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Abstract

This paper studies a solid film lying on a liquid layer, which in turn lies on a solid substrate. It is well known that, subject to
a compressive membrane force, the solid film wrinkles, dragging the liquid underneath to flow. When the solid film is very thin,
the ratio between the number of atoms at the surface and that in the bulk becomes significant, so that surface stress contributes
to the membrane force. When the liquid layer is very thin, the two interfaces bounding the liquid interact with each other through
forces of various physical origins. We formulate the free energy of the system, and carry out a linear perturbation analysis. A
dimensionless parameter is identified to quantify the relative importance of flexural rigidity, membrane force, and interfacial force
on stability of the structure. Depending on the nature of the interfacial force, several intriguing behaviors are possible; for
example, the solid film may remain flat under a compressive membrane force, or form wrinkles under a tensile membrane force.
We estimate the dimensionless parameter for interfacial forces of several specific origins, including photon dispersion, electrical
double layer, and electron confinement. Emphasis is placed on identifying the thickness ranges of the solid film and of the liquid
layer within which these forces are important.
� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In studying nanostructures, one often encounters inter-
actions that are different from those acting in macro-
structures(e.g. gravity) and those acting in atomic
structures(e.g. chemical bonds). Reflecting upon cen-
turies of investigations of the role of gravity in the
motion of celestial bodies, one can readily see that
elucidating the roles of interactions of diverse origins in
nanostructures will be a main challenge for some time
w1x. The best-studied example so far involves photon
dispersion and electrical double layers in stabilizing
colloidsw2–4x. A recent example involves surface stress-
es in stabilizing nanoscale domains on solid surfaces
w5,6x.
This paper explores another class of structures, i.e.

solid-on-liquid (SOL) structures. Fig. 1a illustrates a
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SOL structure. The structure can be fabricated by wafer
bonding or by deposition. One example of such struc-
tures, a strained SiGe film on a layer of boro-
phosphorosilicate glass, has been studied for
optoelectronic applicationsw7,8x, in which the glass
flows at elevated temperatures. A more common exam-
ple of such structures is a metallic film covered by a
layer of native oxide, where the metal creeps at elevated
temperatures. One common observation is that, subject
to a compressive membrane force, the solid film wrin-
kles, dragging the liquid underneath to flow, while the
solid and the liquid remain in contact(Fig. 1b).
Recall that a thin liquid layer, lying on a solid

substrate by itself, can rupture to form islands and dry
spots w9–12x. The instability is driven by long-range
attractive interactions between the two interfaces that
bound the liquid layer. The surface energy of the liquid
can stabilize perturbations of short wavelengths, but not
those of long wavelengths. As a result, perturbations of
long wavelengths grow and the liquid layer is unstable.
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Fig. 1. Illustration of a solid-on-liquid thin film structure:(a) flat and
reference state;(b) wrinkled state.

If the liquid layer is covered by a thin solid film,
several differences are expected. The flexural rigidity of
the solid film provides resistance against perturbations
of short wavelengths. If the solid film is subject to a
residual stress, tension stabilizes and compression desta-
bilizes the film with perturbations of intermediate wave-
lengths. The long-range interactions between the
interfaces can be attractive or repulsive, destabilizing or
stabilizing the film with perturbations of long wave-
lengths. Yet another difference is about surface energy.
The air–liquid interface is now replaced by the solid–
liquid interface plus the solid–air interface. As first
pointed out by Gibbsw13x, the way the energy changes
at a solid–liquid interface differs from that at an air–
liquid interface. At an air–liquid interface, the energy
increases when some liquid molecules inside the bulk
emerge to the interface and increase the area. Thus, the
change of the surface energy at an air–liquid interface
is the surface energy density times the area change,
where the surface energy density is a constant. For a
solid–liquid interface, however, the number of atomic
sites is fixed. The area of the interface is changed by
stretching or compressing the inter-atomic distance,
which leads to elastic strain at the interface. Consequent-
ly, it is the elastic strain and the surface stress that are
relevant for the solid–liquid interfacew14–18x. In prin-
ciple, this conservation of atomic sites prevails even for
a monolayer solid film on a liquid layer, so long as the
solid film remains intact. Unlike the surface energy
density at an air-liquid interface, which is always posi-
tive and tends to stabilize the liquid layer, the surface
stress at a solid–liquid interface can be either positive

