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Quarterly Time-Series Forecasting
With Neural Networks

G. Peter Zhang and Douglas M. Kline

Abstract—Forecasting of time series that have seasonal and other
variations remains an important problem for forecasters. This
paper presents a neural network (NN) approach to forecasting
quarterly time series. With a large data set of 756 quarterly
time series from the M3 forecasting competition, we conduct a
comprehensive investigation of the effectiveness of several data
preprocessing and modeling approaches. We consider two data
preprocessing methods and 48 NN models with different possible
combinations of lagged observations, seasonal dummy variables,
trigonometric variables, and time index as inputs to the NN. Both
parametric and nonparametric statistical analyses are performed
to identify the best models under different circumstances and
categorize similar models. Results indicate that simpler models,
in general, outperform more complex models. In addition, data
preprocessing especially with deseasonalization and detrending is
very helpful in improving NN performance. Practical guidelines
are also provided.

Index Terms—Forecasting, neural networks (NNs), quarterly
time series, seasonality.

I. INTRODUCTION

ORECASTING of time series that have seasonal varia-
F tions remains an important problem for forecasters. Sea-
sonality is observed in many forecasting problems in business,
economics, and naturally occurring phenomena [1], [2]. In some
applications, seasonality can drive a major part of movements in
the quarterly or monthly time series [2].

There are numerous models and many different ways to ana-
lyze and forecast seasonal time series. Unfortunately, no single
model or modeling approach is best for all seasonal time se-
ries under different conditions as suggested by a large number
of theoretical and empirical studies including the recent M3
forecasting competition [3]. Traditional approaches to modeling
seasonal time series such as the classic decomposition method
require seasonal factors be removed before other factors can
be analyzed. Seasonal autoregressive integrated moving average
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(SARIMA) models also require that the data be seasonally dif-
ferenced first to achieve stationarity. This practice of seasonal
adjustment or removal is due to the belief that seasonal fluctu-
ations may dominate the remaining variations in a time series,
causing difficulty in effectively dealing with other time-series
components. On the other hand, the seasonal adjustment ap-
proach has been cautioned or criticized by several researchers in
recent years [4], [5]. Ghysels et al. [6] suggest that seasonal ad-
justment might lead to undesirable nonlinear properties in uni-
variate time series. Ittig [7] shows that the traditional method
for generating seasonal indexes is biased when there is a trend
component. In addition, different forms of the trend can im-
pact the estimate of the seasonal components and affect the
level of overestimation in the seasonal variation [8]. Hyndman
[9] argues that the interaction between trend and seasonality is
built into many seasonality models, which multiplies the task
of choosing the correct model form, and can further confound
the selection of seasonal methodologies. Furthermore, several
empirical studies find that seasonal fluctuations are not always
constant over time and at least in some time series, seasonal
components are not independent of nonseasonal components,
and thus may not be separable. The difficulty in distinguishing
seasonal from nonseasonal fluctuations is the major motivation
behind the recent development of seasonal unit root models and
periodic models that take explicit consideration of seasonal vari-
ations [5]. de Gooijer and Franses [10] point out that “although
seasonally adjusted data may sometimes be useful, it is typically
recommended to use seasonally unadjusted data.”

As a consequence of these conflicting results and recommen-
dations, the practical issues of how to best deal with seasonal
time series and which seasonal model is the most appropriate
for a given time series are largely unsolved. In fact, adjustment
for systematic events including seasonality is considered to be
an area that still has a strong need for further research in devel-
oping and advancing forecasting principles [11].

This paper aims to provide some evidence on the effective-
ness of neural network (NN) models on forecasting seasonal
time series. More specifically, we explicitly investigate the prac-
tical issue of how to best use NNs to forecast quarterly time se-
ries using a large set of data from the M3 competition. Our re-
search is motivated by the following observations. First, during
the last decade, NNs have received enormous attention from
both practitioners and academics across a wide range of disci-
plines. They are found to be a viable contender to various linear
and nonlinear time-series models [12]-[14]. NNs, being non-
linear and data-driven in nature, may be well suited to model
seasonality interacting with other components, and may relieve
the practical burden of a priori model selection. Although there
are several studies focusing on seasonal time-series forecasting,
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findings are mixed. For example, among the major studies of
NNs used for seasonal time series, Sharda and Patil [15] find
that NN are able to directly model seasonality, and preseasonal
adjustment of data is not necessary. Nelson et al. [16], however,
conclude just the opposite and NNs trained on deseasonalized
data perform significantly better than those with raw data. Con-
sidering both seasonal and trend components in real time series,
Zhang and Qi [17] find that not only preadjustment of season-
ality is important, but a combined approach of detrending and
deseasonality is most effective in forecasting performance.

Second, most published NN studies use monthly data. Quar-
terly data have characteristics that are different from monthly
data. Little systematic studies have been conducted on quar-
terly time series with NNs. Swanson and White [18], [19] in-
vestigate the performance of NNs in modeling and forecasting
nine quarterly seasonally adjusted U.S. macroeconomic time se-
ries and report positive results with NN models. However, these
studies focus on the model selection issue and do not consider a
number of modeling issues such as seasonality and trend treat-
ment. Callen et al. [20] report a study on NN forecasting of quar-
terly accounting earnings and conclude that “NN models are not
necessarily superior to linear time-series models even when the
data are financial, seasonal, and nonlinear.” This paper uses the
seasonally unadjusted data and does not consider alternative ap-
proaches to dealing with both trend and seasonal components in
the data, which may explain the negative findings toward NNs
as recent studies tend to indicate that properly modeling season-
ality is the key to the improved forecasting performance.!

Third, previous studies are either application specific or lim-
ited in scope and size (i.e., the number of data sets) and no sys-
tematic effort has been devoted to studying the general issue of
how to use NNs to best model and forecast seasonal time se-
ries. That is, these studies focus on either a single application or
on data sets that are relatively homogeneous. Therefore, find-
ings from them may not be generalizable. For example, Alon
et al. [21] and Chu and Zhang [22] consider forecasting issues
with one aggregate retail sales time series. Swanson and White
[18] use nine macroeconomic time series such as unemploy-
ment rate, industrial production index, gross national product,
and net exports of goods and services, etc. In [17], ten aggregate
economic time series in retail sales, industrial production, and
housing starts are employed. In [20], a large sample size of 296
time series is used, but all of the same type of accounting earn-
ings. Although in [14]-[16] relatively large sample sizes from
the M- and M3-competitions are used, these studies are limited
with regard to the number of models considered and the number
of issues in dealing with seasonal and trend time series. In this
paper, we aim to provide a more comprehensive and systematic
study on how NNs can be used for quarterly time series with
many more models and data sets from diverse areas.

