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Abstract

This paper studies a solid film lying on a liquid layer, which in turn lies on a solid substrate. It is well known that, subject to
a compressive membrane force, the solid film wrinkles, dragging the liquid underneath to flow. When the solid film is very thin,
the ratio between the number of atoms at the surface and that in the bulk becomes significant, so that surface stress contributes
to the membrane force. When the liquid layer is very thin, the two interfaces bounding the liquid interact with each other through
forces of various physical origins. We formulate the free energy of the system, and carry out a linear perturbation analysis. A
dimensionless parameter is identified to quantify the relative importance of flexural rigidity, membrane force, and interfacial force
on stability of the structure. Depending on the nature of the interfacial force, several intriguing behaviors are possible; for
example, the solid film may remain flat under a compressive membrane force, or form wrinkles under a tensile membrane force.
We estimate the dimensionless parameter for interfacial forces of several specific origins, including photon dispersion, electrical
double layer, and electron confinement. Emphasis is placed on identifying the thickness ranges of the solid film and of the liquid
layer within which these forces are important.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction SOL structure. The structure can be fabricated by wafer
bonding or by deposition. One example of such struc-
In studying nanostructures, one often encounters inter-tures, a strained SiGe film on a layer of boro-
actions that are different from those acting in macro- phosphorosilicate glass, has been studied for
structures (e.g. gravity and those acting in atomic optoelectronic applicationg7,8], in which the glass
structures(e.g. chemical bonds Reflecting upon cen-  flows at elevated temperatures. A more common exam-
turies of investigations of the role of gravity in the ple of such structures is a metallic film covered by a
motion of celestial bodies, one can readily see that |ayer of native oxide, where the metal creeps at elevated
elucidating the roles of interactions of diverse origins in temperatures. One common observation is that, subject
nanostructures will be a main challenge for some time to a compressive membrane force, the solid film wrin-
[1]. The best-studied example so far involves photon kles, dragging the liquid underneath to flow, while the
dispersion and electrical double layers in stabilizing selid and the liquid remain in conta¢Fig. 1b).
colloids[2—4]. A recent example involves surface stress-  Recall that a thin liquid layer, lying on a solid
es in stabilizing nanoscale domains on solid surfacesgypstrate by itself, can rupture to form islands and dry
[5.6]. ~ spots[9—17. The instability is driven by long-range
This paper explores another class of structures, i.e.atiractive interactions between the two interfaces that
solid-on-liquid (SOL) structures. Fig. la illustrates a pound the liquid layer. The surface energy of the liquid
" +Corresponding author. Tel+ 1-512-471-7558: faxt 1-512-471- can stabilize perturbations of short wavelengths, _but not
5500. those of long wavelengths. As a result, perturbations of
E-mail address: ruihuang@mail.utexas.ediR. Huang. long wavelengths grow and the liquid layer is unstable.
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or negative[19-21, and thus can either stabilize or
(a) , destabilize the solid film and the liquid layer. Therefore,
h Solid film even a monolayer solid film on a liquid layer can
qualitatively change the stability behavior of the liquid
layer.
H Recently, we and others have studied the stability of
Liquid layer a SOL structure by considering the elastic deformation
7 of the solid and the viscous flow of the liquid, but
7 Rigid'substrate ignoring the effects of surface stresses and interfacial
forces [22—29. The analysis is valid as long as both
(b) the solid film and the liquid layer are sufficiently thick.

A =2m/k Wrinkled solid film In that case, a compressed solid film is always unstable
and forms wrinkles. A critical wavelength is determined
by the competition between the decreasing strain energy
of compression and the increasing strain energy of
bending in the solid film. The liquid layer only affects

PP the time scale of wrinkling.