or negativew19–21x, and thus can either stabilize or
destabilize the solid film and the liquid layer. Therefore,
even a monolayer solid film on a liquid layer can
qualitatively change the stability behavior of the liquid
layer.
Recently, we and others have studied the stability of

a SOL structure by considering the elastic deformation
of the solid and the viscous flow of the liquid, but
ignoring the effects of surface stresses and interfacial
forces w22–25x. The analysis is valid as long as both
the solid film and the liquid layer are sufficiently thick.
In that case, a compressed solid film is always unstable
and forms wrinkles. A critical wavelength is determined
by the competition between the decreasing strain energy
of compression and the increasing strain energy of
bending in the solid film. The liquid layer only affects
the time scale of wrinkling.
This paper aims to ascertain how thin the solid film

has to be for the surface stresses to be important, and
how thin the liquid layer has to be for the interfacial
forces to be important. Section 2 formulates the free
energy of the system, including the bulk elastic energy,
the surface energy, and the interaction energy. Section 3
performs a linear perturbation analysis and discusses the
relative importance of the various energetic forces.
Section 4 considers interfacial forces of several specific
origins and estimates their importance.

2. Free energy of SOL structures

Refer to Fig. 1 again. A thin solid film of thickness
h lies on a liquid layer of thicknessH, which in turn
lies on a planar substrate. To focus on more novel
aspects of the system, we neglect the elasticity in both
the liquid and the substrate, i.e. the liquid is viscous
and the substrate is rigid. Take the configuration with
all interfaces flat and parallel as the reference state(Fig.
1a). At the wrinkled state(Fig. 1b), the solid film
deflects, and the free energy in the system changes. The
energy change consists of the changes in the bulk elastic
energy within the solid film(U ), the surface energy atB

the solid–liquid interface and the solid–air interface
(U ), and the interaction energy associated with inter-S

facial forces(U ), i.e.L

DUsDU qDU qDU (1)B S L

If the total free energy increases for any arbitrary
wrinkle, the flat film is stable, and the wrinkle will
decay. Otherwise, the flat film is unstable, and the
wrinkle will grow. Next we discuss the free energy term
by term.
First consider the elastic energy stored in the bulk of

the solid film. Assume that the solid film is isotropic
and elastic with Young’s modulusE and Poisson’s ratio
n. Let x andy be the coordinates in the middle plane of
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the film andz the coordinate perpendicular to the middle
plane. The film at the reference state(Fig. 1a) is under
an inplane strain,́ , wherea andb stand forx or y.ab

As the wrinkled state(Fig. 1b), the solid film has a
deflection, w(x,y), in the z direction. Meanwhile, the
film may have some inplane displacements,u (x,y) andx

u (x,y). Using the von Karman plate theoryw26x, fromy

the reference state to the wrinkled state the strain in the
film changes by

2B E1 ≠u ≠u ≠w ≠w ≠ wa bC FD´ s q q y z, (2)ab
D G2 ≠x ≠x ≠x ≠x ≠x ≠xb a a b a b

wherezs0 at the middle plane andzs"hy2 at the top
and bottom surfaces of the solid film. The bulk elastic
energy of the solid film consists of the inplane strain
energy and the bending energy. From the reference state
to the wrinkled state, the change of the bulk elastic
energy per unit area is