Last, we would like to evaluate the effects of incorrectly esti-
mating NN models for quarterly time series. Since there are nu-
merous approaches to building NNs to deal with different time
series, some approaches may not be appropriate. For example,
if a time series contains a trend component, an NN structure that
does not take this into consideration may not be the best model.

I'We have attempted to replicate their study. However, we were not able to
obtain the data sets after a few contacts with the authors.
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On the other hand, an NN model that has a seasonal lag input
may not be the best for nonseasonal time series.

The rest of this paper is organized as follows. In Section II, we
review several relevant studies in the NN literature on modeling
and forecasting quarterly or monthly time series. In Section III,
we describe the research methodology used in our empirical in-
vestigation. Results are reported in Section IV. Section V pro-
vides the summaries and conclusions.

II. FORECASTING SEASONAL TIME SERIES WITH NNS

A large body of literature exists in seasonal time-series
analysis and forecasting. Some of the recent developments in
seasonality modeling can be found in [4], [5], and [23]. In
this section, our focus is on recent research efforts in seasonal
time-series modeling using the NNs.

In an early effort of using NNs for seasonal time-series fore-
casting, Sharda and Patil [15] conduct a comparative study be-
tween NNs and ARIMA models. Among the 111 time series
selected from the M-competition [24], 13 are annual series, 20
are quarterly, and 68 are monthly. They use a direct modeling
approach without considering any specific issue of seasonality
modeling. Results show that for quarterly and monthly time
series, the performance of NNs is similar to that of ARIMA
models. Thus, they conclude that NNs are able to “incorporate
seasonality automatically.”

Hill et al. [12] use a very similar set of quarterly and monthly
time series used in [15] and obtains much better results with
NN in terms of statistical significance when compared with the
traditional models. This difference in performance between two
studies may be attributed to the prior seasonal adjustment or de-
seasonalization before NN model building, indicating the im-
portance of removing seasonality in improving NN forecasting
performance. However, only one NN architecture is considered
and employed in [12] for all quarterly or monthly time series.

In [20], a sample of 296 quarterly accounting earnings series
is used to compare the performance of NNs with that of several
linear time-series models. Although the size of the data set is
quite large, all the time series are quite short, containing 89 data
points. Itis found that on average, linear models are significantly
better than NNs with a rolling sample approach of 40 quarters
each in length for model building. However, as discussed ear-
lier, Callen et al. [20] do not consider ways to handle seasonal
variations and raw data are directly modeled in NNs, which may
explain the inferiority of NNs. In addition, the use of a relatively
small portion of sample for NN training may cause instability
in model estimation especially when considering the direct sea-
sonality modeling approach.

A recent study [25] using a sample of 283 quarterly earnings
series from a wide range of industries suggests that results re-
ported in [20] can be dramatically improved. Although each se-
ries in this paper is still short with only 40 observations and
the direct seasonal modeling approach is used, the authors are
able to obtain significantly better forecasting results with NNs
than those with linear time-series models, especially when fun-
damental accounting variables, such as accounts receivables, in-
ventory, and capital expenditures, are incorporated in the NN
modeling.
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In [26], a case study is presented for NNs in modeling
and forecasting the well-known airline series popularized by
[27]. The airline data contain 12 years of monthly totals of
international airline passengers and have a clear upward trend
with distinctive multiplicative seasonal patterns. This time
series is well studied and documented with linear seasonal
time-series methods and thus provides a good benchmark for
NNs. The focus of [26] is to use a variety of in-sample model
selection criteria including Akaike information criterion (AIC)
and Bayesian information criterion (BIC) to select the best
neural model for the raw data. The seasonality is modeled by
considering appropriate input lag such as lag 12 in the mod-
eling process. The results indicate that NNs in general do not
perform better than the Box—Jenkins model in out-of-sample
forecasting, even with the “best” NN models selected and sev-
eral variations of modeling process including using logarithms,
removing trend, and applying first and seasonal differencing
for data preprocessing.

Swanson and White [18], [19] conduct several comparative
forecasting experiments between NNs and linear econometric
models on nine macroeconomic time series. Although the data
are quarterly, most of them are seasonally adjusted and/or log
differenced. Thus, their studies do not deal with seasonality di-
rectly. However, it is worth pointing out that they report positive
results with NNs compared to other linear models examined.

In [30], 24 time series of annual change in monthly industrial
production in three European countries are used for a compara-
tive study between NNs and linear autoregressive models. Un-
like in [18] and [19], where seasonally adjusted data are used in
NN modeling, Heravi et al. [30] choose to use seasonally unad-
justed series due to the concern of potential nonlinearity induced
by the seasonal adjustment procedure. Although this direct sea-
sonality modeling approach yields positive results with NNs
in terms of the prediction of direction changes, linear models
generally outperform NNs judging by root-mean-squared (rms)
error.

Terasvirta et al. [31] examine a number of linear and
nonlinear models including NNs for forecasting 47 monthly
macroeconomic variables in seven developed economies. For
those series that are not seasonally adjusted, monthly dummy
variables and 12 lags of observations are used in the linear
models and NN, respectively, to model seasonality. The results
for NNs are mixed with the model using Bayesian regulariza-
tion having better forecasting accuracy than other models.

Nelson et al. [16] focus on the issue whether the data should
be deseasonalized first in time-series forecasting using NNs.
The study uses the 68 monthly series as in [12] and [15]. Fore-
casting performance is compared between NNs built on prior-
deseasonalized data and those with raw data. The results clearly
show the advantages of prior deseasonalization in improving
NN performance. Thus, [16] points out that previous mixed re-
sults in seasonal time-series forecasting may be “due to incon-
sistent handling of seasonality”.

Two studies [21], [22] report comparative results between
NNs and a variety of linear models in forecasting monthly
aggregate retail sales. In [21], NNs are used to directly model
seasonal variation by using 12 lags of observations as input
variables. Using two out-of-sample periods, they find that NNs
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perform the best in the first period which is characterized as
more volatile in terms of supply push inflation, recessions, and
high interest and unemployment rates and the Box-Jenkins
models slightly outperform NNs in the second period which
is more stable in terms of the macroeconomic factors. In con-
trast, [22] considers a variety of ways of modeling seasonality
including deseasonalizing the time series and using seasonal
dummies and trigonometric functions. Using five moving
out-of-samples, they find that the overall best forecasting per-
formance is achieved with a NN built on deseasonalized data.
Zhang and Qi [17] provide some further evidence on the ef-
fectiveness of prior seasonal adjustment in NN forecasting im-
provement based on both simulation and real-data results. It
finds that NN are not able to deal with seasonality and trend
effectively with raw data and either deseasonalization or de-
trending can reduce forecasting errors dramatically. Further-
more, a combined approach of both detrending and deseason-
alization is the most effective approach for NN modeling.
From the aforementioned review of the relevant literature, we
make the following observations. First, mixed results have been
reported on the relative merits of NNs in modeling and pre-
dicting seasonal time series. Different ways to deal with sea-
sonality and/or model building can have dramatic impact on the
performance of NNs. Second, no comprehensive studies have
been performed with regard to large data set and various mod-
eling considerations for seasonality. Third, a majority of studies
use monthly data and only a few have focused on quarterly time
series. Finally, deseasonalization is very effective. In almost all
studies that report significantly better results with NN, data are
typically deseasonalized first before fitting an NN model.

