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Abstract

Computational methods for automated genome annotation are critical to understanding and interpreting the
bewildering mass of genomic sequence data presently being generated and released. A neural network model of the
structural and compositional properties of a eukaryotic core promoter region has been developed and its application
for analysis of the Drosophila melanogaster genome is presented. The model uses a time-delay architecture, a special
case of a feed-forward neural network. The structure of this model allows for variable spacing between functional
binding sites, which is known to play a key role in the transcription initiation process. Application of this model to
a test set of core promoters not only gave better discrimination of potential promoter sites than previous statistical
or neural network models, but also revealed indirectly subtle properties of the transcription initiation signal. When
tested in the Adh region of 2.9 Mbases of the Drosophila genome, the neural network for promoter prediction (NNPP)
program that incorporates the time-delay neural network model gives a recognition rate of 75% (69/92) with a false
positive rate of 1/547 bases. The present work can be regarded as one of the first intensive studies that applies novel
gene regulation technologies to the identification of the complex gene regulation sites in the genome of Drosophila
melanogaster. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recent advances in sequencing technology are mak-
ing the generation of whole genome sequences common
place. Capillary sequencers speed the production of raw
data. Changing tactics from traditional mapping and
sequencing clones in series to an integrated simulta-
neous mapping and sequencing approach (whole
genome shotgun) has significantly reduced the amount
of time it takes to completely sequence a genome. These

improvements in genomic sequencing are possible be-
cause of software advances that fully exploit mapped
clone constraint data and directly attack the problems
that repetitive sequences cause during sequence assem-
bly (Myers et al., 2000).

At present, several very large-scale genomic sequenc-
ing projects are complete or are expected to be com-
plete within a few months. These initial genome
sequences are from key model organisms in genetics
and include five eukaryotes, Saccharomyces cere�isiae,
Schizosaccharomyces pombe, Caenorhabditis elegans,
Drosophila melanogaster and Arabidopsis thaliana, as
well as draft human sequence. In a few years, sequenc-
ing new genomes and individuals will become routine
practice. These raw data are not immediately useful and
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interpreting them places major demands on the field of
computational biology.

The development and application of a novel neural
network system to recognize eukaryotic polymerase II
promoters in the annotation of the D. melanogaster
genome are presented. A time-delay neural network
(TDNN) is developed, an architecture that was origi-
nally introduced in speech recognition (Waibel et al.,
1989; Lang and Waibel, 1990), to model the complex
sequence structure of a transcription start site. The
transcription start site (TSS) is the location upstream of
a gene where the polymerase II protein binds to the
genomic DNA and initiates the transcription process.
The entire region around the transcription start site is
called a promoter.

A typical polymerase II promoter consists of multiple
functional binding sites that are involved in the tran-
scription initiation process. Separate neural networks
for these individual binding sites (TATA box and initia-
tor (Inr)) are trained and integrated into a time-delay
neural network. Such an architecture is well suited to
model this complex sequence structure because it allows
for variable spacing between functional sites (equivalent
to different time points in speech recognition), a feature
common to polymerase II promoters.

These promoters have a very complex structure (for
reviews see: Pugh and Tjian, 1992; Pugh, 1996; Yoko-
mori et al., 1998; Kornberg, 1999) consisting of these
multiple DNA binding sites for transcription factors.
Some of these sites enhance transcription and some
other repress transcription. The nucleotide pattern of
the sites is often related to the strength of binding. In
addition to these core promoter elements in the vicinity
of the transcription start site, there exist long-range
interactions through so called enhancer sites. Therefore,
current methods to model these promoters are pruned
for a high rate of false positives and the task of
promoter recognition can be seen as one of the most
difficult in the field of DNA sequence analysis.

2. Methods

2.1. Time-delay neural networks

For promoter modeling, a special neural network is
chosen, the TDNN architecture developed by Waibel et
al. (1989). This architecture was originally designed for
processing speech sequence pattern in time series with
local time shifts. The usual way of transforming se-
quence patterns into input activity pattern is the extrac-
tion of a subsequence using a fixed window. This
window is shifted over all positions of the sequence and
the subsequences are translated into input activities.
The network produces an output activity or score for
each input subsequence.

The following two promoter specific features have to
be learned:
� The network has to recognize subsequences that may

occur at non-fixed positions in the input window.
Therefore the network has to learn that the subse-
quence is a feature independent of shifts in its
position.