. . Liquid laye: This paper aims to ascertain how thin the solid film
: : Rigid‘substréte has to be for the surface stresses to be important, and
how thin the liquid layer has to be for the interfacial
forces to be important. Section 2 formulates the free
energy of the system, including the bulk elastic energy,
the surface energy, and the interaction energy. Section 3
performs a linear perturbation analysis and discusses the

If the liquid layer is covered by a thin solid film, relative importance of the various energetic forces.
several differences are expected. The flexural rigidity of Section 4 considers interfacial forces of several specific
the solid film provides resistance against perturbations origins and estimates their importance.
of short wavelengths. If the solid film is subject to a
residual stress, tension stabilizes and compression desta. Free energy of SOL structures
bilizes the film with perturbations of intermediate wave-
lengths. The long-range interactions between the Refer to Fig. 1 again. A thin solid film of thickness
interfaces can be attractive or repulsive, destabilizing or 1 lies on a liquid layer of thicknes#&l, which in turn
stabilizing the film with perturbations of long wave- lies on a planar substrate. To focus on more novel
lengths. Yet another difference is about surface energy.aspects of the system, we neglect the elasticity in both
The air-liquid interface is now replaced by the solid— the liquid and the substrate, i.e. the liquid is viscous
liquid interface plus the solid—air interface. As first and the substrate is rigid. Take the configuration with
pointed out by Gibbg13], the way the energy changes all interfaces flat and parallel as the reference sthig.
at a solid—liquid interface differs from that at an air— 1a). At the wrinkled state(Fig. 1b), the solid film
liquid interface. At an air—liquid interface, the energy deflects, and the free energy in the system changes. The
increases when some liquid molecules inside the bulk energy change consists of the changes in the bulk elastic
emerge to the interface and increase the area. Thus, thenergy within the solid film(Uy), the surface energy at
change of the surface energy at an air—liquid interface the solid—liquid interface and the solid—air interface
is the surface energy density times the area change, Us), and the interaction energy associated with inter-
where the surface energy density is a constant. For afacial forces(U,), i.e.
solid—liquid interface, however, the number of atomic
sites is fixed. The area of the interface is changed by AU =AU+ AU+ AU, D
stretching or compressing the inter-atomic distance,
which leads to elastic strain at the interface. Consequent- If the total free energy increases for any arbitrary
ly, it is the elastic strain and the surface stress that arewrinkle, the flat film is stable, and the wrinkle will
relevant for the solid—liquid interfacl4-14. In prin- decay. Otherwise, the flat film is unstable, and the
ciple, this conservation of atomic sites prevails even for wrinkle will grow. Next we discuss the free energy term
a monolayer solid film on a liquid layer, so long as the by term.
solid film remains intact. Unlike the surface energy  First consider the elastic energy stored in the bulk of
density at an air-liquid interface, which is always posi- the solid film. Assume that the solid film is isotropic
tive and tends to stabilize the liquid layer, the surface and elastic with Young's modulug and Poisson'’s ratio
stress at a solid—liquid interface can be either positive ». Let x andy be the coordinates in the middle plane of

Fig. 1. lllustration of a solid-on-liquid thin film structuréa) flat and
reference state(b) wrinkled state.
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the film andZ- the coordinate perpendi(.?l,”ar tO-the middle Where}‘aB equa|s the surface stress of the top surface
plane. The film at the reference stdféig. 18 is under  (solid—air interface minus that of the bottom surface

an inplane straing,g, wherea and 3 stand forx or y. (solid-liquid interfacg, and is thef,; sum of the two
As the' wrinkled state(Hg. 1.b)’ t_he solid fllm.has a  surface stresses. The first term in E&) corresponds
deflection, w(x), in the z direction. Meanwhile, the inplane deformation, and the second term corresponds
film may have some inplane displacementgy,y) and to bending. Thus, the experimental measurements of

u,(x,y). Using the von Karman plate theoig6], from surface stresses based on bending of a cantilever beam
the reference state to the wrinkled state the strain in the .~ . .
or plate [21] are actually measurinf,; , i.e. the differ-

film changes by ence between the surface stresses at the top and bottom

surfaces of the beam or plate.

