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Abstract. This paper defines and discusses the Hausdorff metric on the space of non-
empty, closed, and bounded subsets of a given metric space. We consider two important
topological properties, completeness and total boundedness. We prove that each of these
properties is posessed by a Hausdorff metric space if the property is possesed by the un-
derlying metric space. Finally, we explore applications of the Hausdorff metric, including
fractal geometry.

1. Introduction. The Hausdorff metric is defined on the space of nonempty closed
bounded subsets of a metric space. The resulting metric space will be referred to as
the �induced Hausdorff metric space,� or else simply as the �induced Hausdorff space.�
Normally the term �Hausdorff space� refers to a space satisfying a certain topological
separation axiom. But since this paper refers only to metric spaces, which all satisfy
the Hausdorff separation axiom, there will be no ambiguity.

We first explain why nonemptiness, closedness, and boundedness are the right re-
strictions to choose for sets on which we wish to put a metric. Many of the reasons that
follow are based on the idea that we want our set metric to resemble our point metric.
For example, nonemptiness isn’t profound: the distance between two small blobs (pic-
ture the Euclidean plane if you like) seems like it should be approximately equal to the
distance between a representative point in each. But what should we answer if we are
asked the distance between a small blob and the empty set? Between a large blob and
the empty set? Because there is no good answer, we throw out the empty set.

Next, why particularly closed and bounded? And why not compactness instead?
To see why closedness is perhaps a good thing, let’s consider the two sequences of
subsets an = [0, 2− 1/n] and bn = [0, 2 + 1/n]. If we choose our construction carefully,
and our given metric space is sufficiently well behaved, then we will be able to take
limits in our induced Hausdorff space. So should an converge to a set containing the
endpoint 2 or a set not containing 2? What about bn? What about the sequence
a1, b1, a2, b2, a3, b3, . . . ? To prevent this apparent difficulty, we choose closed sets. This
will turn out to be a good idea since it will not only allow us to take limits, it will
insure that d(A,B) = 0 implies A = B, a necessary property of a true metric. (There is
something called a pseudometric which is a metric without this property, but it turns
out we don’t need the concept.)

Finally, we consider reasons to choose between boundedness and compactness. One
thought is that compactness is a topological property, whereas boundedness is metric-
dependent, and maybe we should concentrate on the topological properties of the space.
It turns out that we really have no reason to restrict in this way since boundedness is
the only property we end up using. It guarantees that the Hausdorff metric gives a finite
value. This restriction, for example, allows us to consider building a Hausdorff metric
out of the standard bounded metric in the Euclidean plane d(x, y) = min(1, deucl.(x, y)).
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If we choose boundedness instead of compactness, the elements [a, b] × R will be ele-
ments of the induced Hausdorff space, since all subsets of the euclidean plane under the
standard bounded metric are bounded.

Of course if we don’t like being forced to use nontopological properties in exchange
for the slightly increased generality of closed and boundedness over compactness, we can
certainly choose compactness instead. In fact, many interesting restrictions of our space
preserve the main result of this paper, that the Hausdorff distance is complete: limits
of connected sets yield connected sets, and limits of sets of 1-dimensional Hausdorff
measure x converge to sets of 1-dimensional Hausdorff measure x, etc.

In the next section, we define the Hausdorff distance function, and see that the
properties above form a sufficient set of conditions for showing that the distance function
is a metric. In Section 3, we demonstrate that, if in addition a metric space is complete,
then the induced Hausdorff space is complete. We also show that total boundedness is
inherited by our similar construction. In Section 4, we apply completeness in a discussion
of iterated function systems. And finally, in Section 5, we discuss an idea that attempts
to solve an open problem using both completeness and total boundedness.

2. Definitions. We now begin by defining the Hausdorff distance on nonempty sets.
We present two definitions, and show that they are equal. Then we show that requiring
elements to be closed and bounded is sufficient to show that the definition satisfies the
axioms for a metric space.

Given a compact metric space S, we consider the space X of nonempty closed subsets
of S:

X = {A ⊂ S | A is nonempty, closed, and bounded}.

Then the Hausdorff metric is defined on pairs of elements in X as follows:

d(A,B) = max{sup
e∈A

m(e,B), sup
e∈B

m(e,A)}, (2-1)

where m(e, C) : S ×X → R is given by

m(e, C) = inf
c∈C

d(e, c).

