
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

24

Load Balancing Management by Efficient
Controlling Mobiles Agents

Mohamed Bahaj, Abdellatif Soklabi, Ilias Cherti

 Abstract- Load balancing is a computer networking
methodology which allows the distribution of the workload
across multiple computers or computing devices, such as central
processing units, disk drives, or other resources, to reach optimal
resource utilization, reduce response time, maximize throughput
and circumvent overload. The Use of multiple computers with
load balancing, instead of a single computer, may increase
reliability through redundancy.

Our contribution outlines the adaptation of the Shadow
approach used to control mobiles agents for developing a load
balancing management algorithm in distributed systems. This
approach does not only distribute the loads on the nodes and
collect its running result, but it also manages the tasks execution
places during all the execution time. Thereby, we get a self-
organized load balancing infrastructure.

 Keywords— distributed computing, load balancing, mobiles
agents.

I. INTRODUCTION

Load balancing in distributed computation is very
important to equilibrate the use of resources which are
valuable to both applications and system [1] [6] [11] [12]
[13] [17]. Both the applications and the system have only a
limited amount of them. So it is preferable that applications
can utilize resources of different nodes to minimize the
running time.

A mobile agent is a computer entity capable of reasoning,
running in another remote site, searching and gathering the
results, cooperate with other mobile agents, and returning to
its home site after completing the attributed tasks [9] [19].
Mobile Agent based applications research are increased and
are used to solve many problems of distributed systems
[18].

The shadow approach constructs an artificial links
between shadow and agents. The shadow agent records all
dependent agents’ location. Removing the shadow agent
implies that all dependent agents are affirmed orphan and
finally be terminated. It creates agent proxies that maintain
a path from Shadow agent to every dependent agent [5].
This approach can be used to terminate a group of agents
even if the location of each single agent is unknown.

In this paper we will underscore a new solution to load
balancing using mobile agent control, especially by
developing shadow protocol, which is used in orphan
detection to allow the balance of the resources access in the
distributed systems, and also by adding a receiver agent in
charge of sending information about its home node load.

Manuscript received on January, 2013.
Mohamed Bahaj, Department of Mathematics and Computer Science,

University Hassan 1st, Fsts, Labo Liten, Settat, Morocco.
Abdellatif Soklabi, Department of Mathematics And Computer

Science, University Hassan 1st, Fsts, Labo Liten, Settat, Morocco.
Ilias Cherti, Department of Mathematics and Computer Science,

University Hassan 1st, Fsts, Labo Liten, Settat, Morocco.

Besides, our suggestion also involves adding information
about the node load from which the request was sent to the
time to live sending to shadow agent.

This article is basically divided into many sections, each
of which analogically underlines all the aspects of the load
balancing based approach. The second section, presents the
relationship between load balancing and mobiles agents.
The third section, describes how Mobile agent-based
applications may run out of resources. The forth section,
discusses the Based on Resource Management. The fifth
section, concerns itself with a detailed presentation of the
Shadow agent model, and the last section deals with the
load balancing management by controlling mobiles agents.

II. LOAD BALANCING AND MOBILES AGENTS:

The mobile agent technology can provide various
answers to solve the problems of distributing the load in a
set of computational entities. Migration of processes was
traditionally a solution to this problem, generally under the
supervision of a centralized controller. In a modern
perspective, multi agents systems can decentralize the
distribution of the computational load. In fact, a complex
application is divided into autonomous parts, each of which
delegated to one or more mobiles agents. Each mobile agent
is in charge of searching for the node of the network which
offers the most convenient resources, where to execute its
own part of code. During the execution, agents can move to
other nodes where more computational resources are
available, in order to better distribute the load [11].

III. PROBLEM DESCRIPTION

Mobile agent-based applications are planned to allow the
number of agent to augment across several nodes, without
taking into consideration the agent’s mobility during their
lifetime. When the agents are activated, they consume a lot
of system resources, such as processor power and memory.
If an agent is attached to a certain nodes, it often depends
on the resources available by them. Hence, if the node runs
out of resources, the quality of the service provided by the
mobile agent may decrease.