III. RESEARCH METHODOLOGY

In order to have a comprehensive understanding of the ef-
fect of NN modeling on the forecasting ability of NNs, we have
conducted a large-scale empirical study. A large set of quarterly
time series from M3-competition is used in this investigation
along with a large number of NN model structures. In addition,
we examine the impact of several different data preprocessing
approaches on NN performance. Several research questions are
of interest to us as follows.

1) Is there an overall best way to model quarterly time series

with NNs?

2) Are NNs able to directly model seasonality in quarterly
time series? Given that NNs are data-driven and can model
arbitrary functional forms, it is theoretically possible that
an NN could directly model seasonality. However, there
may be practical limitations, notably data sufficiency and
nonlinear optimization issue that could make this approach
unsuccessful.

Given the controversies around the seasonal adjustment ap-
proach, should the data be seasonally adjusted first? Should
the data be preprocessed first, removing all significant pat-
terns such as seasonality and trend?

Is inclusion of seasonality information such as seasonal
dummy variables or trigonometric variables in NN mod-
eling helpful in improving forecasting performance? Tradi-
tional seasonal methods utilize the information about sea-
sonality regarding which season the data points are in.

3)

4)
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TABLE I
CHARACTERISTICS OF QUARTERLY TIME SERIES FROM M3-COMPETITION
Frequency Sample Size
Type Count Percent (%) Min Median Max
Demographic 57 7.5 27 44 64
Finance 76 10.1 27 42 64
Industry 83 11.0 24 56 64
Macro 336 44 .4 16 44 45
Micro 204 27.0 28 36 38
Total 756 100.0 16 44 64

NNs are known to be parameter-heavy. Including addi-
tional variables in an NN model can greatly increase the
number of parameters in the model and cause data insuffi-
ciency. However, the added information may simplify the
problem, and thus, they require fewer hidden nodes to ap-
proximate the underlying functional form. It is unclear how
these concerns will play out in practice.

A. Data

In this paper, we use the 756 quarterly time series from the M3
forecasting competition [3]. The M3 competition data set is well
studied, contains time series of various lengths and different
types, and exhibits linear and nonlinear patterns [32]. Thus, the
data set provides a sufficient test bed on which various models
can be built and compared, and general conclusions may be ob-
tained. Table I provides a summary of sample characteristics for
the data set with regard to the frequency and size for each type
of time series. It is clear that most series are macroeconomic
(44%) and microeconomic variables (27%) and the sample size
varies from 16 to 64 with the median length of 44 observations.
In fact, 44 is not only the median, but also the mode of the data
set with 249 time series having this length (33%).

For each series, we consider two data preprocessing ap-
proaches. One is the application of the natural logarithm to each
observation, which we call “log,” for the data transformation
method and the other is the detrending and deseasonalization in
addition to the log transformation, for which we call the “full”
transformation method. For detrending, we fit a linear trend,
and then subtract the estimated trend component from the raw
data. For deseasonalizing, we employ the method of seasonal
index based on centered moving averages, following the classic
additive decomposition. The parameters for the detrending
and deseasonalization are calculated with only the in-sample
data. The estimated seasonal index is then used for seasonal
adjustment of the time series and for out-of-sample forecasting.
Note that there are other methods to remove seasonality. For
example, Atiya et al. [33] subtract the time series from the
seasonal average to obtain seasonally adjusted series. A novel
algorithm based on Fourier transformation to deal with the
seasonality is also proposed in [33].

In addition to these transformations, all data are scaled to
be within (—1, 1) before presenting to the NN. We make the
distinction between a data transformation that is performed to
address characteristics of a particular time series, and a data
scaling that is applied to facilitate NN training. After NN mod-
eling, the data are rescaled back following the reverse of the
data transformation and scaling, and all the performance mea-
sures are calculated based on the original scale of the data.

In summary, we consider the following three data types: raw
unprocessed data (raw), log-transformed data (log), and fully
transformed data (full).

We also realize that although all 756 time series are quarterly,
they are not necessarily all seasonal. Therefore, we try to distin-
guish seasonal time series from nonseasonal ones and then some
insights may be obtained to see whether some models perform
better than others on seasonal versus nonseasonal series. In this
paper, we employ the following simple rule-of-thumb [34]: If
the four-period autocorrelation is greater than 2//n, where n
is the sample size, then the series is classified as seasonal; oth-
erwise, it is nonseasonal. Using this rule, we find that 473 time
series are judged as seasonal and the rest are nonseasonal.

The last 30% of each data series is retained as holdout
sample or out-of-sample to measure forecast accuracy of each
model. The remaining data set is used as the in-sample for
model building. Although all M-competitions use the prac-
tice of leaving the last eight data points for out-of-sample
testing, because of the sample size limit, we elect to choose the
aforementioned rule in data splitting because the data set we
have from the M3-competition does not include the last eight
points reserved by the competition organizer for performance
evaluation.

B. Models

We identify 48 NN models based on different possible com-
binations of lagged observations, seasonal dummy variables,
trigonometric variables, and time index as inputs to the NN
model. Since one-step-ahead forecasting is the focus of this
paper, we use only one output in all NN structures. Table II sum-
marizes the models used in this paper based on the relationship
between the output variable (y;) and a variety of possible in-
puts such as past lagged observations (y¢—1, yt—2, Yt—3, . . .) and
seasonal dummy variables. Models 1-6 consider six combina-
tions of pure lagged observations as inputs to the NNs. Note that
models 1-3 can be treated as nonseasonal while models 4-6 are
seasonal as they include the observation four quarters before.
These six models serve as the base models upon which we add
a few more inputs to form other models. For example, the use of
trigonometric or seasonal dummy variables may improve fore-
casting performance. Thus, we add seasonal dummy variables
to each base model to form models 7-12. For quarterly data, we
need only three dummy variables and quarters 1-4 are coded as
(1, 0, 0), (0, 1, 0), (0, 0, 1), and (0, 0, 0), respectively. Models
13-18 are similar to models 7-12, except we use trigonometric
variables of sin(27t/4) and cos(27t/4) instead of dummy vari-
ables. Models 19-24 add annual difference as one more input to
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TABLE II
MODELS USED IN THIS PAPER
Model Description
1 Yief )+ &
2 }’t?f(\’r—l,y/—Z) +&
3 2 Oryeaye)ta
4 YAy yidtE
5 V= 01y Vi3 yed) &
6 WOy té
7-12 Models 1-6 with seasonal dummies
13-18 Models 1-6 with trig variables
19-24 Models 1-6 with annual difference
25-30 Models 1-6 with time index t
31-36 Models 1-6 with seasonal dummies and t
37-42 Models 1-6 with trig variables and t
43-48 Models 1-6 with annual difference and t

the base models. Annual difference is defined as (y:—1 — y1—5)
and can be considered a rough estimate of trend [20]. Models
25-30 add the time index ¢ to model the trend component.
Models 31-48 are the same as models 7-24 except that, for
models 31-48, we have added time index variable.