The function m represents the �minimum� distance from a point e in S to a point
in C in X (as a subset of S). Note that it is not the same as the Hausdorff distance
between the single point set {e} and C; indeed, we have

d({e}, C) = max{m(e, C), sup
c∈C

d(c, e)} = max{infc∈Cd(e, c), sup
c∈C

d(c, e)} = sup
c∈C

d(c, e).

From here on in this paper, we will write simply d(e, C) in place of d({e}, C). This
will comply with our convention of using lowercase letters for elements in S and upper-
case letters for elements in X or other subsets of S.

This definition of the Hausdorff metric, while sometimes useful for symbolic manip-
ulation, has a reformulation which is more visually appealing. Given A ∈ X, let the
ε-expansion of A be the union of all ε-open balls around points in A. We denote it by
Eε(A); that is,

Eε(A) =
⋃

x∈A

B(x, ε).
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Then d(A,B) is defined as the �smallest� ε that allows the expansion of A to cover B
and vice versa:

d(A,B) = inf{ε > 0| Eε(A) ⊃ B and Eε(B) ⊃ A}. (2-2)

Figure 2-1. A visual depiction of the two definitions. Left: picking the largestm(a,B).
Right: picking the smallest ε-expansion of B to cover A.

Proposition 2-1. The above two definitions of the Hausdorff metric are equiv-
alent.

Proof: We expand Equation (2-2), and reduce it to Equation (2-1). First, Equation
(2-2) tells us that the distance from A to B is the larger of two infimums:

d(A,B) = max
{

inf{ε > 0 | A ⊂ Eε(B)}, inf{ε > 0 | B ⊂ Eε(A)}
}

.

The condition A ⊂ Eε(B) simply means A ⊂
⋃

b∈B{x|d(x, b) < ε}. To ask if a particular
set A satisfies that containment is to ask whether or not, for every a ∈ A, we have b ∈ B
less than ε away. Equivalently we can ask if, for every a, the infimum of distances to
b ∈ B is small. Substituting for A ⊂ Eε(B) and its symmetric counterpart, we get:

max
{

inf{ε > 0| ∀ a ∈ A, inf
b∈B

d(a, b) < ε}, inf{ε > 0| ∀ b ∈ B, inf
a∈A

d(a, b) < ε}
}

= max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}

= max{sup
a∈A

m(a,B), sup
b∈B

m(b, A)}.

This is precisely the right-hand side of Equation (2-1). 2

Proposition 2-2. The function d is a metric on X.

Proof: Recall the axioms for a metric space:
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1. d(A,B) = 0⇔ A = B and d(A,B) > 0;
2. d(A,B) = d(B,A);
3. d(A,C) ≤ d(A,B) + d(B,C).

Proof of 1. We use Equation (2-1). If A = B, then d(A,B) = 0 because every a ∈ A
satisfies m(a,B) = 0. Conversely, if d(A,B) = 0, then both terms of the max expression
are equal to zero, and thus m(a,B) = 0 for every a. Every such point a is a limit point
of B since any neighborhood of a must contain a point of b if m(a,B) = infb∈B d(a, b)
is to be equal to 0. So a is in B because B is by definition closed. Since a ∈ A was
arbitrary, A ⊂ B. By symmetry of our definition, B ⊂ A also. Thus B = A. Also, the
value d(A,B) is always nonnegative because the d(a, b) is always nonnegative.

Proof of 2. The max operation is symmetric, so d is symmetric.

Proof of 3. Let A, B, and C be elements of X. Let a be an arbitrariy element of
A. There must exist b ∈ B so that d(a, b) < d(A,B). Given this b we can by the same
logic choose some c ∈ C so that d(b, c) < d(B,C). Adding and applying the triangle
inequality in S tells us that d(a, c) < d(A,B)+ d(B,C). Hence for every element a ∈ A
there is a c ∈ C less than d(A,B) + d(B,C) away; that is,

Ed(A,B)+d(B,C)(C) ⊃ A.

Since the ordering of A and C was arbitrary, we also know

Ed(A,B)+d(B,C)(A) ⊃ C.