Moreover, extra resources might not work in an optimal
way, as it is possible that different nodes are more suitable
to run the agent, because of which some nodes may be over
loaded, others may be under loaded or some of them may be
even inactive. Hence, to avoid this type of state resource
management plays an important role and helps in reaching
better performance. Therefore, well-placed agents in the
network reinforce the optimal use of the resources
throughout the system [6] [7].

To solve this problem, we need a self-organized load
balancing [8] infrastructure which can quickly respond to
the various changes in the demand of the various network
resources.

Load Balancing Management by Efficient Controlling Mobiles Agents

25

IV. STATE OF THE ART IN RESOURCE
MANAGEMENT

When tasks enter into a distributed system, the following
methods are developed with the goal to disperse them on
the various processors [1].

A. Task Assignment Approach

This approach considers each process as a collection of
linked tasks which are scheduled to the appropriate nodes
so as to get better performance. In this it is implicit that
process is already opening into tasks. It conceder also that
the power of each processor, processing cost of every task
on every node, inter-process communication among tasks,
resource requirements of the tasks and available resource at
each node are known. Based on above all information an
optimal assignment of tasks is found. But reassignment of
the tasks is in general not possible in this approach.

B. Load Balancing Approach:

In this approach, all processes submitted by the users are
dispersed among the network nodes so as to balance the
workload among the nodes by evidently transferring
workload from lightly loaded nodes to heavily loaded
nodes. Static algorithms employ only information about the
average behavior of the system ignoring the current
situation of the system. Dynamic algorithms react to the
system situation that changes dynamically. Static
algorithms are further classified as Deterministic versus
Probabilistic. Deterministic algorithms use the collected
information about the nodes properties and the processes
character to deterministically distribute processes on nodes.
Probabilistic algorithms uses information concerning
system static attributes such as the number of nodes,
processing capability of the nodes and network topology to
simplify placement system.

C. Load balancing using mobile agent:

The majority of mobile agent systems are limited to weak
mobility [11]. There are a few ones which support the
strong mobility, such as JIAC [12] and NOMADS [13]. To
implement strong agent mobility, NOMADS is built on the
top of a particular Java Virtual Machine that is capable to
capture then restore the running state of a Java Thread on
different computers. Organic Grid approaches are modeled
in a way to simulate complex biological systems organize
themselves, by dividing a large computational task into
sufficiently small subtasks. Each task will be assigned to
one or more mobiles agents, who are then released on the
Grid and discover computational resources using
autonomous behavior.

JIAC adopts an approach that gives a language to agents’
implementation, which is interpreted at Java Virtual
Runtime. Strong mobility used in a multi-agent system
accelerates the dynamic resource sharing, as provided by
diverse Grid systems. However, most Grid computing
systems can only decide at which host to start a job and do
not transfer load in a dynamic manner.

In the JIAC infrastructure the agents can be inactive or
very busy while waiting for new requests, but they use up
resources while reacting to a service request. In computing
infrastructures, downtimes of service providers should be
decreased. JIAC offers relocation transparency which
maintains that service requests never get lost. Both the
service provisioning activity and the agent movement are

resumed on the target nodes. In addition, JIAC does not
take for granted that agents are independent of each other.

The problem is that we are not capable to run daemons
that report exact and up-to-date sub-cluster node status
information to the centralized scheduling software. The
only information that we receive from a remote node is the
execution time of the last job, and if several jobs were run,
we also receive from the remote node the average execution
time. The classic expression of static and dynamic
scheduling is no longer completely appropriate due to its
inability to explain run-time job assignment algorithms,
which use minimal information about remote nodes. These
algorithms are not strictly static as job placement is
performed at run-time. They are also not strictly load
balancing algorithms in the sense that a centralized
algorithm decides job placement and task until jobs are
really ready to be executed [2].

Comet is load balancing algorithm [20] based on the
technique of calculating credit by the formula:

�� � ��1 �� 	 �2 �� � �3 �
Where wi: computational load of an agent ai

hi: intra-machine communication load of an agent ai
gi: inter-machine communication load of an agent ai

x1, x2 and x3 are application dependent coefficients used
to estimate the affinity of the agent to the machine.