� The network has to recognize features even when
those features appear at different relative positions.
This situation arises in cases where different subse-
quences occur in the input window with different
relative distances. This happens very frequently in
genomic sequences when one or more elements (nu-
cleotides) are inserted or deleted in a given promoter.
The TDNN architecture addresses both problems by

imposing certain restrictions on the network topology
and by the way in which weights are updated. Hidden
units are connected to a limited number of input units
that represent a consecutive pattern in the input win-
dow. These hidden units have a recepti�e field, that is,
they are only sensitive to a part of the input window.
The important restriction is that the same recepti�e field
has to be present at each position in the input exactly
once. If the input window contains, for example, ten

Fig. 1. An example of one-layer time-delay neural network. The small squared boxes symbolize the neurons. The input layer
contains ten input units. Each window of three units is connected with one hidden unit through a linked receptive field (marked by
little circles). Finally, all hidden units are connected with the output unit.
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Table 1
NNPP prediction performance on the four-fold cross-validated test dataset

TATA box% Promoters Initiator Threshold (0–1) forCombined Multi-layer perceptron
FP-rate (CC) two-layer TDNNrecognized FP-rate (CC) FP-rate (CC)combined TDNN

(CC)

0.8% (0.28) 0.0% (0.38)10 0.990.2% (0.36) 0.2% (0.35)
2.7% (0.27) 0.1% (0.38)0.3% (0.45) 0.9720 0.3% (0.45)

0.5% (0.52)30 7.0% (0.28) 0.3% (0.50) 0.92 0.8% (0.48)
10.6% (0.26) 0.4% (0.60)0.9% (0.56) 0.8540 1.9% (0.50)

1.3% (0.62)50 18.7% (0.25) 1.0% (0.65) 0.70 3.7% (0.51)
33.0% (0.21) 3.1% (0.61) 0.3860 9.9% (0.44)3.8% (0.60)
45.5% (0.18) 5.3% (0.58)7.2% (0.57) 0.2070 16.1% (0.40)

22.3% (0.39)80 60.5% (0.17) 12.5% (0.52) 0.12 45.5% (0.23)

False positive (FP) rates and correlation coefficients (CC) are averaged over the four-cross validated sets.

positions and a recepti�e field covers a subsequence of
three positions, there must be eight hidden units with
the same recepti�e field (see Fig. 1). Since the
corresponding weights in all copies of a recepti�e field
are forced to have the same values, these hidden units
are said to have linked recepti�e fields. In neural
network terminology this is also known as weight
sharing. Each hidden unit is called a feature unit
because it will recognize a certain feature in the input
window irrespective of its relative position. During
learning, the partial derivatives of corresponding
weights in linked recepti�e fields are calculated
separately since these hidden units with their recepti�e
fields at different positions in the input window get
different activation. To adapt a recepti�e field, the
weight update is averaged over all copies of a weight.
This average update is then applied to all copies of that
weight. In this way, it is ensured that the copies of a
recepti�e field remain identical for a given feature. In
the basic TDNN architecture the hidden layers (feature
units) are connected to the output layer in a standard
feed-forward way (Fig. 1). Training is performed using
a modified backpropagation algorithm.

There are several successful applications of TDNNs
in speech recognition (Waibel et al., 1989) and the
recognition of handwritten characters (Lang and
Waibel, 1990). These references include a detailed
description of the time-delay architecture.

2.2. Implementation of the core-promoter time-delay
neural network model (NNPP)

Using the time-delay architecture described above,
two distinct neural networks, one for the TATA box
and one for the Inr, were trained. An input window of
30 bp (−40 to −10) for the TATA box neural net-
work and a window of 25 bp (−14 to +11) for the Inr
network are selected. The window sizes were chosen so
that the consensus sequences for both binding sites are
included. The two signals occur at varying distances

relative to the TSS.
The two time-delay neural networks were trained

independently. It was experimentally determined that a
receptive field size of 15 bp performed the best. For the
TATA network, this leads to a total of 120 input units
(30 bp) and 60 weights (4×15) for each unit in the
hidden layer. The Inr network has 100 input units (25
bp) and also 60 weights (4×15) for each unit in the
hidden layer.

The weights of the receptive fields for both of the two
networks were initialized using the weight matrices
from the literature to ‘push’ them to recognize particu-
lar signals. The TATA box weight matrix was taken
from Bucher (1990), and the Inr weight matrix from
Penotti (1990). These initializations were ideal to train
the TDNNs to recognize the appropriate signals in the
sequence (i.e. the TATA box time-delay network was
forced to train only on the TATA box pattern at
approximately −20 bp). The results of both networks
can be seen in Table 1 and are discussed below.