B Es h ≠u ≠u ≠w ≠w Dab a bC FDU s q q qB
D G2 ≠x ≠x ≠x ≠x 2b a a b

2 2 2 2 2 2 2w zw z B E≠ w ≠ w ≠ w ≠ w≠ w
C Fx |= q q2 1yn y (3)x |Ž .2 2 2 2D G≠x ≠y ≠x≠y ≠x ≠yy ~ y ~

wheres is the inplane residual stress in the film atab

the reference state, and is the flexural
3Eh

Ds 212 1ynŽ .
rigidity. We adopt the convention that a repeated Greek
subscript implies summation over the two in-plane
dimensions.
Following Cahnw14x, we define the surface energy

density referring to the surface area of the undeformed
state. The surface energy density is a function of surface
strain. Expanding the surface energy density in terms of
the surface strain, and keeping only the linear term, we
have

sU sG qf ´ , (4)s 0 ab ab

whereG is the surface energy density at the undeformed0

state, f is the surface stress, and is the strain ats´ab ab

the solid surface.
In the present SOL structure, as the film wrinkles, the

strain changes at both top and bottom surfaces of the
solid film, and the amount of the change is obtained
from Eq. (2) by setting zs"hy2. Combining the
changes at the two solid surfaces, the total change of
the surface energy per unit area is

2B E1 ≠u ≠u ≠w ≠w ≠ w ha b ¯ ˜C FDU s q q f y f (5)s ab ab
D G2 ≠x ≠x ≠x ≠x ≠x ≠x 2b a a b a b

where equals the surface stress of the top surfacef̃ab

(solid–air interface) minus that of the bottom surface
(solid–liquid interface), and is the sum of the twof̄ab

surface stresses. The first term in Eq.(5) corresponds
to inplane deformation, and the second term corresponds
to bending. Thus, the experimental measurements of
surface stresses based on bending of a cantilever beam
or plate w21x are actually measuring , i.e. the differ-f̃ab

ence between the surface stresses at the top and bottom
surfaces of the beam or plate.
The long-range forces between the interfaces separat-

ed by a liquid lead to the interaction energy. Following
the common practice in the literaturew2–4x, we take the
interaction energy per unit area as a function of the
separation,U (H). Thus, from the reference state to theL

wrinkled state of the SOL structure, the change of the
interaction energy per unit area is

DU sU (Hqw)yU (H). (6)L L L

The explicit expression of the interaction energy will
be given later for specific interfacial forces.

3. Linear perturbation analysis

An arbitrary deflection field,w(x,y), can be repre-
sented by the summation of the Fourier components of
different modes along different directions. For linear
perturbation analysis, we study the behavior of a single
component, i.e. a sinusoidal perturbation of a constant
wavelength. Since the SOL structure is isotropic in the
x–y plane, any direction of the sinusoidal wave is
equivalent, and we choose the direction to coincide with
the x-direction. Meanwhile, an inplane displacement of
the same wavelength is required by kinetics. Following
Huang and Suow25x, we write

wsq sin(kx), (7)1

usq cos(kx), (8)2

whereq andq are the amplitudes of the perturbation,1 2

and k is the wavenumber. Compute the free energy
change associated with the perturbation by integrating
the energy density over one period of the perturbation,
and then divide by the period. To the leading order in
the perturbation amplitudes, the free energy change per
unit area is given by

2q1 4 2¯ w xDUs Dk qNk qU0 , (9)L4

where is the resultant membrane force of the¯Nsshqf
solid film, sss is the residual stress in the solid filmxx
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Fig. 2. Normalized free energy change vs. normalized wavenumber for various values ofj: (a) N)0 and(b) N-0.

at the reference state, is the sum of the surface¯ ¯fsfxx
stresses at the top and bottom surfaces of the solid film,
and . Note that, due to the periodicity of2 2U0s≠ U y≠HL L

the perturbation, the amplitude of the inplane displace-
ment,q , disappears after integration, and so does inf̃2 xx

the second term of Eq.(5). Thus, the effect of the
surface stress only depends on its contribution to the
resultant membrane force and will be important if isf̄
comparable withsh. For representative values,s1 Nyf̄
m andss100 MPa, the thickness of the solid film has
to be approximately 10 nm or less for the surface stress
to be important.
We note that, from Eq.(9), the flexural rigidity of

the solid film,D, stabilizes the film against perturbations
of large wavenumbers. Depending on its sign, the
resultant membrane force,N, either stabilizes or desta-
bilizes the flat film with perturbations of intermediate
wavenumbers. Depending on the sign of , the long-U0L
range interaction either stabilizes or destabilizes the flat
film with perturbations of small wavenumbers.
A comparison between the first two terms in the

bracket of Eq.(9) defines a length, namely,

1y2B ED
lsC F . (10)