To calculate a machine Load the algorithm uses the
following formula:

�� � �� �� 	 ���

���� � �
Where Lk is the charge of the machine Mk calculated by
the sum of agents who have located on this machine,
knowing that:
ui: the sum of the costs of communication within and
between machines.

�� � �� 	 �
� � �� ��, ��� 	 � � � ��, ���

 ���� � ����� ���� ≠����)

Where c (ai, aj): number of ticks (unit of time) needed to
establish communication between two agents ai and aj
F: factor of degradation of the bandwidth in inter-machines
communication.

The agent with the lowest credit will be selected for
migration, because this agent spends most of its execution
time in communication with remote agents. The location
policy is to identify the remote agent that generated the
largest flow communication with the agent to migrate. Thus
the machine where the agent is selected will be the new
destination.

The Limits of Comet is that it does not deal with the
following cases:
- If the machine chosen by the location policy is loaded
- If the agent selected by the selection policy does not

communicate with any external agent, which machine to
choose?

- the algorithm does not specify whether the coefficients
x1, x2 and x3 agent would change after its migration to a
new machine or not.

In addition, the algorithm considers that mobile agents
system is the only system installed on the machine, or it is
not the case in reality, until now there is no operating
system based on mobile agent, there is only management

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

26

software of mobiles agents, so the consumption of resources
is shared between applications of mobiles agents and other
applications on the operating system.

V. THE SHADOW AGENT MODEL

The shadow agent model basically refers to the concepts
of agents and places described in detail in [14], [15] and [5].
Since the shadow is already within the system, the agents
don’t need to contact either the application or to the
computer system containing the application. During
intervals called time to live the system checks for agents
that do not have yet a related shadow agent. Then, they are
considered as orphan agents and automatically removed.

In case a new agent is created by another one, the system
assigns to the new agent the shadow of the creating-agent.
This process causes the agent to load more balancing by
creating other agent, whereas the shadow agent keeps
controlling the load balancing and the same remaining
(Fig.1).

Fig.1 creating new agents

By removing a shadow agent all relied agents are
affirmed orphans. It guarantees that orphan detection has
removed all agents. Adding the path concept to this
approach allows more control of the mobiles agents. Agent
proxies maintain the relationship between the shadow and
its dependent agents, (that fortifies the use of the shadow
agent like a load balance controlling) thus create a path that
leads to the agent. Storing the last place of the agent allows
us to find the beginning of a path for each agent. Even
though the path is lost, the agent will need to contact the
shadow when the ttl becomes zero [5].

If an agent arrives at a place that has no proxy for the
shadow (Fig. 2), one is created to retrieve the result of
distributed computing.

Fig. 2 the use of proxy for the recuperation of the agent path

The agent’s destination node is stored in the proxy
together with its ttl, when it migrates to another node. When
the time to live becomes 0, the agent sends a request of the
ttl to the agent’s shadow to extend its life; therefore, the
agent's new place is made known to the Shadow. The fact of
knowing the location of agents allows knowing the amount
of charge in each node.

The agent’s place decrement in regular intervals it’s time
to live until it becomes 0. At this time, a message
containing the ID of mobile agent and shadow is returned to
the shadow agent. At the same time, a timer is triggered
with a timeout and the agent enters the verification period.
Each shadow has a particular timeout with the aim of more
flexibility. However, this corrected by entering a per-place
timeout. The chosen timeout is the minimum of agent and
place timeout.

Once the home place of the shadow receives the check
message, it stops the timer that has been started previously,
and then the time to live is sent back to the concerned agent.
This allows detecting terminated agents. The agent requests
ttl from the responsible shadow. This latter verifies the ttl if
it is superior to 0. if it is so the system sends it back to the
requesting agent. When the agent receives the message, the
timer for the timeout stops, and the agent’s ttl is set. This
ends the agent’s check phase and allows it to continue its
work again. When an agent arrives at a place, the agent
proxies are searched. If none exists, a new one is created,
and the agent gets a reference on it. As soon as an agent
wants to depart, its ttl is checked. This is done to prevent an
agent who is in the check phase to move around. If it is not
in the check phase, the information in the agent proxy is
updated to point to the target place. At the same time a
timer is started, that removes the path after the addition of
remaining ttl and timeout [5].

