A Depth Function and a Scale Curve
Based on Spatial Quantiles

Robert Serfling

Abstract. Spatial quantiles, based on the L; norm in a certain sense, provide
an appealing vector extension of univariate quantiles and generate a useful
“volume” functional based on spatial “central regions” of increasing size. A
plot of this functional as a “spatial scale curve” provides a convenient two-
dimensional characterization of the spread of a multivariate distribution of
any dimension. We discuss this curve and establish weak convergence of the
empirical version. As a tool, we introduce and study a new statistical depth
function which is naturally associated with spatial quantiles. Other depth
functions that generate Li-based multivariate quantiles are also noted.

1. Introduction

An effective way of working with probability distributions, especially when they are
unspecified as in exploratory and nonparametric inference, is through “descriptive
measures” that characterize features of particular interest. In the univariate case,
based on the natural order of the real line, quantiles provide a popular approach.
These have no definitive multivariate generalization, however, and a variety of ad
hoc notions of multivariate quantiles have been formulated (see Serfling, 2002b,
for a partial review). Here we focus on a particular form of multivariate quantiles,
the spatial quantiles, introduced by Chaudhuri (1996) and Koltchinskii (1997) as a
certain form of generalization of the univariate case based on the L; norm, and on
a particular descriptive measure, spread. In particular, we treat the spatial “volume
functional”, whose values are noted by Chaudhuri (1996) to provide multivariate
analogues of such univariate measures as interquantile ranges.

In the present development we consider the volume functional as a
spatial scale curve that provides a convenient two-dimensional characterization
of the spread of a multivariate distribution of any dimension. This is a “spatial”
analogue of the scale curve introduced in the context of central regions based on
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statistical depth functions by Liu, Parelius and Singh (1999), who emphasize the
appeal and importance of visualizing features of multivariate distributions by one-
dimensional curves: “the very simplicity of such objects ... makes them powerful
as a general tool for the practicing statistician”. Thus, to provide an additional
tool in the growing body of practical methods based on spatial quantiles, we ex-
plore the basic features of the spatial scale curve and derive weak convergence of
the empirical version. We note that the basic idea of a depth-based scale curve for
multivariate analysis was first mentioned in Liu (1990, p. 408).

The spatial quantiles are introduced in Section 2, along with a review of their
attractive properties and applications. In terms of these quantiles, spatial “central
regions” and the corresponding volume functional and scale curve are discussed.

Derived as the solution to an L optimization problem, the spatial quantiles
are formulated quite differently, for example, from those notions of multivariate
quantiles which are defined in terms of statistical depth functions, as the boundary
points of depth-based central regions of specified probability. Indeed, the spatial
quantiles do not correspond in this sense to any of the many depth functions that
have been proposed and studied thus far in the literature. In Section 3, however,
we introduce and study a natural “spatial depth function”, with respect to which
the spatial quantiles are indeed “depth-based”. We compare with the well-known
halfspace depth in two examples, illustratrating a difference in how these two
depth functions measure “centrality” and showing that the spatial depth is some-
what smoother than the halfspace depth. We also take note of several other “L;-
based” depth functions, whose corresponding multivariate quantiles differ from the
“spatial” version.

The depth-based representation provides a new perspective on the use of
spatial quantiles. Also, it is utilized to technical advantage in Section 4 in obtaining
weak convergence of the associated “empirical spatial scale curve process” to a
(rescaled) Brownian bridge. Such a result provides, for example, the foundation
for placing confidence bands around an empirical spatial scale curve.