Thus, d(A,C) ≤ d(A,B) + d(B,C). 2

We now know that d is a metric on X. In the next section, we will give sufficient
conditions for X to be compact.

3. Properties. Recall that a space S is called totally bounded if, for every ε > 0,
there exists an open covering of S by finitely many ε-balls. We now show that if S is
totally bounded, then the induced Hausdorff metric space X is totally bounded.

Theorem 3-1. If S is totally bounded, then the induced Hausdorff space X is
totally bounded.

Proof: Pick ε > 0. Take a finite open cover of S by ε-balls. Denote their centers by
s1, s2, ..., sn. Define

C = {Ci}2
n−1
i=1 = P({s1, s2, . . . , sn})− {∅}.

Note that the elements of C are points in X. We now show that the sets B(Ci, ε) form
a finite open cover for X. Let A be an element of X; we will show it is in one of
the B(Ci, ε). Take the set D of all sn such that B(sn, ε)

⋂

A is nonempty. Since A is
nonempty and the B(sn, ε) cover S, the set D is a nonempty subset of {s1, s2, . . . , sn}.
That is, it is one of the Ci. As depicted in Fig. 3-1, clearly

Eε(A) ⊃ D.

And Eε(D) ⊃ A by construction. Thus, d(A,D) < ε. 2
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Figure 3-1. Theorem 3-1 is visually obvious. Balls from our finite open cover for S
which intersect A are collected. The centers of these balls form the set D. Also depicted
are A, in bold, and Eε(A).

Recall that by a Cauchy sequence we mean a sequence of elements {an} such that,
for every ε > 0, there is an integer N so that m,n ≥ N implies d(am, an) < ε. We say
that a space is complete when every Cauchy sequence converges to some element in
the space. Theorem 3-1 tell us that if our metric space S is totally bounded, then its
induced Hausdorff space X is totally bounded. Theorem 3-3 will tell us similarly that
X is complete when S is complete. Now, a complete and totally bounded metric space
is also compact. (Conversely, a compact metric space is complete and totally bounded,
but this fact does not concern us.) Thus, Theorem 3-3 will also tell us that X is compact
when S is compact. We now digress to confirm that complete, totally bounded metric
spaces are compact.

The compactness criterion we use is the one called sequential compactness: every
infinite sequence contains a convergent subsequence. It is equivalent to compactness in
a metrizable space [1, p. 181]. We show only that every infinite sequence in a totally
bounded metric space contains a Cauchy sequence, since the addition of completeness
will automatically cause Cauchy sequences to converge. Note that unlike the rest of the
theorems in this paper, which discuss a space S and its induced Hausdorff space X, this
theorem holds in a totally arbitrary metric space.

Theorem 3-2. If M is an arbitrary totally bounded metric space, then every
sequence {ai} in M has a Cauchy subsequence.

Proof: Cover M with finitely many balls {Bk} of radius 1. Let n be the number of
elements in {Bk}. Let φ : Z+ → {1, . . . , n} be given by

φ(i) = the smallest k so that ai ∈ Bk.

There is nothing important about k being the smallest such k. It is just a way to avoid
ambiguity. Since φ maps from an infinite set into a finite set, at least one of the elements
of the finite set must get hit infinitely many times. Find such an element p ∈ {1, . . . , n}
and form a subsequence containing the elements that map to p. Call the subsequence

{a(1)i }. It has diameter less than 2 since it is contained in a ball of radius 1.
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Similarly construct {a(2)i } with radius 1/2 as a subsequence of {a(1)i }, then {a
(3)
i }

with radius 1/4 as a subsequence of {a(2)i }, and so on. By taking the first elements of
each sequence, we form a Cauchy sequence:

dk = a
(k)
1 .

By construction, the subsequence of dk starting with the nth element will have diameter
less than 22−n. Hence dk is Cauchy since, for every ε > 0, if N = max(0,−log2(ε)) + 2,
then

m,n > N =⇒ d(dm, dn) < ε.

The proof is now complete. 2

We now return to talking about Hausdorff metric spaces, and prove our final result.

Theorem 3-3. If S is complete, then its induced Hausdorff metric space X is
complete.

Proof: Let Dk be a Cauchy sequence in X. We need to show that Dk converges to
some element in X.