_ z (2) The long-range forces between the interfaces separat-
0x 40X ed by a liquid lead to the interaction energy. Following

the common practice in the literatuf2—4], we take the

wherez=0 at the middle plane ang= 4-//2 at the top interaction energy per unit area as a function of the

and bottom surfaces of the solid film. The bulk elastic separationl/, (H). Thus, from the reference state to the

energy of the solid film consists of the inplane strain wrinkled state of the SOL structure, the change of the

energy and the bending energy. From the reference staténteraction energy per unit area is

to the wrinkled state, the change of the bulk elastic

A [aua N dug N ow ow J 9w
ep=-| —+—"+——
Pr2loxg  ax,  ax,dxg

energy per unit area is AU, =U,(H+w)—U,(H). (6)
AU.— Gaﬁh[% Jug ﬂal] D The explicit expression of the interaction energy will
B2 Waxg  ax, axgoxg) 2 be given later for specific interfacial forces.

2 2 b 2
X{%+g—?ﬁ] +2(1—v)[[;x—?y] —3—22—;} 3 3. Linear perturbation analysis
. . . ) . An arbitrar flection fiel n repre-
where o, is the inplane re5|dua3I stress in the film at sentedabby t?1ey si?nricatioon o? ?ﬁz(éga’rig? co?r?poizris of
Eh is the flexural different modes along different directions. For linear
12(1-v?) perturbation analysis, we study the behavior of a single
rigidity. We adopt the convention that a repeated Greek component, i.e. a sinusoidal perturbation of a constant
subscript implies summation over the two in-plane \yavelength. Since the SOL structure is isotropic in the
d|men5|o_ns. _ x—y plane, any direction of the sinusoidal wave is
Following Cahn[14], we define the surface energy equivalent, and we choose the direction to coincide with
density referring to the surface area of the undeformedthe x-direction. Meanwhile, an inplane displacement of

state. The surface energy density is a function of surfacethe same wavelength is required by kinetics. Following
strain. Expanding the surface energy density in terms of Hyang and Sud25], we write

the surface strain, and keeping only the linear term, we
have

the reference state, and=

w=gq, sin(kx), )
U,=To+fapeip (4) u=q, codkx), (8)

wherel, is the surface energy density at the undeformed whereq, and g, are the amplitudes of the perturbation,
state,f,s is the surface stress, and,  is the strain at and k is the wavenumber. Compute the free energy
the solid surface. change associated with the perturbation by integrating
In the present SOL structure, as the film wrinkles, the the energy density over one period of the perturbation,
strain changes at both top and bottom surfaces of theand then divide by the period. To the leading order in
solid film, and the amount of the change is obtained the perturbation amplitudes, the free energy change per
from Eq. (2) by setting z=+h/2. Combining the  unit area is given by
changes at the two solid surfaces, the total change of

the surface ener er unit area is — g2
P AU = Lipr+ N+, ©)
AU = 1[% g, O WAy 92w %/; , (5  WhereN=ch+f is the resultant membrane force of the
2\ dxg  0x, 0x,0xg 0x,0xg solid film, o= o, is the residual stress in the solid film
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Fig. 2. Normalized free energy change vs. normalized wavenumber for various valéeéapfv>0 and(b) N<0.
at the reference statEFf:x is the sum of the surface D 4
stresses at the top and bottom surfaces of the solid film,?= ) 1)
andU}=92U,/dH?. Note that, due to the periodicity of
the perturbation, the amplitude of the inplane displace- WhenN=0 and/ <0, the competition between bend-

ment, g, disappears after integration, and so ddes N jng and interaction energy sets another critical waven-
the second term of Eq(5). Thus, the effect of the  ymber:k.6=1. Small wavenumber perturbations grow
surface stress only depends on its contribution to the gng large wavenumber perturbations decay.

resultant membrane force and will be importanf'if is  When considering all three terms in E9), we

comparable withoh. For representative valugé=1 N/ define a dimensionless parameter,
m and o=100 MPa, the thickness of the solid film has
to be approximately 10 nm or less for the surface stress
to be important.