These 48 models represent a wide range of possible NN
input—output structures for modeling seasonal time series.
Although there could be more possible NN structures with dif-
ferent input values, we believe these models are representative
in practice to model and forecast quarterly time series. Some of
them are suitable for time series without trend and/or seasonal
patterns. Some will be useful for trend or seasonal time series
while still others may be able to handle multiple components
such as trend, seasonality, and other significant patterns. These
layered models also allow us to see whether one particular
group of models (such as the six base models) is more effective
than others.

C. NNs

For each time series, NN models are built with an in-sample
selection approach. We use the standard three-layer feedforward
NNs, which is by far the most popular type of NN model for
time-series forecasting, although other types of NNs may be
equally competent [35]-[37]. Node biases are used at the hidden
and output layers. A sigmoid transfer function is employed at
each hidden node and a linear transfer function is used at each
output node. As mentioned earlier, we use one output node for
one-step-ahead forecasting. The number of input nodes is based
on the models identified in the last section. As the number of
hidden nodes is not possible to determine in advance, empirical
experimentations are needed to determine this parameter. Be-
cause of the very small sample size for many of the series, we
limit our experimentation to only six possible values of hidden
nodes: 0, 1, 3, 5, 7, and 9. The value of 0O is included to have
a benchmark linear autoregressive model. The best number of
hidden nodes is determined by using the original Akaike’s in-
formation criterion (AIC).2

2As an early try, we used the generalized cross-validation (GCV) metric as
an in-sample selection criterion [14]. GCV has a cost parameter that has to be
estimated subjectively. We used 2.0 as in [ 14]. However, with small sample size,
some technical difficulty can arise in using GCV such as the division by zero
and a small change in the parameter causing a big difference in how sensitive
the measure is to the size of the model. This is the reason we abandoned this
criterion. A modified version of AIC was recently proposed in [38].
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We use the Matlab NN toolkit for building NNs and making
forecasts. The Levenburg—Marquardt training algorithm is used
to minimize the sum of the squared errors (SSE) on each net-
work. Training is stopped after 300 epochs, or until the algo-
rithm stops improving the SSE. Each NN architecture is trained
five times using different random starting weights. Then the
best one is kept based on the lowest SSE. All in-sample data
presented to the NN (inputs and targets) are scaled to between
(—1,1) using Matlab’s “premnmx” function, which returns pa-
rameters to accomplish the reverse transformation. All out-of-
sample data are transformed using the in-sample parameters de-
termined in the training stage.

Our experimental design can be represented by the following
model:

y=f(D,T,M)
where
y  the performance measure;
D  the data series used (756 levels);
T  the data transformation performed on the data series
(three levels);
M  the model form used for the forecast (48 levels).

That is, our study generates for each series three different data
sets based on whether transformation is used and if so which one
is used, and for each data set, 48 different models are built, each
with six levels of different hidden nodes. The total number of
observations we obtain with the best NN architecture is 108864
(= 756 x 3 x 48).

The following pseudocode describes the methodology used
in training NNs.

For each data series {
For each data transformation {

Linearly scale in-sample data to (—1, 1), retaining
parameters

For each model form {

For NN architectures with hidden nodes of
(0,1,3,5,7,9) {

Train five NNs from random starting parameter
weights.

Keep the best of the five based on SSE
}

Linearly scale the out-of-sample data using parameters
from in-sample (from above)

Using the best network architecture and parameter
set, perform forecast on out-of-sample data

Unscale the forecasts

Untransform the forecasts using the appropriate
inverse transformation
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Record the MAPE, RMSE, MAE on the unscaled
out-of-sample forecasts and actual observations

IV. EMPIRICAL RESULTS

Although we use a variety of performance measures in this
paper including root-mean-squared error (RMSE), mean-abso-
lute error (MAE), and mean-absolute-percentage error (MAPE),
general results do not change much with these measures. There-
fore, to save space, we report only the results with MAPE in this
section.

Because the two types of data transformation used in this
paper are based on the in-sample data, the transformations ap-
plied to the out-of-sample yield a few “outliers.” For example,
to facilitate NN training, we scale all in-sample data to be within
(—1,1) based on the minimum and maximum values in the
in-sample data. However, when we apply the same formulas
to observations in the out-of-sample, a few observations are
outside the range of (—1,1). When we later apply antiloga-
rithm or other inverse transformations, the errors become in-
flated, causing a few very large outliers in the performance mea-
sure. For example, we find that the largest MAPE is more than
8.8 x 108. For this reason, we decide to remove the results
with MAPE greater than 300%. In addition, some cases have
a very small sample size (e.g., 16) and the NN model has a large
number of parameters (e.g., model with seven or nine hidden
nodes), resulting in many more parameters than observations.
In these situations, we decide not to fit the model, and thus, no
observations are obtained for these cases. The previous discus-
sion yields a useful total number of observations of 106 831.

Table III shows the overall ANOVA result with two main fac-
tors of model (MODEL) and data preparation (PREP) and the
data set (SERIES) as the blocking factor. It is clear that the
blocking factor is highly significant, suggesting the usefulness
of the blocking design. MODEL is significant at the 0.05 signif-
icance level while PREP is highly significant with the p-value
less than 0.0001. There is no significant interaction effect be-
tween these two main factors.

A number of planned contrasts have been performed for dif-
ferent groups of models. Specifically, we look at the following
six paired contrasts: 1) models with dummy variables versus
models with trig variables, 2) models with trend ¢ (the last 24
models) versus those without ¢ (the first 24 models), 3) base
models (the first six models) versus base models plus dummies
(models 7-12), 4) base model versus base models plus trig vari-
ables (models 13—18), 5) base models versus base models plus
annual differences (models 19-24), and 6) base models versus
base models plus ¢ (models 26-30). The contrast results across
all three data preparations are reported in Table IV. The only two
significant contrasts involve the use of trend index ¢. First, there
is a significant difference between models using ¢ and those
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TABLE III
OVERALL ANOVA RESULT
Source DF  Mean Square F-value P-value
SERIES 755 19.6020 15.74 <.0001
MODEL 47 1.7441 1.40 0.0363
PREP 2 120.6193 96.85 <.0001
MODEL*PREP 94 1.3980 1.12 0.1962

without #(p—value < 0.0001). The positive sign of the con-
trast estimate indicates that models without ¢ provide, on av-
erage, more accurate forecasts than models with ¢. The second
significant contrast occurs between the base models and the base
models with £. The negative sign of the estimate shows that the
base models are more accurate than the models with ¢. Table IV
may suggest that, with all three data preparations considered to-
gether, using ¢ is not a good strategy.