2.3. Incorporation of feature detector networks into the
final TDNN

To combine the above described individual feature
detector neural networks for TATA and Inr, we use a
two-layer time-delay neural network. The input to this
final TDNN consists of 51 bp, spanning the transcrip-
tion start site from position −40 to +11 and includ-
ing the TATA box and the Inr. The hidden layers from
the two previously trained single-feature time-delay
neural networks are copied into the combined TDNN
and training is carried out. The resulting neural net-
work maps high order correlation between the different
features and their relative distance into a complex
weight matrix. A snapshot of the trained two-layer
(TATA and Inr) TDNN is shown in Fig. 2. The
weights from the hidden layers can be interpreted as the
preferred position for an individual element in the input
window.
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All neural networks were implemented, integrated
and tested using the Stuttgart Neural Network Simula-
tor Software toolkit (Zell et al., 1999). The networks
were then implemented in the neural network for pro-
moter prediction (NNPP) program. This program is
publicly accessible through a World Wide Web server
(http://www.fruitfly.org/seq– tools/promoter.html).

3. Results

3.1. Application of NNPP to a cross-�alidated set of
promoters

Table 1 shows the prediction results for the two
single feature time-delay neural networks, the TATA
box feature detector (column 2), the Inr feature detector
(column 3) and the two-layer TDNN, which incorpo-
rates both (column 4 and 5). The results are averaged
over four cross-validated test sets produced from the
complete dataset of 429 promoters (promoter dataset
including the cross-validation at http://www.fruitfly.
org/sequence/human-datasets.html). The correlation co-
efficient is calculated as defined originally by Matthews
(1975) and later adapted to the problem of gene finding
evaluation by Burset and Guigó (1996) as:

CC=

(TP×TN)− (FN×FP)

�(TP+FN)× (TN+FP)× (TP+FP)× (TN+FN)

As can be seen from Table 1, the performance of the
feature detecting networks used in isolation is rather
poor. The TATA box network has the better perfor-
mance of the two, since over 60% of the vertebrate
promoters contain a TATA box. The predictive power
of the initiator network is weaker because there is no
real consensus sequence for vertebrate Inrs. The TATA
box network recognizes on average 64 (60%) of the 107
promoter sequences in each test set (four-fold cross-val-
idated) with an average of 38 (3.8%) false positive
predictions. If we adjust the threshold so that on aver-
age 75 (70%) of the promoters are predicted correctly,
there are 72 (7.2%) false positive predictions. The Inr
neural network can only detect 11 (10%) of the pro-
moters, with a false positive rate of 0.8%. The combina-
tion of both neural networks increases the prediction
rate. If on average in the four cross-validated sets 54
(50%) promoters are correctly predicted, the false posi-
tive rate drops down to 1.0% (ten coding DNA regions
wrongly predicted as promoters; correlation coefficient
of 0.65), but that is similar to the TATA-only results.
Even if 75 (70%) promoters are correctly predicted, the

Fig. 2. The trained two-layer time-delay neural network. The small squared boxes symbolize the neurons. The input layer is on top
with the window ‘reading in’ the DNA sequence. The receptive fields, indicated with a circle grouping connections from the input
layer to the two hidden layers (TATA and Inr), show the structure of the time-delay connections. Both hidden layers connect to the
single output neuron on the bottom. For clarity, only strong weights are shown. For example, the only significant weights shown
from the TATA-layer to the output unit are the ones that localize the position of the TATA box at the beginning of the input
window (below CCACCGG). The TATA box is boxed. This test sequence of CCACC···GGACG received a score of 0.823 from
NNPP.
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average number of false predictions is only 53 (vs. 72
for TATA alone). At a threshold of 0.12, 80% of the
promoters predicted, the number of false positive pre-
dictions goes up to 125 (12.5%). Twenty-one (19.6%)
promoter sites on average in the test sets cannot be
predicted at all using this two-layer neural network.

For comparison, the results for a ‘standard’ feed-for-
ward backpropagation neural network with one hidden
layer trained on the same datasets are shown in the last
column of Table 1. The number of hidden units and the
number of training cycles were optimized the same way
as for the time-delay neural network. The results show
the superiority of the two-layer TDNN. At a threshold
that gives 64 (60%) correct predictions, the number of
false positive predictions is more than three times
higher for the standard network (99 (9.9%) false predic-
tions) than for the two-layer TDNN (31 (3.1%) false
predictions). This shows that reducing the parameter
space from 3091 adjustable weights in the standard
network to 169 in the TDNN, improves the prediction
accuracy on a limited training dataset (419 promoter
sequences).

3.2. Application of NNPP in Drosophila melanogaster:
the Adh region

To apply the two-layer time-delay neural network to
contiguous genomic sequence, a window of 51 base
pairs is shifted over the sequence base by base. In this
way, a score is computed for every position in the
sequence. These individual scores are subsequently
smoothed by a simple but efficient function, which
selects the position of the highest score in a window of
ten neighboring positions as the final prediction. The
smoothing function is implemented as a post-processing
procedure and is part of the final NNPP program.