We note that, from Eq(9), the flexural rigidity of
the solid film, D, stabilizes the film against perturbations  one can confirm that the magnitude &fis (I/5)?,

of large wavenumbers. Depending on its sign, the gnd the sign of is the same as that &f, . Whé# is
resultant membrane forcé), either stabilizes or desta- concave up,U,>0 andé>0. When U, is concave

bilizes the flat film with perturbations of intermediate gown, 7 <0 andé<o.

wavenumbers. Depending on the signigf , the long-  The free energy change in E€9) is quadratic in
range interaction either stabilizes or destabilizes the flat terms of £2. In terms of / and & Eq. (9) can be

_Dbui

- (12)

€

film with perturbations of small wavenumbers. expressed as
A comparison between the first two terms in the
bracket of Eq.(9) defines a length, namely, — D
AU = 41—ﬂ[(kl)4+8igr(N)(kl)2+ 3} (13
D 1/2
l =[—J . (10
[N

Fig. 2 shows the free energy change as a function of
Neglecting the effect of interaction energy, wher the wavenumber for various values &fWe distinguish

0, the film is stable against large wavenumber pertur- five cases as follows.

bations, but unstable for small wavenumber perturba-

tions, and the critical wavenumberdg=1. The critical ~ 3-{- Case 1: N>0 and £>0

wave number is the same as that given by the Euler

instability as a result of the competition between bending When the net membrane force is tensile and the

and in-plane strain energy, except for the contribution interaction energy is concave up, they both stabilize the

of the surface stress in the membrane force. flat film. The film is stable against pel’turba'[ions of all
A comparison between the first and the third terms wavenumbers. Fig. 2a shows that, in this cas& >0

in the bracket of Eq(9) defines another length, namely, for all wavenumbers.
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3.2. Case 2: N>0 and £€<0 05

In this case, the interaction energy is concave down
and tends to destabilize the film with perturbations of
all wavenumbers. While the flexural rigidity of the solid 0.25¢
film stabilizes the film against perturbations of large
wavenumbers and the tensile membrane force stabilizesm_z
against perturbations of intermediate wavenumbers, the 5° 4
film is unstable with perturbations of small wavenum- S
bers. Consequently, even when the resultant membrane*”
force is tensile, the film may still wrinkle if the long-
range interaction energy is concave down. As shown in
Fig. 2a, whené<O0, the curve intersects with the line

AU =0at one point, which is the critical wave number
and is given by ) 0.2 0.4 0.6 0.8 1 1.2

Normalized wavenumber. K

1l: stable

II: stable if N > 0
unstable if N< 0

-0.25} I: unstable

1, ——
2_=( 14—
(kl) o 2(\’1 4§ 1)' (14) Fig. 3. Stable and unstable regions in th&/ diagram.

stabilizes the film against perturbations of large waven-
3.3. Case 3: N<0 and £>0.25 umbers, the film is unstable with perturbations of small
wavenumbers. As shown in Fig. 2b, wheér 0, the
curve intersects with the linAU=0 at only one wav-
enumber given by

The membrane force is compressive and tends to
destabilize the film with perturbations of intermediate
wavenumbers. However, the flexural rigidity of the solid
stabilizes the film against perturbations of large waven- 1,
umbers, and the concave-up interaction energy stabilizesikl)®= > (/1 —4£+1). (16)
against perturbations of small wavenumbers. Provided 2
that the combined effect of the flexural rigidity and the . .
interaction energy prevails over the effect of the com- T_O summarize, F'g'. 3 shows the _stable and_uns_table
pressive membrane force, the flat film is stable against "€910nS in theg—kl diagram. In region |, the film is
perturbations of all wavenumbers. As shown in Fig. 2b, unstable. In region lll, the film is stable. In region II,

when §>0.25,A17>0 for all wavenumbers. the film is unstable ifN <0 and stable iftv>0.