2. Spatial quantiles and a related volume functional

2.1. Spatial quantiles

For univariate Z with E|Z| < oo, and for 0 < p < 1, the Li-based definition of
univariate quantiles characterizes the pth quantile as any value § minimizing

(1) E{|Z - 0|+ (2p—1)(Z - 0)}
(Ferguson, 1967, p. 51). To extend to R?, Chaudhuri (1996) first rewrites (1) as
(2) E{|Z = 6| +u(Z - 0)},

where u = 2p — 1, thus re-indexing the univariate pth quantiles for p € (0,1)
by u in the open interval (—1,1), and then formulates d-dimensional “spatial” or
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“geometric” quantiles by extending this index set to the open unit ball B4~1(0)
and minimizing a generalized form of (2),

(3) E{®(u, X —0) — ®(u, X)},

where X and 0 are R%-valued and ®(u, t) = ||t|| +(u, t) with ||-|| the usual Euclidean
norm and (-, -) the usual Euclidean inner product. (Subtraction of ®(u, X) in (3)
eliminates the need of a moment assumption.) This yields, corresponding to the
underlying distribution function F for X on R, and for u € B41(0), a “uth
quantile” Qp(u) having both direction and magnitude. In particular, the well-
known spatial median of F' is @ (0), which we shall also denote by Mpg. Unlike
many notions of multivariate quantiles, it is relatively straightforward to extend
spatial quantiles to the setting of Banach spaces, as discussed in Kemperman
(1987) for the spatial median and by Chaudhuri (1996) for the general case.

The quantile Qr(u) always exists for any wu, and it is unique if d > 2 and F
is not supported on a straight line (see Chaudhuri, 1996). Moreover, the spatial
quantile function characterizes the associated distribution, in the sense that Qp =
Q¢ implies F' = G (see Koltchinskii, 1997, Cor. 2.9).

For each u € B?~1(0), the quantile Q#(u) may be represented as the solution
T = x, of

(4) —E{é%”}:u

It follows that we may attach to each point z in R? a spatial quantile interpretation:
namely, it is that spatial quantile @ p(u;) indexed by the average unit vector u,
pointing to = from a random point having distribution F. Since u, is uniquely
determined by (4) and satisfies ¢ = Qp(u,), we interpret u, as the inverse at x
of the spatial quantile function Qr and denote it by Q;l(x) When the solution
x of (4) is not unique, as illustrated for the univariate case in Section 2.3 below,
multiple points x can have a common value of Q}l(x)

Another inference from (4) is that “central” and “extreme” quantiles Qr(u)
correspond to ||u|| being close to 0 and 1, respectively. Thus we may think of the
quantiles Qr(u) as indexed by a directional “outlyingness” parameter u whose
magnitude measures outlyingness quantitatively, and, accordingly, we measure the
outlyingness of any point = quantitatively by [|Qz"(x)]|.

Also, a nice structural property for the spatial quantile function follows easily
from (4) (or see Koltchinskii, 1997, p. 448). For F' centrally symmetric about Mp,
that is, for X — Mp and Mp— X identically distributed, the corresponding median-
centered spatial quantile function Qg is skew-symmetric:

(5) Qr(—u) — Mp = —(Qr(u) — Mp), u € B (0).
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Computation of the sample spatial quantile function @, (u) for a data set
Xq,..., X, via

(6) _Zﬂ:u

is quite straightforward (Chaudhuri, 1996), whereas many depth-based notions of
multivariate quantiles are computationally intensive. We note from (6) a robustness
property of @, (u): its value remains unchanged if the points X; are moved outward
along the rays joining them with @, (u). Moreover, it has favorable breakdown
point (50% for the median — see Kemperman, 1987, and Lopuha and Rousseeuw,
1991) and bounded influence function (Koltchinskii, 1997, p. 459).

Also, spatial quantiles support a variety of useful methodological techniques.
For example, the extension of the univariate regression quantiles of Koenker and
Bassett (1978) to multiresponse regresssion is discussed in Chaudhuri (1996) and
Koltchinskii (1997). Marden (1998) illustrates the use of bivariate QQ-plots based
on spatial quantiles, along with some related devices, and similar methods based
on a modified type of sample spatial quantile are developed in Chakraborty (2001).
Notions of multivariate ranks may be based on spatial quantiles — see Jan and
Randles (1994), Mottonen and Oja (1995), Chaudhuri (1996), Choi and Marden
(1997), and Mottonen, Oja and Tienari (1997). And nonparametric multivariate
descriptive measures based on spatial quantiles are treated in Serfling (2002c),
with spread further treated in the present paper.