Let the set F be the set of limit points of sequences {dk} with dk ∈ Dk. We show
that F is the limit point of the sequence Dk. To show that d(F,Dk) < 2ε for large
enough k, we need to show two inclusions:

F ⊂ E2ε(Dk) and E2ε(F ) ⊃ Dk.

Pick ε > 0. First we show that there aren’t too many elements in F . Take N so
that m,n ≥ N implies d(Dm, Dn) < ε. Since Eε(DN ) ⊃ Dn, every Cauchy sequence
dk selected must have points in Eε(DN ) for large enough k. So lim dk must be inside
Eε(DN ). Therefore F ⊂ E2ε(DN ).

We now show that F has enough elements. Take ε > 0 as before. Pick Ni strictly
increasing so that m,n ≥ Ni implies d(Dm, Dn) < ε/2i. Our strategy will be to show
that, for every x in some Dk with k ≥ N1, there is a sequence {fi} with fi ∈ Di

converging less than ε away. Specifically, we will construct fi such that, for every p ≥ 2
and Np ≤ i, j ≤ Np+1, we will have d(fi, fj) < ε/2p and d(x, fN2) < ε/2. Then for every
j ≥ N2 we will have q ≥ 2 so that Nq ≤ j ≤ Nq+1, and

d(x, fj) ≤ d(x, fN2) + d(fN2 , fN3) + · · ·+ d(fNq , fj)

< ε/2 + ε/4 + · · ·+ ε/2q < ε.

Therefore, our fi will converge to a point less than 2ε away.
We will repeatedly use the following simple observation.

Claim 3-4. For every pair <x, k> with x ∈ Dk and k ≥ Ni, there is a nearby
yj ∈ Dj, less than ε/2i away, so long as j ≥ k.

To prove the claim, recall that the Ni were constructed so that

d(Dj , Dk) < ε/2i for j ≥ k ≥ Ni.

So we know that

Eε/2i(Dj) ⊃ Dk for j ≥ k.
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In particular, we know that, for every j ≥ k, there is a yj ∈ Dj so that B(y, ε/2i) 3 x.
This statement is the claim above.

To construct fi, let the particular element fk equal x. Also, pick the particular
element fN2 ∈ DN2 with d(x, fN2) < ε/2 by applying Claim 3-4 to <x, k>. All other
elements fj with j < N2 can be picked arbitrarily and not effect either the convergence
of the sequence or our bound on its limit point.

Assume by induction on m that fi is defined when i ≤ Nm, and assume that,
for 2 ≤ p < m and Np ≤ i, j ≤ Np+1, we have d(fi, fj) < ε/2p. Then Claim 3-4
applied to <fNm , Nm> tells us that, for every j ≥ Nm, there is a yj ∈ Dj closer
than ε/2m away from fNm . Define fi for Nm < i ≤ Nm+1 to be these yi. Since for
Nm ≤ i, j ≤ Nm+1 we have d(fi, fj) < ε/2m, we have satisfied our induction hypothesis.

Thus by constructing a limit point less than 2ε away from an arbitrary x ∈ Dk with
k ≥ N1, we have shown that E2ε(F ) ⊃ Dk for k ≥ N1. We knew from before that
F ⊂ E2ε(Dk) for k ≥ N1, so we also know d(F,Dk) < 2ε for k ≥ N1. Since every ε > 0
has such an N1, we know F is our desired limit point of the sequence Dk. 2

4. Applications of Completeness. Of the completeness and total boundedness prop-
erties, completeness is by far the more useful in applications of the Hausdorff metric
space. For example, in fractal geometry, the Hausdorff metric space is frequently used
to represent geometric entities. Closed bounded sets in R2, for example, yield enough
variety to describe fractals, yet are restricted enough to allow the construction of the
well-behaved Hausdorff metric. Its associated completeness property even lets us take
limits of sequences in this space. To elaborate slightly, a typical construction is the
�iterated function system,� or IFS.

To allow definition of the iterated function system, consider a transformation w
sending a metric space S into itself. Recall that e ∈ R is called a contractivity factor
of w when d(w(a), w(b)) < e · d(a, b) for every a, b ∈ S. In other words, a contractivity
factor is a bound on the expansion of distance that can be observed by application of
w. We say w is a contraction mapping when it has a contractivity factor less than 1.