Z ZND G

Neglecting the effect of interaction energy, whenN-
0, the film is stable against large wavenumber pertur-
bations, but unstable for small wavenumber perturba-
tions, and the critical wavenumber isk ls1. The criticalc

wave number is the same as that given by the Euler
instability as a result of the competition between bending
and in-plane strain energy, except for the contribution
of the surface stress in the membrane force.
A comparison between the first and the third terms

in the bracket of Eq.(9) defines another length, namely,

1y4B ED
bsC F , (11)

Z ZU0D GL

WhenNs0 and , the competition between bend-U0-0L

ing and interaction energy sets another critical waven-
umber: k bs1. Small wavenumber perturbations growc

and large wavenumber perturbations decay.
When considering all three terms in Eq.(9), we

define a dimensionless parameter,

DU0L
js . (12)2N

One can confirm that the magnitude ofj is (lyb) ,4

and the sign ofj is the same as that of . WhenU isU0L L

concave up, andj)0. When U is concaveU0)0L L

down, andj-0.U0-0L

The free energy change in Eq.(9) is quadratic in
terms of k . In terms of l and j, Eq. (9) can be2

expressed as

2q D1 w z4 2¯ x |DUs kl qSignN kl qj . (13)Ž . Ž .Ž .y ~44l

Fig. 2 shows the free energy change as a function of
the wavenumber for various values ofj. We distinguish
five cases as follows.

3.1. Case 1: N)0 and j)0

When the net membrane force is tensile and the
interaction energy is concave up, they both stabilize the
flat film. The film is stable against perturbations of all
wavenumbers. Fig. 2a shows that, in this case,̄DU)0
for all wavenumbers.
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Fig. 3. Stable and unstable regions in thej-kl diagram.

3.2. Case 2: N)0 and j-0

In this case, the interaction energy is concave down
and tends to destabilize the film with perturbations of
all wavenumbers. While the flexural rigidity of the solid
film stabilizes the film against perturbations of large
wavenumbers and the tensile membrane force stabilizes
against perturbations of intermediate wavenumbers, the
film is unstable with perturbations of small wavenum-
bers. Consequently, even when the resultant membrane
force is tensile, the film may still wrinkle if the long-
range interaction energy is concave down. As shown in
Fig. 2a, whenj-0, the curve intersects with the line

at one point, which is the critical wave number¯DUs0
and is given by

12 ykl s 1y4jy1 . (14)Ž . Ž .
2

3.3. Case 3: N-0 and j)0.25

The membrane force is compressive and tends to
destabilize the film with perturbations of intermediate
wavenumbers. However, the flexural rigidity of the solid
stabilizes the film against perturbations of large waven-
umbers, and the concave-up interaction energy stabilizes
against perturbations of small wavenumbers. Provided
that the combined effect of the flexural rigidity and the
interaction energy prevails over the effect of the com-
pressive membrane force, the flat film is stable against
perturbations of all wavenumbers. As shown in Fig. 2b,
whenj)0.25, for all wavenumbers.¯DU)0

3.4. Case 4: N-0 and 0.25)j)0

In this case, the combined stabilizing effect of the
flexural rigidity and the concave-up interaction energy
cannot cover perturbations of all wavenumbers, and the
compressive membrane force destabilizes the film with
perturbations of some intermediate wavenumbers. As
shown in Fig. 2b, when 0.25)j)0, the curve intersects
with the line at two wavenumbers:¯DUs0

12 ykl s 1" 1y4j . (15)Ž .Ž .1,2 2

The free energy decreases as perturbations of inter-
mediate wavenumbers(k -k-k ) grow.1 2