We perform multiple comparisons for the two significant fac-
tors of MODEL and PREP with the Duncan’s multiple range
test. Fig. 1 summarizes the overall difference among 48 models.
In general, except for the obvious outlier occurred at model 39,
there is an increasing trend from model 1 to model 48. For each
model or data preparation method, the Duncan grouping pro-
cedure assigns one or more letters to represent the group(s) in
which the mean performance measure belongs. Different letters
indicate that groups are significantly different at the 0.05 signif-
icance level. The largest mean is always associated with letter
A, the second largest is denoted B, and so on. From the figure,
we find that model 1 (indicated by letter C in the figure) is the
most accurate model with the lowest average MAPE, which is
significantly lower than that of all other models. Model 39 (with
A) is the least accurate model, followed by model 44 (with B).
All other models perform similarly with no significant differ-
ence between them (all with letters B and C). On the other hand,
Table V shows the multiple comparisons among the three data
preparation methods of raw, log, and full. Although on average
the models built on the log-transformed data perform better than
those on the raw data, their performances are similar or are not
significantly different. However, the full transformation yields
significantly lower average MAPE than both the raw and log
transformation methods.

Table VI gives the separate ANOVA results for each level of
PREP with SERIES as the blocking factor. For the raw data and
fully preprocessed data, MODEL is highly significant, while,
for the log-transformed data, MODEL is not significant at the
0.05 level.

Fig. 2 plots the forecasting performance (MAPE) of various
models with regard to three data preparation approaches: raw in
Fig. 2(a), log transformation in Fig. 2(b), and full transformation
in Fig. 2(c). Overall, we see that when data are unprocessed,
model performance varies quite dramatically while with log
and full transformations, variations in performance among
different models are much smaller. When the data are log trans-
formed, models 37—45 exhibit higher variations with model 39
performing significantly worse than all other models. When
the data are fully transformed, models 9—19 vary considerably
with models 12 and 18 performing significantly worse than
the other models. For unprocessed raw data, models 21 and 22
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Fig. 1. Overall model performance with Duncan grouping.
TABLE 1V
CONTRAST RESULT: OVERALL
Standard
Contrast Estimate Error t-value P-value
dum vs trig -0.1338 0.1164 -1.15 0.2505
trendtvs not 0.6517 0.1641 3.97 <.0001
base vs base+dummy -0.1209 0.0817 -1.48 0.1390
base vs base+trig -0.1226 0.0814 -1.51 0.1320
base vs base+annDiff -0.0076 0.0814 -0.09 0.9254
base vs base+t -0.1839 0.0812 -2.27 0.0235

TABLE V
MULTIPLE COMPARISON: OVERALL

Data Mean Duncan Grouping
Raw  0.2448 A
Log  0.2504 A
Full 0.1466 B

(with three lagged values and one annual difference as inputs)
perform the best. For the full transformed data, models 1-3
are the overall best performers. However, when the data are
log transformed, except for the model 39, all other models do
not perform significantly differently according to the Duncan’s
multiple range test, although simple models such as the base
models perform slightly better than others. It is important to
note that the scales used in Fig. 2(a)—(c) are different. In fact,
with raw data, MAPE values are around a mean of 0.2448
across 48 models. For log-transformed data, this mean is about
0.25 and for the fully transformed data, the mean is 0.1466.
Thus, it is clear that the full transformation can significantly
reduce forecasting error for all models. It is also evident from
these figures that when the data are not preprocessed, relatively
more complex models are needed while for preprocessed data
especially those with full transformation, simple models predict
much better than more complex models.

The contrast results by data preparation are given in
Table VII. When considering different data prepara-
tion strategies, we see somewhat different results com-

pared to the overall results reported in Table IV. If the
data are unprocessed raw series, then there are three
significant contrasts between models using ¢ and those
without t(estimate 0.0253, p-value 0.0278), be-
tween the base models and the base models plus dummies
(estimate —0.0131, p-value 0.0227), and between
the base models and the base models with annual dif-
ference (estimate 0.0311, p-value < 0.0001). When
the data are log transformed, the only significant con-
trast occurs between models using ¢ and those without
t(p-value < 0.0125). If the data are fully transformed, there
are four highly significant contrasts between models using ¢
and those without ¢(estimate = 0.8129, p-value < 0.0001),
between the base models and the base models plus dum-
mies (estimate —0.2830, p-value 0.0034), be-
tween the base models and the base models plus trig
variables (estimate —0.3061, p-value 0.0015),
and between the base models and the base models with
t(estimate = —0.3341, p-value = 0.0005).

Table VIII reports several descriptive statistics including
minimum, maximum, and average MAPE of all models based
on the classification of data type and data preparation. Several
observations can be made. First, from the mean MAPE perspec-
tive, it is clear that across all five data types, full transformation
of data is the most effective in terms of the model forecasting
performance. The log transformation alone does not provide
much advantage over the raw data. In fact, in almost all types,
the average MAPE associated with the log transformation is
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TABLE VI
ANOVA RESULTS BY PREP