4. Specific interfacial forces and representative values
3.4. Case 4: N<0 and 0.25> £>0 o Sgp P

In this case, the combined stabilizing effect of the o the Jinear perturbation analysis in the previous
flexural rigidity and the concave-up interaction energy gection, the stability of the very thin SOL structures is
cannot cover perturbations of all wavenumbers, and themainly determined by the value &f In this section we

compressive membrane force destabilizes the film with 50,55 several specific interfacial forces and give rep-
perturbations of some intermediate wavenumbers. AS ocantative values of
shown in Fig. 2b, when 0.25£> 0, the curve intersects

with the lineAU=0 at two wavenumbers: 4.1. Photon dispersion
1 = The change of the number of photons in the electro-
2 = 11—
(kD)1= z(li\"l 48). (15) magnetic oscillation modes in a structure made of

several media leads to a configurational force, known
The free energy decreases as perturbations of inter-as the dispersion force or the van der Waals fd&4g.
mediate wavenumber, <k <k,) grow. For example, for two semi-infinite plates at separation
H, the interaction energy per unit area is
3.5. Case 5: N<O and £€<0
A
; . Ui (H)=— 2
When the resultant membrane force is compressive 12wH
and the interaction energy is concave down, they both
destabilize the flat film. While the flexural rigidity = whereA is the Hamaker constant, which depends on the

)
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dielectric spectra of the medi&,28. When two iden-  4.2. Electrical double layer
tical media interact across a film of another medium the
dispersion force is attractived >0). When two dissim- When a body is immersed in a polar solvent such as
ilar media interact across a film of a third medium the water, the interface often acquires a charge, by either
dispersion force can be either attractive or repulsive adsorbing or desorbing ions according to chemical equi-
(A<0). In the following discussions, we consider the librium with the surrounding solution. lons of opposite
attractive dispersion force only. charge dissolved in solvent, known as counter-ions, are
The system under consideration consists of four attracted toward the interface, forming a diffuse layer of
media: the substrate, the liquid layer, the solid film, and charge adjacent to the interface. The surface charge and
the air. Although the interaction energy of such struc- the diffuse layer of counter-ions constitute an electrical
tures can be developed, here we are mainly interesteddouble layer. The thickness of the double layer depends
in estimating the order of magnitude and will use Eg. on the concentration of ions in solution: more ions

(17) as an approximation. Substituting E€L7) into available give a thinner double layer. When two such
Eqg. (12), we obtain that, for the dispersion force, interfaces approach each other, they repel. The complete
expression for the repulsive force is complicated and is
Eh3A best solved numericallj29]. An approximate expression
£= (18) for the interaction energy, which is valid for symmetric

- .2 AN2ry4°
24m(1—v?)(oh+f)H z:z electrolytes(e.g. NaC) and large separation? >

k~1), is given by[2,4]

For attractive dispersion forces,>0 and¢<0. Con-
sequently, there exists a critical wavenumber, The U,(H)=Bexp(—«xH) (19
flat film is stable against perturbations of larger wav-
enumbers(k>k.), but unstable with perturbations of gng
smaller wavenumbers(k<k.. When the resultant
membrane force is tensile, the critical wavenumber is 2
given by Eq.(14). When the resultant membrane force B=64K—1nkBT{tanl{%H ,
is compressive, the critical wavenumber is given by Eq.
(16). When the resultant membrane force is zero, the
critical wavenumber is given by b=1, whereb is a K—l= ekl (21)
length defined in Eq(11). 2nz%e?’

Using representative values=10"2° J,E=100 GPa,
o= 4100 MPa,s=10 nm,H=10 nm, andv=0.3, and  Wheren is the number density andis the valence of

neglecting the surface stres§= 0). we havel=95 nm the cationic speciess is the dielectric permittivity of
b=~490 nm, andé=—(I/b)*= —’1.5>< 10-3. With a; the solvent, is the surface potentiad,is the electronic

20
4T (20

tensile membrane forcéo =100 MPa, from Eq. (14) charge,k; is Boltzmann’s constant, andl is the tem-

the critical wavelength(A,=2/k.) i’s approximateiy perature. The thickness of the double layer is measured
15 pm. With a compressive membrane foré¢e = by the Debye lengthy ™. _