3.5. Case 5: N-0 and j-0

When the resultant membrane force is compressive
and the interaction energy is concave down, they both
destabilize the flat film. While the flexural rigidity

stabilizes the film against perturbations of large waven-
umbers, the film is unstable with perturbations of small
wavenumbers. As shown in Fig. 2b, whenj-0, the
curve intersects with the line at only one wav-¯DUs0
enumber given by

12 ykl s 1y4jq1 . (16)Ž . Ž .
2

To summarize, Fig. 3 shows the stable and unstable
regions in thejykl diagram. In region I, the film is
unstable. In region III, the film is stable. In region II,
the film is unstable ifN-0 and stable ifN)0.

4. Specific interfacial forces and representative values
of j

From the linear perturbation analysis in the previous
section, the stability of the very thin SOL structures is
mainly determined by the value ofj. In this section we
discuss several specific interfacial forces and give rep-
resentative values ofj.

4.1. Photon dispersion

The change of the number of photons in the electro-
magnetic oscillation modes in a structure made of
several media leads to a configurational force, known
as the dispersion force or the van der Waals forcew27x.
For example, for two semi-infinite plates at separation
H, the interaction energy per unit area is

A
U H sy (17)Ž .L 212pH

whereA is the Hamaker constant, which depends on the



278 R. Huang, Z. Suo / Thin Solid Films 429 (2003) 273–281

dielectric spectra of the mediaw4,28x. When two iden-
tical media interact across a film of another medium the
dispersion force is attractive(A)0). When two dissim-
ilar media interact across a film of a third medium the
dispersion force can be either attractive or repulsive
(A-0). In the following discussions, we consider the
attractive dispersion force only.
The system under consideration consists of four

media: the substrate, the liquid layer, the solid film, and
the air. Although the interaction energy of such struc-
tures can be developed, here we are mainly interested
in estimating the order of magnitude and will use Eq.
(17) as an approximation. Substituting Eq.(17) into
Eq. (12), we obtain that, for the dispersion force,

3Eh A
jsy . (18)22 4¯24p 1yn shqf HŽ .Ž .

For attractive dispersion forces,A)0 andj-0. Con-
sequently, there exists a critical wavenumber,k . Thec

flat film is stable against perturbations of larger wav-
enumbers(k)k ), but unstable with perturbations ofc

smaller wavenumbers(k-k ). When the resultantc

membrane force is tensile, the critical wavenumber is
given by Eq.(14). When the resultant membrane force
is compressive, the critical wavenumber is given by Eq.
(16). When the resultant membrane force is zero, the
critical wavenumber is given byk bs1, whereb is ac

length defined in Eq.(11).
Using representative values,As10 J,Es100 GPa,y20

ss"100 MPa,hs10 nm,Hs10 nm, andns0.3, and
neglecting the surface stress( s0), we havelf95 nm,f̄
bf490 nm, andjsy(lyb) fy1.5=10 . With a4 y3

tensile membrane force(ss100 MPa), from Eq. (14),
the critical wavelength(l s2pyk ) is approximatelyc c

15 mm. With a compressive membrane force(ss
y100 MPa), from Eq. (16), the critical wavelength is
approximately 0.6mm. Without any membrane force
(Ns0), the critical wavelength is approximately 3.1
mm. Therefore, when the membrane force is tensile,
although the flat film may still wrinkle under the
attractive dispersion force, the wavelength of the wrinkle
is very long compared to the wrinkle under compressive
membrane force, i.e. the film is relatively flat.
As shown in Fig. 2, the normalized critical waven-

umber, k l, increases as the magnitude ofj increases.c

From Eq. (18), the magnitude ofj is proportional to
the Hamaker constantA and inversely proportional to
H . Therefore, the critical wavenumber is much more4

sensitive toH than it is toA. When the liquid layer is
thick, j is small and the effect of the interaction energy
is negligible. When the thickness of the liquid layer is
less than 10 nm, the magnitude ofj increases dramati-
cally, and the effect of the interaction energy becomes
important.