The shadow can decide whether an agent’s lifetime is to
be extended or not and by which interval. This decision will
be clearly pored over when we discuss it in the load
balancing by giving the shadow agent the possibility of
giving the agent the order to migrate to the under loaded
nodes.

VI. OUR CONTRIBUTION:

A. How to estimate the nodes load:

To estimate workload of a particular node of the system,
CPU utilization of the node is the measure used. Threshold
policy is used to decide whether a node is lightly loaded or
heavily loaded. It can be static where each node has a
predefined entry value depending on its processing
capability. Whereas in dynamic the threshold value of a
node is calculated Location policies [1]

B. The agent’s execution location:

At the start, the system stores in a database the
information on the load on all nodes and the overall system
load by creating a Receiver agent at every node of the
network (fig. 3), The receiver agent is responsible for
sending information about resources and the node load in
which it was created (Fig. 4). The receiver agent like other
mobile agents also asks to continue the ttl existed allowing
the system to maintain its base of support provided on each
machine update, which allows us to have a very flexible
system change rapid weight, loads on the network.

Load Balancing Management by Efficient Controlling Mobiles Agents

27

Fig.3 Receiver agent

Fig.4 function of the Receiver agent used in the
application that allows the recuperation of the CPU load

Then a shadow agent will be created in the same place of
the node that contains the application source. It will also use
the information stored in the database, in which the
networks nodes load information have been together since
the receptor agents managed the agent’s migration to the
least loaded neighbor nodes.

Each time an agent wants to redistribute a new load; it
sends a message to the shadow agent stating its intention to
create new agents (Fig. 5). Then, the shadow agent sends a
response containing the ttl assigned to the new agent and
creates nodes that contain best offers in terms of availability
of resources it needs to send an established agent to be
executed.

Fig.5 the function treating the ttl demand for created agents

The principle of our solution lies in the fact that the
request message ttl is accompanied by information on the
implementation status of the agent, which is the node load
from which the request was sent. Whenever the shadow
agent receives a ttl request, it verifies the execution state of
the agent. If the agent has already finished its task the
shadow renews the ttl. If not, if the agent is awaiting
execution, the shadow seeks in the database all the
neighbors of the node that contains the agent that sent the
request and compares ttl node load with the load of each
neighboring node. If it finds that the node that contains the
agent is less loaded it renews the ttl. If not he accompanied
the ttl by an order of migration to the neighbor node with
the lightest load (Fig. 6).

Fig.6 processing algorithm of ttl demand

C. When the agent will change the place:

The case of load balancing applications requires that the
application should be restored exactly as it was before the
movement of agents, for it must be transparent to the
application itself. This requires a strong mobility
mechanism [11], which in turns recommends the execution
state to be transferred and resumed at the destination node.
However, some recent works have shown that peculiar
object-oriented support structures can allow load balancing
by means of object migration mechanisms which do not
require strong mobility [1]. The advantage of our approach
is that it works with both mechanisms- since mobile agents
can keep their states of execution.

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

28

To detect neighbor nodes of the node that contains the
receiver agent diffuses into the network a CheckNeighbor
message. Each time the CheckNeighbor message goes
through a node the nodes number counter of traversed
nodes will be incremented by 1. When the Receiver
receives the agent CheckNeighbor message, it verifies the
number of nodes that the message has traversed if it is equal
to 1, it responds by ImYourNeighbor message containing
the IP address of the node that contains it. Once the
Receiver agent receives the response it transferred to
shadow Home Place after adding the IP address of the node
that contains it. The Shadow Home Place handles up to
insert received data in the given database. Like that, we
have the list of all neighboring nodes of the network. This
database will be used by the given shadow agent to
determine the most suitable node to receive the newly
created or migratory agents (Fig. 7).