—100 MPa, from Eq. (16), the critical wavelength is Assuming that, in a SOL structure, the two interfaces

approximately 0.6um. Without any membrane force bounding the_ liquid layer interact Wit_h each other
(N=0), the critical wavelength is approximately 3.1 through electrical double layers, and using Et9) as
wm. Therefore, when the membrane force is tensile, (€ interaction energy, we obtain that

although the flat film may still wrinkle under the

attractive dispersion force, the wavelength of the wrinkle €=%o exp(—kH), (22)

is very long compared to the wrinkle under compressive
membrane force, i.e. the film is relatively flat.

As shown in Fig. 2, the normalized critical waven-
umber, kI, increases as the magnitude fincreases.
From Eq.(18), the magnitude of¢ is proportional to
the Hamaker constamt and inversely proportional to
H*. Therefore, the critical wavenumber is much more In this case{ is always positive, decreasing exponen-
sensitive toH than it is toA. When the liquid layer is  tially as H increases.
thick, ¢ is small and the effect of the interaction energy ~ When the resultant membrane force is tengile>
is negligible. When the thickness of the liquid layer is 0), as shown in Fig. 2a, positivéleads to positive free
less than 10 nm, the magnitude &fincreases dramati- energy change for all wavenumbers. Thus, the flat film
cally, and the effect of the interaction energy becomesis stable against perturbations of all wave numbers,
important. regardless of the thicknesgs

where

_ Eh®Bk?
12(1— Vz)(()'h —]7)2.

(23

0
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When the resultant membrane force is compressive
(N<0), as shown in Fig. 2b, the flat film is stable
against perturbations of all wavenumberg ¥ 0.25, but
is unstable with perturbations of intermediate waven-
umbers if 0.25 £>0. Therefore, wher,>0.25, there
exists a critical thickness for the liquid layeH, =
k" Un(4&). When H<H., £>0.25 and the flat film is
stable. WhenH>H,_, 0.25>¢&>0 and the flat film is
unstable. Wher,<0.25, however, & £<0.25 for any
thicknessH, and the flat film is unstable.

Using representative value,=10 nm, o= —100
MPa, e=10"° C?/Nm? ¢,=0.1 V, E=100 GPa,v=
0.3, andT=300 K, we havex 1=3.665 nm and{,=
2.224 for a 1:1 electrolytéz=1) of concentration 0.01
M (n=6.02x 10?* m3). The critical thickness i#f.=
8 nm. At a lower electrolyte concentratiom=
6.02x 10 m 3, we havec~1=11.59 nm and,=0.07,

i.e. the double layer force becomes weaker but longer
ranged.

4.3. Combination of photon dispersion and electrical
double layer

The well-known DLVO theory of colloidal stability

ilms 429 (2003) 273-281 279

-05 ————
0 10 12 14 16 18 20
H (nm)

8

Fig. 5. Dimensionless parametéras a function ofH for various
values ofk, under the combined interaction of photon dispersion and
electrical double layer.

Fig. 5 shows the&—H curves for various values df,
using the same parameters in Fig. 4 dhe 100 GPa,

r=0.3, 0=+100 MPa,f=0. When the membrane

is based on the assumption that the net force betweerforce is tensile, the flat film is stable against perturba-

particles immersed in a polar liquid is given by the
algebraic sum of the repulsive double layer force and
the attractive dispersion forck8,30. Using the repre-

tions of all wavenumbers > H_, but unstable ifH <
H.. The value of the critical thickneds, is independent
of h. When the membrane force is compressive, there

sentative values of the parameters as before, Fig. 4aexists a critical thickness of the solid filnh,.. For

shows the combined interaction energy,) from Egs.
(17) and (19) as a function of separatiod, and Fig.
4b shows its curvatur@/;) . The combined interaction
energy is concave down for thin liquid layers, but
concave up for thick liquid layers. In Fig. 4, the critical
thicknessH., is approximately 2 nm.

example, in Fig. 5,h,=3.1 nm. Whenh>h, the
maximum value of¢ is greater than 0.25, and there
exists a thickness window fd#, within which £>0.25
and the flat film is stable against perturbations of all
wavenumbers. When <h,, however, £<0.25 for any
H, and the flat film is unstable.