4.2. Electrical double layer

When a body is immersed in a polar solvent such as
water, the interface often acquires a charge, by either
adsorbing or desorbing ions according to chemical equi-
librium with the surrounding solution. Ions of opposite
charge dissolved in solvent, known as counter-ions, are
attracted toward the interface, forming a diffuse layer of
charge adjacent to the interface. The surface charge and
the diffuse layer of counter-ions constitute an electrical
double layer. The thickness of the double layer depends
on the concentration of ions in solution: more ions
available give a thinner double layer. When two such
interfaces approach each other, they repel. The complete
expression for the repulsive force is complicated and is
best solved numericallyw29x. An approximate expression
for the interaction energy, which is valid for symmetric
z:z electrolytes(e.g. NaCl) and large separations(H)
k ), is given byw2,4xy1

U (H)sBexp(ykH) (19)L

and

2w zB Ezefsy1 C FBs64k nk T tanh , (20)x |B
D G4k Ty ~B

´k TBy1k s , (21)2 2y2nz e

wheren is the number density andz is the valence of
the cationic species,́ is the dielectric permittivity of
the solvent,f is the surface potential,e is the electronics

charge,k is Boltzmann’s constant, andT is the tem-B

perature. The thickness of the double layer is measured
by the Debye length,k .y1

Assuming that, in a SOL structure, the two interfaces
bounding the liquid layer interact with each other
through electrical double layers, and using Eq.(19) as
the interaction energy, we obtain that

jsj exp(ykH), (22)0

where

3 2Eh Bk
j s . (23)0 22 ¯12 1yn shyfŽ .Ž .

In this case,j is always positive, decreasing exponen-
tially asH increases.
When the resultant membrane force is tensile(N)

0), as shown in Fig. 2a, positivej leads to positive free
energy change for all wavenumbers. Thus, the flat film
is stable against perturbations of all wave numbers,
regardless of the thicknessH.
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Fig. 5. Dimensionless parameterj as a function ofH for various
values ofh, under the combined interaction of photon dispersion and
electrical double layer.

Fig. 4. (a) Combined interaction energy resulting from photon dispersion and electrical double layers as a function of separation;(b) Curvature
of the interaction energy as a function of separation.

When the resultant membrane force is compressive
(N-0), as shown in Fig. 2b, the flat film is stable
against perturbations of all wavenumbers ifj)0.25, but
is unstable with perturbations of intermediate waven-
umbers if 0.25)j)0. Therefore, whenj )0.25, there0

exists a critical thickness for the liquid layer,H sc
k ln(4j ). WhenH-H , j)0.25 and the flat film isy1

0 c

stable. WhenH)H , 0.25)j)0 and the flat film isc

unstable. Whenj -0.25, however, 0-j-0.25 for any0

thicknessH, and the flat film is unstable.
Using representative values,hs10 nm, ssy100

MPa, ´s10 C yNm , f s0.1 V, Es100 GPa,nsy9 2 2
s

0.3, andTs300 K, we havek s3.665 nm andj sy1
0

2.224 for a 1:1 electrolyte(zs1) of concentration 0.01
M (ns6.02=10 m ). The critical thickness isH s24 y3

c

8 nm. At a lower electrolyte concentration,ns
6.02=10 m , we havek s11.59 nm andj s0.07,23 y3 y1

0

i.e. the double layer force becomes weaker but longer
ranged.