An iterated function system (S,wn), then, is a complete metric space S along with
a finite set of contraction mappings wn : S −→ S with respective contractivity factors
en. If we take the Hausdorff metric space X induced by S, we define the transformation
of the IFS to be a map W : X → X given by

W (A) =
⋃

n

wn(A).

It is not difficult to show that e = max en is a contractivity factor for W . A good
stepping stone for showing this bound is the inequality:

d(A ∪B,C ∪D) ≤ max{d(A,C), d(B,D)}.

When e < 1, it is an immediate consequence of completeness of X that any element
G ∈ X generates a convergent sequence Gi under repeated application of W :

G0 = G, Gk =W (Gk−1).

We call the limit point A of our sequence Gi the �attractor� of the IFS with respect to G.
Without much additional trouble, it can be shown that the attractor A is independent
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of the choice of G. Even a single point set G is enough to generate the same limit set
A. (Conveniently, G must be nonempty to be in X.) Since A is independent of the
choice of G, it makes sense to speak of the attractor of the IFS without any reference
to G. In the Euclidean plane, IFS attractors exhibit a variety of visually interesting
fractal shapes even when constructed from simple linear maps. The following four affine
transformations completely determine a compact subset of R2 which resembles a fern,
rendered in Figure 4-1:
(

x
y

)

7→
(

0 0
.16 0

)(

x
y

)

+

(

0
0

)

;

(

x
y

)

7→
(

.2 −.26
.22 0

)(

x
y

)

+

(

.23
1.6

)

;

(

x
y

)

7→
(

−.15 .28
.24 0

)(

x
y

)

+

(

.26

.44

)

;

(

x
y

)

7→
(

.75 −.04

.85 0

)(

x
y

)

+

(

−.04
1.6

)

.

Figure 4-1. A rendering of the attractor of the linear IFS described by the matrices
above.

The algorithm used to render the picture is stochastic, and actually requires four
more numbers for producing the image, representing the weighting of each map required
to make a visually well-balanced rendering of a fractal set that is not naturally suited to
a pixelated grid. In this case, the fourth transform was favored heavily, with a weighting
of 74%, while the other three transforms shared equally the remaining 26%. For a
description of the algorithm, see Barnsley [2, p. 91]. The values for the fern transforms
and rendering were taken from [4].

5. Applications of Compactness. Compactness and total boundedness are a bit
more obscure to apply. Generally speaking, one way to use compactness is to use the
maximum value theorem to show existence of solutions in optimization problems. De-
scribed in this section is a problem that attempts to find an optimal geometric shape
satisfying a certain property. The author briefly conjectured that existence was demon-
strable by describing the geometric shapes as elements of the Hausdorff metric space
induced by the Euclidean metric on the unit square. Since then, he has thought of a
counterexample which seems to indicate that attempting to use the Hausdorff metric in
this way cannot yield an existence proof. Following the description of the problem, this
reasoning is given.
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The problem is the unsolved �opaque square� problem, which is discussed briefly
in [3, p. 17]. As depicted in Figure 5-1, the opaque square problem is to find a subset
of the unit square of minimal measure that intersects every line segment joining two
boundary points of the square and crossing the interior. The shape shown is a conjec-
tured minimum. It is shorter than an �X� crossing corners, and shorter than an �H,�
even with the sides bent in a bit.

Figure 5-1. The shape strictly inside the square is the conjectured set of minimal
length that intersects every line segment adjoining distinct sides of the square.

If we required our answer to be a closed and bounded subset of the unit square,
it is conceivable that we would still have a meaningful question. And if we made this
requirement, then we could topologize possible answers using the Hausdorff metric.
Since the unit square is compact, its induced Hausdorff metric space is compact. The
�opaque� sets would form a closed subset of this space, and thus would be compact.
The maximum value theorem tells us that every continuous real function on a compact
space has a minimum. So existence boils down to finding a continuous measure function
on this space.