To test the accuracy of NNPP in Drosophila
melanogaster, NNPP was applied to the 2.9 Mbase ge-
nomic sequence of the Adh region (Ashburner et al.,

1999) (dataset at http://www.fruitfly.org/GASP1/). A
careful promoter analysis in this region (Reese et al.,
2000a) resulted in high quality full-length cDNA align-
ments for 92 genes out of the original 222 gene
annotations.

In Table 2 the NNPP results are reported on this test
set of genes in the Adh region (Ashburner et al., 1999)
in comparison to CoreInspector (Scherf et al., 2000)
and MCPromoter (Ohler et al., 1999), both evaluated in
a recent annotation experiment (Reese et al., 2000a).
Although NNPP is far from accurate, this test shows
good results similar to those in a review by Fickett and
Hatzigeorgiou, 1997. In this paper they reported a
recognition rate for NNPP of 54% of the known pro-
moters at a threshold of 0.8. In Adh, the same threshold
identifies 69 or 75% of the total of 92 annotated pro-
moters with a false positive rate of 1/547, similar to the
rate of 1/460 reported in Fickett and Hatzigeorgiou
(1997). It has to be noted that Fickett and Hatzigeor-
giou used both strands to calculate the false positive
rate while for Adh only the gene strand was used. If one
applies a more stringent threshold of 0.97, 35 of the 92
promoters are still recognized with a much lower false
positive rate of 1/2416. The higher classification rate in
the Adh region might be due to the small number of
promoters or the difference in composition in the Fick-
ett and Hatzigeorgiou (1997) dataset.

4. Discussion

The presented tool is an artificial neural network
model using a time-delay network architecture. This
network has two feature layers: one for the TATA box
and one for the Inr (initiator). The output of both
feature layers is combined in a time-delay neural net-
work. It is shown that such a neural network detects
the TATA box and the Inr and is insensitive to their
relative spacing. It is therefore an excellent model for

Table 2
Evaluation of promoter prediction systems in the Adh region

Rate of false predictions in annotated Adh regionProgram name Identified TSS
(total of 853 180 bases)

CoreInspector 1 (1.0%) 1/853 180 (0.00012%)From (Reese et al., 2000a)
NNPP 1/2437 (0.041%)MCPromoter v2.0 31 (33.6%)

NNPP (t=0.99) 20 (21.7%) 1/6227 (0.016%)
35 (38.0%)NNPP (t=0.97) 1/2416 (0.041%)

1/547 (0.183%)69 (75.0%)NNPP (t=0.80)
1/400 (0.250%)80 (86.9%)NNPP (t=0.70)

The table shows the results of the ‘search by signal’ program (CoreInspector) and ‘search by content’ program (MCPromoter) from
the experiment of Reese et al. (2000a) and the prediction sets from NNPP with different thresholds. The rate of false positives is
shown for the sequence where cDNA annotations define the region as non-promoter.
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the compositional sequence properties of a eukaryotic
core promoter region. The discriminative ability of such
a model for the short core promoter region of −40 to
+11 bases spanning the transcription start site is so
strong that this model can be used to predict an entire
promoter in genomic DNA. These results show that the
highest information content in a promoter region exists
in the core promoter region.

The program is able to predict over 70% of transcrip-
tion start sites in genomic DNA when used with the
default parameters. The false positive rate calculated on
the Adh region in Drosophila melanogaster is 1/547
bases. Matthew’s correlation coefficient (Matthews,
1975) is 0.58. Thirty percent of all promoter sequences
remain undetected and this is probably due to the
non-local structure of the promoter region, where ini-
tiation control elements can occur at positions many
kilo bases distant from the transcription start site.

The NNPP program can easily be extended to incor-
porate novel information as it becomes available. Other
known promoter elements such as the CAAT box, GC
box, DPE (downstream promoter element; so far only
known to exist in Drosophila), and conserved transcrip-
tion factor binding sites can also be used within the
existing framework. The extended parameter space of
such an extended model would require more data for
training.

The positive results obtained using the time-delay
architecture will hopefully lead to more widespread
application of neural networks to similarly complex
problems in molecular biology, such as the detection of
splice sites and protein–protein interaction motifs.

For the application to complete genome annotations
the NNPP code needs to be integrated into a more
global annotation system such as Genie (Kulp et al.,
1996; Reese et al., 1997, 2000b).

Since the NNPP program is made available on the
World Wide Web it has been widely used in the scien-
tific community to hypothesize about potential tran-
scription start sites. Recently the program was used to
correct an important C. elegans gene, unc-86, that
encodes a POU IV class transcription factor. In this
study, the transcription start site prediction by NNPP

was experimentally verified (Roehrig, 2000, personal
communication).

This example demonstrates how useful a program
like NNPP can be in the right context. It is clear that a
program cannot substitute for the final experimental
proof but the example shows that it can give direction

and guidance for such experiments to verify computa-
tional predictions.
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