PREP Source DF Mean Square F-value P-value
Full SERIES 755 13.1701 22.75 <.0001
MODEL 47 0.8780 1.52 0.0128
Log SERIES 755 7.5291 2.44 <.0001
MODEL 47 3.6659 1.19 0.1755
Raw SERIES 755 4.7686 2336.7 <.0001
MODEL 47 0.0130 6.38 <.0001
TABLE VII
CONTRAST RESULT BY PREP
Standard
PREP Contrast Estimate Error t-value P-value
Raw  dummy vs trig 0.0000 0.0082 0 0.9988
trendtvsnot 0.0253 0.0115 2.2 0.0278
base vs base+dummy -0.0131 0.0057 -2.28 0.0227
base vs base+trig -0.0085 0.0057 -1.5 0.1347
base vs base+annDiff 0.0311 0.0057 545 <.0001
base vs base+t -0.0086 0.0057 -1.52 0.129
Log  dummy vs trig -0.3726 0.3172 -1.17 0.2402
trendtvsnot 1.1164 0.4470 2.5 0.0125
base vs base+dummy -0.0669 0.2226 -0.3 0.7637
base vs base+trig -0.0532 0.2219 -0.24 0.8103
base vs base+annDiff 0.0053 0.2219 0.02 0.9811
base vs base+t -0.2089 0.2212 -0.94 0.3449
Full  dummmy vs trig -0.0284 0.1375 -0.21 0.8362
trendtvsnot 0.8129 0.1937 4.2 <.0001
base vs base+dummy -0.2830 0.0965 -2.93 0.0034
base vs base+trig -0.3061 0.0962 -3.18 0.0015
base vs base+annDiff -0.0593 0.0962 -0.62 0.5377
base vs base+t -0.3341 0.0959 -3.48 0.0005
TABLE VIII
MODEL PERFORMANCE BY TYPE OF SERIES AND DATA PREPARATION
Data Preparation
Raw Log Full
Type Min Max Mean Min Max Mean Min Max Mean
Demographic 0.1867 0.2144 0.1999 0.1317 1.8979 0.2372 0.0983 0.2557 0.1454
Finance 0.2138 0.2471 0.2292 0.1921 0.3629 0.2373 0.0935 0.4000 0.1724
Industry 0.3116 0.3816 0.3552 0.2290 1.9966 0.3213 0.1157 0.2467 01773
Macro 0.1818 0.2145 0.1948 0.1447 1.0619 0.2056 0.0310 0.0845 0.0582
Micro 0.2892 0.3066 0.2982 0.2525 0.7149 0.3020 0.1781 0.7512 0.2654

worse than that with the raw data. Second, data transformations
can help improve the best model performance but at the same
time also increases the variability of the model performance.
The minimum MAPE for both log and full transformations
is much smaller than that for raw data across all data types.
However, the range between the minimum and the maximum is
often higher when data are log or fully transformed than when
the data are unpreprocessed. One explanation for why the worst

model with the transformed data is worse than that with the
raw data is the issue with data transformation formulas used in
in-sample applied to out-of-sample, which may result in several
unusual outliers. Finally, NNs do perform differently with
different types of data. For the raw data, the best mean MAPE
(= 0.1948) is for the macrodata, and the worst mean MAPE
(= 0.2982) is for the microdata. For the log-transformed data,
the best MAPE is 0.2056 for the macrodata versus the worst
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Fig. 2. Model performance by data preparation method. (a) Model performance with raw data. (b) Model performance with log transformation. (¢c) Model perfor-

mance with full transformation.

TABLE IX
MODEL PERFORMANCE BY SEASONALITY AND DATA PREPARATION

Data Preparation

Raw Log Full
Seasonality Min Max Mean Min Max Mean Min Max Mean
Yes 0.2420 0.2663 0.2529 0.2086 0.7176 0.2540 0.0878 0.1943 0.1461
No 0.2212 0.2429 0.2319 0.1789 0.6979 0.2447 0.0960 0.5018 0.1485

MAPE of 0.3213 for the industry data. For the fully transformed
data, the best MAPE is 0.0582 for the macrodata versus the
worst of 0.2654 for the microdata. The macrodata are the only
ones that consistently give the best forecasting performance
with all three data preparations.

In Table IX, we give forecasting performance of all models
with regard to the data preparation method and whether the
data exhibit some seasonality based on the rule of thumb dis-
cussed earlier. Although full transformation again is very effec-

tive in improving NN forecasting performance, log transforma-
tion does not provide much advantage over raw data. In addition,
we find that the model performance is quite similar for those se-
ries that have seasonality and those that do not.

Table X summarizes the distribution of the best hidden node
selected across three data preparations. In general, we see a clear
decreasing order of frequency or relative frequency from 0O to
9 hidden nodes regardless of whether data are preprocessed or
which data transformation method is used. The only exception
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HIDDEN NODE DISTRIBUTION

1809

Data Preparation

Raw Log Full Total
Hidden Frequency Percent Frequency Percent Frequency Percent Frequency  Percent
0 28490 80 18179 51.05 15033 42.21 61702 57.76
1 6795 19.08 15537 43.63 19752 55.47 42084 39.39
3 291 0.82 1606 4.51 788 2.21 2685 2.51
5 31 0.09 267 0.75 37 0.1 335 0.31
7 4 0.01 17 0.05 1 0 22 0.02
9 0 2 0.01 0 0 3 0.00
Total 35612 35608 35611 106831 100
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Fig. 3. Average ranks of 48 models. (a) Raw data. (b) Log-transformed data. (c) Fully transformed data.
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TABLE XI TABLE XII
COMPARISON OF MODELS WITH THE BEST METHOD—RAW DATA COMPARISON OF MODELS WITH THE BEST METHOD—LOG TRANSFORMATION
Average Rank interval Significantly worse Average Rank interval Significantly worse
model rank lower limit upper limit than the best? model rank lower limit upper limit than the best?
1 33.527 32.866 34.189 Yes 1 24.306 23.645 24.968 Yes
2 30.550 29.888 31.211 Yes 2 28.554 27.892 29.215 Yes
3 25.622 24.961 26.284 Yes 3 29.013 28.351 29.674 Yes
4 21.801 21.139 22.462 Yes 4 27.028 26.367 27.690 Yes
5 21.789 21.128 22.450 Yes 5 27.935 27.274 28.597 Yes
6 22.146 21.484 22.807 Yes 6 24.893 24.231 25.554 Yes
7 34.798 34.137 35.460 Yes 7 31.871 31.210 32.532 Yes
8 30.368 29.707 31.030 Yes 8 33.027 32.366 33.689 Yes
9 25.877 25.216 26.538 Yes 9 31.677 31.016 32.339 Yes
10 22.295 21.634 22.957 Yes 10 29.694 29.032 30.355 Yes
11 22.201 21.540 22.862 Yes 11 30.391 29.730 31.053 Yes
12 22.234 21.573 22.896 Yes 12 28.254 27.593 28.915 Yes
13 34.356 33.694 35.017 Yes 13 29.796 29.135 30.458 Yes
14 30.195 29.534 30.857 Yes 14 31.384 30.723 32.046 Yes
15 26.094 25.432 26.755 Yes 15 30.914 30.253 31.575 Yes
16 21.944 21.283 22.606 Yes 16 28.337 27.676 28.999 Yes
17 22.158 21.497 22.820 Yes 17 29.960 29.298 30.621 Yes
18 22.110 21.449 22.772 Yes 18 27.429 26.767 28.090 Yes
19 17.330 16.669 17.991 No 19 21.923 21.261 22.584 Yes
20 16.849 16.188 17.511 No 20 23.762 23.100 24.423 Yes
21 16.144 15.482 16.805 No 21 23.911 23.250 24573 Yes
22 17.529 16.868 18.191 Yes 22 24.904 24.243 25.566 Yes
23 17.557 16.895 18.218 Yes 23 25.669 25.008 26.330 Yes
24 16.488 15.827 17.150 No 24 22.532 21.871 23.194 Yes
25 34.459 33.798 35.120 Yes 25 16.268 15.606 16.929 No
26 30.343 29.682 31.005 Yes 26 18.511 17.849 19.172 Yes
27 26.436 25.774 27.097 Yes 27 20.679 20.017 21.340 Yes
28 21.974 21.312 22.635 Yes 28 20.163 19.502 20.825 Yes
29 22.314 21.653 22.976 Yes 29 21.379 20.717 22.040 Yes
30 21.977 21.315 22.638 Yes 30 17.738 17.076 18.399 Yes
31 34.540 33.878 35.201 Yes 31 19.448 18.786 20.109 Yes
32 30.802 30.140 31.463 Yes 32 22.077 21.415 22.738 Yes
33 26.972 26.310 27.633 Yes 33 23.484 22.822 24.145 Yes
34 22.140 21.478 22.801 Yes 34 22.145 21.483 22.806 Yes
35 22.732 22.070 23.393 Yes 35 23.908 23.247 24.570 Yes
36 22.715 22.054 23.377 Yes 36 21.003 20.341 21.664 Yes
37 34.765 34.103 35.426 Yes 37 20.307 19.646 20.968 Yes
38 30.484 29.823 31.146 Yes 38 22.296 21.634 22.957 Yes
39 26.347 25.686 27.009 Yes 39 23.492 22.831 24.154 Yes
40 22.178 21.517 22.840 Yes 40 23.065 22.403 23.726 Yes
41 22.053 21.391 22.714 Yes 41 23.683 23.021 24.344 Yes
42 26.956 26.295 27.618 Yes 42 19.319 18.657 19.980 Yes
43 17.593 16.931 18.254 Yes 43 16.549 15.887 17.210 No
44 17.368 16.707 18.030 No 44 18.239 17.577 18.900 Yes
45 17.712 17.050 18.373 Yes 45 20.059 19.398 20.720 Yes
46 17.548 16.887 18.210 Yes 46 19.792 19.130 20.453 Yes
47 17.964 17.303 18.626 Yes 47 21.225 20.564 21.887 Yes
48 17.110 16.448 17.771 No 48 17.909 17.247 18.570 Yes

