (ω)Ψ

(2)
l (ω)∗/(|Ψ

(1)
l (ω)Ψ

(2)
l (ω)∗|)ejωτ dω

(9)

where Ψ
(1)
l (ω), Ψ

(2)
l (ω) are the Fourier transforms of the ba-

sis vectors. The atoms are then grouped using the K-means

clustering algorithm, with the cluster centers corresponding

to the time delays, Ti, i = 1, 2, for each source. This allows

us to define a set of indices

γi = {l | (Ti − ∆) ≤ τl ≤ (Ti + ∆)} (10)

corresponding to the atoms with delays within some thresh-

old ∆ of the cluster center, and reserving a ‘discard’ cluster

γ0 = {l | l /∈ γi, i = 1, 2} for atoms that will not be associ-

ated with any of the sources. Then, to reconstruct the original

sources, two mask matrices H(i), i = 1, 2, with their diago-

nal elements given by

h
(i)
l =

{

1 if l ∈ γi

0 otherwise
(11)

for l = 1, . . . , L. Then, the estimated image ˆ̄X(i) of the i-th
source at both microphones is given by

ˆ̄X(i) = DT H(i)DX(i) (12)
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where D is the orthogonal dictionary matrix obtained with the

GASD algorithm. It should be noted that in a general frame-

work, the right-hand side of equation (12) is AH(i)WX(i),

where A is the dictionary matrix, and W = A−1. Hence,

since the proposed GASD algorithm results in an orthogonal

dictionary matrix, it has the advantage that the source recon-

struction step avoids matrix inversion, which is replaced by

matrix transposition.

Finally, we reverse the reshaping process to find the source

image x̂(i)(n) =
[

x̂
(i)
1 (n), x̂

(i)
2 (n)

]T

, that is, the vector of

images of the i-th source at both microphones.

4. EXPERIMENTAL RESULTS

The GASD algorithm was used to separate the components

from a stereo mixture generated when two male speech sig-

nals were synthetically mixed according to the mixing model

in equation (1). We consider two different mixing conditions,

obtained with the reverberation time set to 0 ms (anechoic

mixing), and 320 ms (echoic mixing). In the anechoic mixing

case, the position of the sources was such that time-delays

of approximately -16 and 23 samples resulted, while in the

echoic case, the time-delays were approximately -9 and 9

samples. For comparisson purposes, separation was also

performed with the ASB algorithm in [5], which learns the

dictionary atoms using an independent component analysis

algorithm with sparse prior (see [5] for more details), while

atom pair clustering and source reconstruction is performed

as outlined in Section 3.1. The upper plots in figure 1 show

some of the atom pairs obtained with ASB from the anechoic

mixtures, while examples of the dictionary elements extracted

with GASD are shown in the lower plots. Comparing these,

we see that the former extracts much more elementary signal

features, which can be used to describe most speech signals,

while the latter yields more complex atoms that capture in-

formation unique to the analyzed signal. In a similar fashion

to the ASB basis pairs, the GASD atom pairs encode how

the extracted features are received at the microphone, that

is, they capture information about time-delays and amplitude

differences. This can be seen especially from atom pair in the

top-left (l = 39 from the ASB atoms), and from the bottom-

middle plot (l = 9 from the GASD atoms).

Time-delays estimates obtained with the two algorithms from

all basis vector pairs, in the case of anechoic and echoic

mixtures, are depicted in figures 2 and 3 respectively (upper

plots), which also show their histograms. In all cases, the

time-delays of the two sources are clearly visible, and cor-

rectly identified as -16 and 23 samples in the anechoic case,

and -9 and 9 samples in the echoic case. It is interesting to

see how the GASD algorithm seems to correctly identify the

source directions in those atoms that are extracted first (with

l = 1 l = 9 l = 39

l = 2 l = 7 l = 39

Fig. 1. Examples of the atoms pairs learned with the ASB

(upper plots) and GASD algorithm (lower plots). The value l

denotes the position of the atom within the dictionary.
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Fig. 2. Time-delays (upper plots) and their histograms (lower

plots) estimated for ASB and GASD, under anechoic mixing.

higher L2-norm), while picking up more noise as the L2-norm

decreases. This can be seen in the upper-left plots of figures

2 and 3, where in the higher atom numbers, the time-delay

plots become noisy, resulting in less accurate DOA estimates.

This would suggest that source reconstruction with GASD

does not require the use of all the atoms extracted. To test this

hypothesis, the performance of the two algorithms was evalu-

ated using the objective criteria of Signal-to-Distortion Ratio

(SDR), Signal-to-Interference Ratio (SIR) and Signal-to-

Artefacts Ratio (SAR) measuring, respectively, the difference

between the estimated and target source, allowing for possible

linear filtering between them, the distortion due to interfering

sources and to other artefacts [7]. Table 1 shows the criteria

obtained for the anechoic mixing case; similar figures were

obtained for the echoic case, but are not reported here due to

lack of space. The single figures were obtained by averaging

the criteria across all sources and microphones. Negative SIR
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Fig. 3. Time-delays (upper plots) and their histograms (lower

plots) estimated for ASB and GASD, under echoic mixing,

with a reverberation time of 320 ms.

Number of Atoms Method SDR SIR SAR

512 GASD 0.4 5.4 3.0

ASB -37.8 -0.4 -2.9

400 GASD 0.4 5.4 3.0

ASB -28.9 1.1 -2.2

200 GASD 0.4 5.7 2.6

ASB -16.9 -.6 -2.7

100 GASD 0.3 5.9 1.6

ASB -9.1 -2.1 -3.4

50 GASD 0.2 5.5 1.1

ASB -4.8 -2.4 -3.7

30 GASD 0.1 4.1 1.3

ASB -2.6 -2.8 -3.6

Table 1. Objective performance of GASD and ASB. All val-

ues are expressed in decibels (dB).

values indicate that the algorithm has failed to recover the

target, while negative SAR values, indicate that large artifacts

are present; together they result in negative SDR values. The

results suggest that the sources recovered with GASD remain

of similar quality even when the number of atoms used in the

reconstruction where reduced by a fifth, and performance did

not deteriorate drastically when even fewer than 100 atoms

were used. An informal listening test was also conducted,

and it supported these results. In contrast, the performance of

ASB worsens as the number of atoms are reduced, with the

SIR consistently falling when fewer than 400 atoms are used

for reconstruction.

5. CONCLUSIONS

A greedy adaptive sparse dictionary algorithm that learns an

orthogonal dictionary from the data has been presented. The

algorithm was used to separate anechoic and echoic stereo

mixtures of speech signals, hence yielding basis vector pairs,

which capture spatial information about the mixing channel.

This was exploited to cluster the atom pairs, and thus recon-

struct the original source signals. The method was shown

to correctly identify the time-delays corresponding to each

source, both in the anechoic and echoic situations, and to re-

construct the source signals with fewer atoms than those ex-

tracted.
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