D. Tasks performed by different agents:

Once the stain of an agent is accomplished, it must join
the shadow agent to provide the result of the task
accomplished. However, in case an agent takes a long time
to terminate its task, the system will need to control its
state. In doing so, it has to find its location; this can be
done with the use of the information stored in the agent
proxies. If the agent is in the local list of active agents, it is
already found. If not, the related agent proxy is searched. If
it is not found, an error is returned. If it is discovered, a
find request is sent to the target found in the proxy. At the
target place the list of active agents is again examined. If
the agent is found, a message containing its location is sent
back. If not, the related agent proxy is searched again. If no
proxy exists, an error is sent back. Otherwise, the message
is sent on. This is repeated until the agent is found or the
path ends (see Fig. 8).

Fig.7 algorithm for the detection of neighboring node.

Fig.8 Finding Agents function used in the application

VII. APPLICATION

To illustrate our solution with an example, we have
chosen JADE for its qualities as it is an open source; it is
compliant with the FIPA (the Foundation for Intelligent
Physical Agents) and can be compiled for devices with
limited resources. JADE must be installed on all nodes. In
our example, we have installed it on tree machines
including a physical machine and the two others on
VMWARE (Fig.9) and (Fig.10). Agents will be created on
the node that is the least efficient and the system will take
care of balancing the load on other nodes.

Fig.9 used nodes configuration

Fig.10 JADE Agent Platform distributed over several
containers used in the application

We have chosen the example of buyers and Sellers,
which is integrated with JADE. At first, all Sellers and
Buyers agents are created in the less high-performance
node. Sellers agents must communicate with each other,
and they should have a high speed of execution to meet the
demands of parallel Buyers agents and vice versa. Where
does the need to use a load balancing approach to
accelerate their response? In our application, we have used
three Sellers and 60 buyers to implement the load
balancing approach using shadow agent. While swinging
the load on various nodes of the network, the system will
execute the Sellers Agents in nodes providing the best
deals in terms of resources.

Buyers Agents request quotes from Sellers Agents then
proceed to buy at the cheapest price, if it is within the
budget, otherwise they require a different set of quotes.
Sellers respond to requests with a price that is valid for a
limited time. The Sellers keep an eye on the price they
quote to each customer and accept a purchase if the price
offered is equal to the sum quoted and also if the request is
received in time. Sellers must be able to manage several
parallel inquiries (Fig.11).

Load Balancing Management by Efficient Controlling Mobiles Agents

29

Fig.11 screenshot of the application executing in eclipse

We will create a special agent for the application
execution time recovery, which is possible by the recovery
system date of its creation and its destruction (Fig.12).

Fig. 12 recovery execution time part code

Fig.13 Application hardness according to the number of
Buyers agents without Shadow approach

Fig.14 Application hardness according to the number of
Buyers agents using the Shadow approach

We note that the execution time of the application has
been reduced by integrating the results of the shadow agent
load balancing approach in the application. The results of
the shadow approach are more interesting, especially when
the number of agents increases.

VIII. CONCLUSION

The more that load balancing by controlling mobile agent
significantly reduces application's tasks execution time. It
also allows them total control. The force of the load
balancing by using mobiles agents is reflected in the made
that agents may create other mobiles agents and assign to
them a parts of tasks at any time of the application
execution, which improves balancing the use of the network
resource. The approach can be further expanded by
improving the communication time between agents, which
are still a subject of considerable research.

REFERENCES
[1] R. Jadhav, S. Kamlapur I. Priyadarshini, “Performance evaluation in

distributed systems, using dynamic load balancing” in International
Journal of Applied Information Systems (IJAIS), Foundation of
Computer Science FCS, pages 36-41 February 2012.

[2] H.A. James, K.A. Hawick_and P.D. Coddington, “Scheduling
Independent Tasks on Metacomputing Systems”, Distributed and
High Performance Computing Group, 9 March 1999.

[3] N. Spanoudakis, P. Moraitis, “Modular JADE Agents Design and
Implementation using ASEME“ in IEEE International conference on
web intelligence and intelligent agent technology, pages 221-228,
2010.

[4] P. Moraitis and N. Spanoudakis, “The Gaia2JADE Process for Multi-
Agent Systems Development”, Applied Artificial Intelligence Journal
20(4-5), pages 251-273, 2006.