is with full transformation where one hidden node is the best
for about 55% of the models. When the data are unprocessed
or log transformed, a majority of the best models (80% for the
raw data and 51% for the logged data) are in fact linear as zero
hidden nodes are selected. One hidden node models are the next
most commonly selected model (19% and 44%, respectively, for
the raw and logged data). Overall, we find that about 58% of the
models have zero hidden nodes and 40% have one hidden nodes.
As the data are subject to more transformations especially de-
trending and deseasonalization, more nonlinear models are se-
lected. The results may not be surprising as we have quite small
sample size for most of the time series in this paper. In addition,
most NN models have only one hidden node, indicating again
that simpler models forecast better than more complex ones. It
is worthwhile to note that in [30] the similar result regarding
the dominance of one hidden node networks is obtained with 24
monthly time series.

Following [39], we also conduct a number of ranking tests to
compare each model against the best and against the mean at the
0.05 significance level. These tests are about the null hypothesis
that a single ranking does not differ from a random ranking and
are based on the average rankings of various models. Overall,
using the Friedman test, we find there is a significant difference
among different models in performance rankings across for each
of the three data types. In order to see which method is signif-
icantly different from other methods, two multiple comparison
procedures are used. One is the multiple comparisons with the
best (MCB), which determines which models are significantly
worse than the best model. Another is the multiple comparisons
with the mean or analysis of the means (ANOM), which allows
us to see which models are statistically better (or worse) than
the average. Results are reported in Tables XI-XIII for three
data types: raw, log transformed, and fully transformed. We list
average ranks, rank intervals, and whether one model is signifi-
cantly worse than the best in these tables. If the intervals for two
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TABLE XIII
COMPARISON OF MODELS WITH THE BEST METHOD—FULL TRANSFORMATION

Average Rank interval Significantly worse
model rank lower limit upper limit than the best?
1 12.121 11.460 12.782 No
2 13.264 12.602 13.925 No
3 14.409 13.748 15.071 Yes
4 16.365 15.704 17.027 Yes
5 16.724 16.063 17.386 Yes
6 15.366 14.705 16.028 Yes
7 18.759 18.097 19.420 Yes
8 19.122 18.461 19.784 Yes
9 20.083 19.421 20.744 Yes
10 21.605 20.944 22.267 Yes
11 21.930 21.268 22.591 Yes
12 22.052 21.390 22.713 Yes
13 15.542 14.881 16.204 Yes
14 16.309 15.647 16.970 Yes
15 17.338 16.677 17.999 Yes
16 19.303 18.641 19.964 Yes
17 19.246 18.585 19.908 Yes
18 19.728 19.066 20.389 Yes
19 15.929 15.268 16.591 Yes
20 16.075 15.414 16.737 Yes
21 16.558 15.896 17.219 Yes
22 16.782 16.120 17.443 Yes
23 16.709 16.047 17.370 Yes
24 16.544 15.883 17.206 Yes
25 28.534 27.873 29.196 Yes
26 29.026 28.365 29.688 Yes
27 30.309 29.647 30.970 Yes
28 30.476 29.814 31.137 Yes
29 30.915 30.253 31.576 Yes
30 30.408 29.747 31.070 Yes
31 30.858 30.196 31.519 Yes
32 31.224 30.562 31.885 Yes
33 32.621 31.960 33.283 Yes
34 32.658 31.996 33.319 Yes
35 32.813 32.151 33.474 Yes
36 32.916 32.255 33.578 Yes
37 30.327 29.666 30.989 Yes
38 30.990 30.329 31.652 Yes
39 31.222 30.560 31.883 Yes
40 32.980 32.319 33.642 Yes
41 32.262 31.601 32.924 Yes
42 31.979 31.318 32.641 Yes
43 29.919 29.257 30.580 Yes
44 30.059 29.397 30.720 Yes
45 30.720 30.059 31.382 Yes
46 31.245 30.584 31.906 Yes
47 30.905 30.243 31.566 Yes
48 30.536 29.874 31.197 Yes