4.3. Combination of photon dispersion and electrical
double layer

The well-known DLVO theory of colloidal stability
is based on the assumption that the net force between
particles immersed in a polar liquid is given by the
algebraic sum of the repulsive double layer force and
the attractive dispersion forcew3,30x. Using the repre-
sentative values of the parameters as before, Fig. 4a
shows the combined interaction energy(U ) from Eqs.L

(17) and (19) as a function of separationH, and Fig.
4b shows its curvature . The combined interactionU0Ž .L
energy is concave down for thin liquid layers, but
concave up for thick liquid layers. In Fig. 4, the critical
thickness,H , is approximately 2 nm.c

Fig. 5 shows thej–H curves for various values ofh,
using the same parameters in Fig. 4 andEs100 GPa,
ns0.3, ss"100 MPa, s0. When the membranef̄
force is tensile, the flat film is stable against perturba-
tions of all wavenumbers ifH)H , but unstable ifH-c

H . The value of the critical thicknessH is independentc c

of h. When the membrane force is compressive, there
exists a critical thickness of the solid film,h . Forc

example, in Fig. 5,h s3.1 nm. When h)h , thec c

maximum value ofj is greater than 0.25, and there
exists a thickness window forH, within which j)0.25
and the flat film is stable against perturbations of all
wavenumbers. Whenh-h , however,j-0.25 for anyc

H, and the flat film is unstable.
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Fig. 6. A schematich–H diagram of stability, under the combined
interaction of photon dispersion and electrical double layer.

Fig. 6 schematically shows the stable and unstable
regions in the h–H diagram under the combined inter-
action of photon dispersion and electrical double layer.
In region I,j-0, and the flat film is unstable. In region
II, 0-j-0.25, the flat film is stable ifN)0, but
unstable ifN-0. In region III, j)0.25, the flat film is
stable. The dashed line indicates the critical thickness
of the solid film.

4.4. Electron confinement

Next we consider a metal film on a substrate. It is
common that a native oxide lies on top of the metal. At
an elevated temperature, the metal creeps, but the oxide
remains to be solid. The native oxide is typically very
thin, just a few nanometers, and is subject to an inplane
residual stress due to the oxidation process. A recent
model has highlighted forces of two origins in a metal
film: quantum confinement and charge transferw31,32x.
Here we consider quantum confinement only. As an
estimate of the interaction energy, Suo and Zhangw32x
consider electrons confined in a metal film by infinite
potentials on both side and give an asymptotic
expression,

C
U H s , (24)Ž .L H

where , h is the Planck constant,m the
2 23p " n

Cs
32m

electron mass, andn the number of free electrons per
unit volume. For finite confinement potentials, the inter-
action energy has the same form as Eq.(24), but with
a different constantC.

Substituting Eq.(24) into Eq. (12), we obtain that,

3Eh C
js . (25)22 3¯6 1yn shqf HŽ .Ž .

Becausej)0, when the resultant membrane force in
the oxide layer is tensile, the flat film is stable against
perturbations of all wavenumbers. When the resultant
membrane force is compressive, there exists a critical
thicknessH . WhenH-H , j)0.25 and the flat film isc c

stable. WhenH)H , 0-j-0.25 and the flat film isc

unstable. Using representative values,ns5=10 m ,28 y3

Es100 GPa,ssy100 MPa,hs10 nm, s0, andnsf̄
0.3, we haveH f35 nm.c

5. Conclusions

A linear perturbation analysis has been performed to
study the stability of very thin solid-on-liquid(SOL)
structures. Flexural rigidity of the solid film stabilizes
the flat film against perturbations of short wavelengths.
Depending on its sign, the resultant membrane force,
combining the surface stress and the residual stress in
the solid film, can either stabilize or destabilize the film
with perturbations of intermediate wavelengths. Depend-
ing on the shape of the interaction energy, concave up
or down, the interfacial forces can either stabilize or
destabilize the film with perturbations of long wave-
lengths. The importance of the surface stress depends
on its contribution to the resultant membrane force
compared to the residual stress. The relative importance
of the flexural rigidity, the resultant membrane force,
and the interfacial force is quantified by a dimensionless
parameterj. Regardless of the physical origins of the
interfacial forces, the stability analysis predicts that
suitable interfacial forces may stabilize a solid film
under compression or destabilize a film under tension.
Specifically, the interfacial forces resulting from photon
dispersion, electrical double layer, and electron confine-
ment are considered, and their effects on SOL structures
are estimated.
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