[5] J. Baumann, K. Rothermel, “The Shadow Approach, an Orphan
Detection Protocol for Mobile Agent”, July 1998.

[6] A. Singh, “An Efficient Load Balancing Algorithm for Grid
Computing using Mobile Agent” in Anand Singh / International
Journal of Engineering Science and Technology (IJEST), pages
4744-4747, 6 June 2011.

[7] J. Stender, S. Kaiser, S. Albayrak, “Mobility-based Runtime Load
Balancing in Multi-Agent Systems” 18th International Conference on
Software Engineering and Knowledge Engineering, Reedwood City,
CA, USA

[8] J. Chakravarti, G. Baumgartner, M. Lauria, “The Organic Grid, Self-
Organizing Computation on a Peer-to-Peer Network” IEEE
TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS,
2005.

[9] K. Rothermel, M. Schwehm, “MOBILE AGENTS”, in Encyclopedia
for Computer Science and Technology, 1998.

[10] P. Sinha, “Distributed Operating Systems Concepts and Design”,
IEEE Computer Society Press.

[11] G. Cabri, L. Leonardi, F. Zambonelli, “Weak and Strong Mobility in
Mobile Agent Applications”.

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-2, Issue-6, January 2013

30

[12] S. Fricke, K. Bsufka, J.Keiser, T. Schmidt, R. Sesseler, and S.
Albayrak. “Agent based telematic services and telecom applications”.
In communications of the ACM, 2001.

[13] N. Suri, J. Bradshaw, T. Groth, R. Breedy, A. Hill and R. Jeffers.
“Strong mobility and fine-grained resource control in NOMADS” in
Fourth international symposium on Mobile Agents, 2000.

[14] J. Baumann, F. Hohl, N. Radouniklis, K. Rothermel.
“Communication Concepts for Mobile Agent Systems” in Mobile
Agents springer-Verlag, pp. 123 - 135, 1997.

[15] J. Baumann, N. Radouniklis. “Agent Groups for Mobile Agent
Systems“, in Distributed Applications and Interoperable Systems,
1997.

[16] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa. “JADE
PROGRAMMER’S GUIDE”, last update: 08-April-2010. JADE 4.0

[17] J. Cao, Y. Sun, X. Wang, S. Das, “Scalable Load Balancing on
Distributed Web Servers Using Mobile Agents”.

[18] F. BOUZERAA, “Agents Mobiles et Systèmes Distribués” 14
December 2009.

[19] A. Outtagarts, “Mobile Agent-based Applications: a Survey”, in
International Journal of Computer Science and Network Security,
VOL.9 No.11, November 2009.

[20] K. Chow, Y. Kwok, H. Jin, Kai Hwang “Comet: A Communication-
Efficient Load Balancing Strategy for Multi-Agent Cluster
Computing”

Bahaj Mohamed was born in 1964, in Ouezzane, Morocco. He got his
PhD in Applied Mathematics, from University of Pau, France, in 1993. He
is now working as a Professor at the Department of Mathematics &
Computer Sciences, University of Hassan 1er, Faculty of Sciences &
Technology of Settat, Morocco. His research interests include pattern
recognition, Load Balancing & Controls of mobiles agents, Semantic web
& Ontology in MAS.

Soklabi Abdellatif was born in 1985, in El
JADIDA, Morocco. He had a license degree in
computer engineering in 2009 and a master's
degree in computer systems and networks in 2011.
Now he is a PhD researcher in mobiles agents and
web services in Department of Mathematics &
Computer Sciences, University of Hassan 1er,
Faculty of Sciences & Technology of Settat,
Morocco. His research interests include, Load
Balancing & Controls of mobiles agents,
Interoperability between different MAS.

Cherti Ilias was born in 1963, in Oujda, Morocco. He got his PhD in
Applied Mathematics, from University of Rabat, Morocco, in 2007. He is
now working as a Professor at the Department of Mathematics &
Computer Sciences, University of Hassan 1er, Faculty of Sciences &
Technology of Settat, Morocco. His research interests include Semantic
web & Ontology in MAS, Controls of mobiles agents.