models do not overlap, then these models do not belong to the
same group of ranking. For the raw data (Table XI), we find the
best average ranking is 16.1. Five models (models 19, 20, 24, 44,
and 48) do not perform significantly worse than the best model
(model 21). It is noted that all these models in the best model
group contain annual difference, suggesting that this input vari-
able is quite useful in modeling and forecasting raw data. All
other models perform significantly worse than the best model.
For the logged data, Table XII suggests that the best model is
model 25 with an average ranking of 16.3, although model 43 is
the only one that is not significantly worse than the best model.
Both models contain input variables of y;_; and ¢. For the fully
transformed data, model 1 is the best with an average ranking of
12.1, and model 2 does not perform significantly worse than the
best. All others are significantly worse than the best. Fig. 3 plots
the average rankings of all models for the three types of data.
Fig. 4 shows the average rankings of 48 models over 756 se-
ries compared with the average ranking for each of the three
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different data types. In each case, the average rank (the solid
line) along with the upper and lower bounds (dotted lines) from
the ANOM procedure are plotted. Fig. 4(a) shows some inter-
esting pattern for the raw data with the average ranking around
24. It is clear that models with annual differences (models 19-24
and 43-48) perform significantly better than the average. While
models without annual differences but containing inputs such
as Yi—1,Yi—2, and y,—3 perform significantly worse than the
average, those models with inputs of y;_4 are all close to the
lower bound of the average model. For logged data, Fig. 4(b)
suggests that using time index ¢ helps improve model perfor-
mance as most models with ¢ (models 25-48) are significantly
better than average while models without ¢ (models 1-24) are
worse than the average. On the other hand, when the data are
fully transformed, we see a different picture in Fig. 4(c) as all
models without ¢ performed significantly better than the average
while all models with ¢ are significantly worse than the average.
These observations are reasonable because when the data are
fully transformed, trend and other significant components may
have been removed from the data, resulting in better perfor-
mance for models without ¢.

V. CONCLUSION

How to effectively forecast quarterly time series is an impor-
tant yet challenging task not only for the traditional modelers,
but also for NN forecasters. In this paper, we have conducted a
comprehensive evaluation of NNs in modeling and forecasting
quarterly time series. With a large sample from the M3-compe-
tition, we examined a number of modeling issues an NN fore-
caster may encounter. We considered 48 systematic models with
a variety of possible input variables along with three possible
data types based on data preparations. Both parametric and non-
parametric statistical tests were applied to the results for the per-
formance measures and the rankings.

Our main conclusions are summarized as follows.

1) Different neural models perform differently especially
from the input variable selection perspective. Our results
clearly show that different combinations of input variables
can have significant impact on the model performance.
Therefore, in applying NN, it is critical to identify a set of
important input variables to be included in the modeling
process, rather than treating them as given and focusing
only on the selection of the hidden nodes which seems
to be a common approach in the literature. In addition,
the NN performance on different types of data differs.
Overall, NNs perform the best on the macrodata.

2) Data preparation or transformation is the key to improving
NN performance for quarterly time series. We find that by
removing significant patterns such as trend and seasonality,
NN models perform significantly better than those with
raw data. In other words, if the time-series data contains
seasonality and trend, NNs are not able to handle these
components simultaneously or directly model them. This
observation suggests that mixed previous research findings
may be due to the failure of considering different prepro-
cessing transformation approaches which can be critical in
improving NN modeling and forecasting. In addition, with
preprocessed data without complicated patterns, simpler or
more parsimonious NN models can be constructed. In this
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Fig. 4. Average ranks of 48 models with average ranking. (a) Raw data.

paper, we do not consider the issue of whether detrending
or deseasonalization is more responsible for performance
improvement. We believe that the combined approach
should be the best because of the following: a) both
detrending and deseaonalization make time series more
stationary, thus simplifying the modeling task, and b) in
[17], for monthly time series, it has been found that either
approach can dramatically reduce forecasting errors, but
using both preprocessing methods yield the best fore-
casting results.

Overall, simple models perform better than more compli-
cated models. Thus, our results confirm one of the most
significant findings in all of the M-competitions. Here, sim-
plicity means both the number of input nodes used and
the number of hidden nodes selected. For example, the
first six base models with only the past lagged observa-
tions as inputs perform, in general, better than all other

T T T T T T T T T T T T

T 9111315171921 23 25 27 29 31 33 35 37 39 41 43 45 47

Model
(©

(b) Logged data. (c) Fully transformed data.

models which contain more input variables. In addition, a
majority of the best models uses zero or one hidden node,
indicating simple linear autoregressive or NN models per-
form the best. However, it is equally important to note that
when considering different data types, simple models with
regard to input variables do not always perform better than
more sophisticated models, especially when the data are
unprocessed raw observations. That is, in order for NNs to
capture all significant components of trend and seasonality,
more complex models may be necessary.

The inclusion of seasonality information such as seasonal
dummy variables or trigonometric variables and trend vari-
able in NN modeling is not generally helpful in improving
forecasting performance. One possible explanation is that
these variables are deterministic and too simple to capture
the dynamic and complex seasonal or trend structures in
the data. Another reason is that the time series used in

4)
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this paper is very short and using these additional vari-
ables makes the NN models more complex, and thus does
not provide benefits in improving performance. However,
using annual difference variable seems to be helpful in
some cases where the data are not fully processed.

Our paper has several limitations. First, as noted earlier, al-
though we used a large number of real time series, all of them
can be categorized as small because the maximum length is 64.
For seasonal time-series modeling, Box and Jenkins [27] rec-
ommend the minimum sample size of 50 or higher should be
used in ARIMA modeling. As NNs have more parameters to
estimate, larger sample sizes may be required in order to avoid
overfitting problems and get better forecasting outcomes. This
sample size limitation may be the reason that zero hidden node
networks are the most frequently selected models in our paper.
Second, although research in forecasting tends to suggest that
the in-sample model selection criterion such as AIC or BIC may
not be a reliable guide from the forecasting perspective [18],
[28], [29], we are not able to use holdout sample or cross-val-
idation approach due to the short time-series nature. Third, all
the models in this paper are preselected in terms of the input
variables, representing some common practices used in the lit-
erature for quarterly time series. It may be better to let NNs to
select some important relevant variables from a number of po-
tential inputs. Balkin and Ord [14] describe one such method.
Finally, although all time series are quarterly, they are not nec-
essarily seasonal or trending. We have only applied a simple
rule of thumb to test if there is a significant correlation between
time-series values separated by four lags. This approach may not
be effective to identify the true seasonality complicated with the
trend factor. We do not perform formal statistical tests regarding
whether a time series contains seasonality and/or trend, if so,
whether this component is stochastic or deterministic because
of the following: 1) we are not aware of whether such tests are
available and 2) if available, how effective these tests are. It is
ideal if we can have a test regarding whether a series contains
certain significant components and if so what data transforma-
tion techniques should be applied.

We agree with Terasvirta et al. [31] that “in order to obtain
acceptable results with nonlinear models, modeling has to be
carried with care.” This paper shows that although there is a
large number of possible ways to model an NN, failing to con-
sider important ones such as data transformation or preparation
and appropriate input selection may result in considerably worse
results.
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