-3 14
4x 10 : 3x 10 i :
(@) (b)
[ electrical double layer 3
3 N
s A Y
\\ 2 I ‘\
2.
< E
31 31t
_ = -
> o)
OH s wse e o T
N Of i
! ' photon dispersion
] 1
. ' \photon dispersion
l 1]
-2 . . . . . . . . . -1 . L : L L . . . .
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
H (nm) H (nm)

Fig. 4. (a) Combined interaction energy resulting from photon disper
of the interaction energy as a function of separation.

sion and electrical double layers as a function of seflaraiovature
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Substituting Eq(24) into Eq. (12), we obtain that,

ER°C
— S 25
: 6(1—?)(ch+f) H? (29

l:&>0.25

Becauset> 0, when the resultant membrane force in
the oxide layer is tensile, the flat film is stable against
perturbations of all wavenumbers. When the resultant
membrane force is compressive, there exists a critical
thicknessH,. WhenH < H,, £>0.25 and the flat film is
stable. WhenH>H,, 0<£<0.25 and the flat film is
I1:0<&<0.25 unstable. Using representative values;5x 10?® m~3,

H, E=100 GPa,oc=—-100 MPa,h=10 nm,f=0, andv=
4 0.3, we haveH,.=35 nm.

Thickness of the liquid layer, H

>

Thickness of the solid film, h
o

5. Conclusions
Fig. 6. A schematici—H diagram of stability, under the combined
interaction of photon dispersion and electrical double layer. A linear perturbation analysis has been performed to
study the stability of very thin solid-on-liquidSOL)
Fig. 6 schematically shows the stable and unstableStructures. Flexural rigidity of the solid film stabilizes
regions in the h—H diagram under the combined inter- the flat film against perturbations of short wavelengths.

action of photon dispersion and electrical double layer. Depending on its sign, the resultant membrane force,
In region |, £<0, and the flat film is unstable. In region combining the surface stress and the residual stress in

ll, 0<¢<0.25, the flat film is stable ifN>0, but the solid film, can either stabilize or destabilize the film
unstable ifN<0. In region lIl, £>0.25, the flat film is with perturbations of intermediate wavelengths. Depend-
stable. The dashed line indicates the critical thicknessing on the shape of the interaction energy, concave up
of the solid film. or down, the interfacial forces can either stabilize or
destabilize the film with perturbations of long wave-
lengths. The importance of the surface stress depends
on its contribution to the resultant membrane force
compared to the residual stress. The relative importance
. . . of the flexural rigidity, the resultant membrane force,
common that a native oxide lies on top of the metal. At and the interfacial force is quantified by a dimensionless

an elevated temperature, the metal creeps, but the OXideparameterg. Regardless of the physical origins of the

:ﬁir::a_lnstto fb(jvio':?.nrhternamr% ?X'deb.'s E{yflcaril¥nv?r¥ interfacial forces, the stability analysis predicts that
, Just a Tew nanometers, and Is SUbJect 1o an INplane g iiapie interfacial forces may stabilize a solid film

residual stress due to the oxidation process. A recent, nger compression or destabilize a film under tension.

P.?O(_jel hast hlghllg?ted fories gf tr\]/vo orlglnsSl%é\la:))gﬁetal Specifically, the interfacial forces resulting from photon
I'Mm: quantum confinement and charge tran e dispersion, electrical double layer, and electron confine-

Here we conS|d_er qua_ntum confinement only. As an ment are considered, and their effects on SOL structures
estimate of the interaction energy, Suo and Zh§s@ are estimated

consider electrons confined in a metal film by infinite
potentials on both side and give an asymptotic
expression,

4.4. Electron confinement

Next we consider a metal film on a substrate. It is
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