Many options are available for measure functions. One natural choice is the 1-
dimensional Hausdorff measure, which in our case essentially counts the order of growth
of the number of ε balls required to cover a certain set as ε goes to 0. The general
definition can be found in [2, p. 200]. For the purposes of this discussion, it suffices to
assume that we can pick a measure whose value on a line segment inside the unit square
is the length of the line segment. We will for the moment call such a measure function
reasonable.

Unfortunately, when we try to apply the maximum value theorem to the Hausdorff
metric space with respect to a measure, we discover that any reasonable measure func-
tion is discontinuous with respect to the topology generated by the Hausdorff metric.
That is, we cannot make a Hausdorff neighborhood around A ∈ X small enough to keep
the measure of points in this neighborhood within a certain interval. This is because,
for any ε expansion of A ∈ X, we cannot prevent a dense scribble of arbitrary length
inside the expansion from being added onto the side of A. See Figure 5-2.

To handle this difficulty, we might attempt to find a subspace of X that discards
�pathological� shapes like the one depicted in Figure 5-2, while still preserving com-
pleteness. As was noted before, the Hausdorff limiting process is well behaved under
some types of restrictions, since completeness still holds if we restrict X to contain only
elements that are connected in S. Likewise, completeness holds if we restrict to elements
of constant 1-dimensional Hausdorff measure.
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Figure 5-2. A depiction of the reason why measure functions are discontinuous with
respect to the Hausdorff metric. Keeping a set within a certain ε expansion is not
restrictive enough to put bounds on measure. A small shape of large 1-dimensional
measure can be fit inside any epsilon expansion without changing the Hausdorff distance
to another set by much.

There seem to be a variety of ways to impose �niceness� on shapes; for example we
might require that a good approximation of a 1-dimensional shape in X be recoverable
from its ε expansion for small enough ε. So we might surmise that we should think
of various �niceness� conditions and check their completeness. A successful restriction
might tell us what sort of set we were looking for to satisfy our opaque square problem.
We can, after all, imagine that there might be closed bounded opaque sets that seem
quite unsatisfactory as solutions to the opaque square problem. For example, if we
found a pathological example of an opaque, closed set that was also totally disconnected
and had zero measure, would we find that acceptable?

One necessary quality of a �niceness� property can be observed from the definition
of continuity if we decide to use the 1-dimensional Hausdorff measure. To show that
two sets are close in Hausdorff measure, we need, as ε goes to zero, a relative bound on
the number of ε balls required to cover each of the two sets. We need to deduce such a
bound from the Hausdorff distance between the two sets being small.

To spend time creating exotic �niceness� properties and checking their completeness,
however, would be a mistake of optimism. The disappointment of our approach comes
when considering extremely restrictive niceness properties. For example, since the con-
jectured minimal is the union of four line segments, it seems suspicious that we should
reject any finite union of line segments. Indeed, if we accept only unions of N or fewer
line segments for some constant N , we may as well throw away the Hausdorff metric
completely and topologize via parameterization by R4N . (Which by the way gives us
a trivial existence proof for optimality among line segment unions of bounded order.)
But if we include all finite unions of line segments in our subspace of X, we already
have enough elements to make any �reasonable� measure function discontinuous. Below
is a counterexample demonstrating this fact. It is a convergent sequence of sets, each
comprised of finitely many disjoint line segments, having the property that while each
element has reasonable measure 1/2, the limit has reasonable measure 1.

Define the subset of the real line In to be n equally spaced points between 0 and 1,
excluding 0, but including 1:

In = {1/n, 2/n, 3/n, . . . , 1}.

Consider the sequence Dk = Ik× [0, 1/2k]. Clearly each element is closed and bounded,
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and must have �reasonable� measure 1/2, since each is the union of k disjoint line
segments of length 1/2k. But it is also easy to see that the limit of Dk in X is the
line segment [0, 1]× 0, which must have �reasonable� measure 1. We conclude that any
�reasonable� measure defined on a subspace of X that includes all finite unions of line
segments is necessarily discontinuous. And the set of all finite unions of line segments
is not even closed.

Of course, a second and more basic problem of our approach is this: Although we
might find a class of sets that had an optimum, it is not at all clear why it would directly
yield any information about the shape of a minimal set. It seems very difficult even to
come up with a method for approximating a particular minimal set since, with no notion
of derivative or incremental displacement, it is unclear how to improve an estimate.
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