The primary weakness of spatial quantiles is lack of full affine equivariance. By
(4), they are equivariant with respect to shift, orthogonal, and homogeneous scale
transformations, and thus the outlyingness measure ||Qx"(2)|| associated with any
fixed x is invariant under such transformations. (See Serfling, 2002c, for detailed
discussion.) In terms of a data cloud in R?, the sample spatial quantile function
thus changes equivariantly if the cloud of observations is translated, homogeneously
rescaled, rotated about the origin, and/or reflected about a (d — 1)-dimensional
hyperplane through the origin. For applications with coordinates measured in a
common unit, such equivariance is quite sufficient. Full affine equivariance fails
only if the coordinate variables are subject to heterogeneous scale transformations,
a matter of possible concern only in applications with coordinates having differing
measurement scales. The importance of this depends perhaps on the situation.
Chakraborty (2001, p. 391) takes the point of view, for example, that outlying-
ness measures of data points which are potential “outliers” should not depend on
the choice of coordinate system. On the other hand, Marden (1998) comments
that in some cases it may be satisfactory to transform variables to have similar
scales at the outset of data analysis. Likewise, as pointed out by Van Keilegom
and Hettmansperger (2002), when the variables of interest have a special physical
interpretation, there is no interest in affinely transforming them.
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2.2. Central regions and a volume functional

Corresponding to the spatial quantile function Q g, we call
Cr(r) = {Qr(u) : Jull < 7}
the rth central region and define the (real-valued) volume functional by
vp(r) = volume(Cr(r)), 0 <r < 1.

When F is centrally symmetric, the skew-symmetry of Qr — Mg given by (5)
yields that the regions Cg(r) have the nice property of being symmetric sets, in
the sense that for each point x in Cr(r) its reflection about Mp is also in Cp(r).
As an increasing function of r, vp(r) characterizes the spread of F' in terms of
expansion of the central regions Cp(r). For each r, vp(r) is invariant under shift
and orthogonal transformations, and vp (7")1/ 4 is equivariant under homogeneous
scale transformations.

Analogous to the scale curve introduced by Liu, Parelius and Singh (1999)
in connection with depth-based central regions indexed by their probability weight,
the spatial volume functional may likewise be plotted as a “scale curve” over
0 < r < 1, thus providing a convenient two-dimensional device for the viewing
or comparing of multivariate distributions of any dimension. Besides its role as a
scale curve, the volume functional may be used in other ways. For example, we
may compare two multivariate distributions F’ and G via the graph of vg v}l. This
generalizes the “spread-spread plot” introduced for the univariate case in Balanda
and MacGillivray (1990). Also, besides its intrinsic appeal for measuring spread,
the volume functional plays key roles in defining spatial skewness and kurtosis
measures in Serfling (2002c).

Since the central regions are ordered and increase with respect to the spatial
“outlyingness” parameter r that describes their boundaries, i.e., r < 7/ implies
Cr(r) C Cp(r'), their probability weights p increase with r. Consequently, the
central regions and associated volume functional and scale curve can equivalently
be indexed by the probability weight of the central region. This relationship may
be described by a mapping ¥g : r — p,. € [0,1), with inverse @[J;l DTy
(thus p, = ¢p(r) and r, = w;l(p)), although characterization of this mapping is
complicated.

The empirical depth-based scale curve of Liu, Parelius and Singh (1999) is
shown in Serfling (2002a) to converge weakly to a Brownian bridge. In Section 4
below, a similar result is established for the spatial version.

An alternative notion of spatial dispersion function is developed by Avérous
and Meste (1997), who extend the univariate interquantile intervals to multivariate
“median balls” indexed by their radii, as a family of “central regions” which provide
optimal summaries in a certain L; sense. Under regularity conditions on F', the
probability weight of a median ball is a nondecreasing function of its radius, even
in cases when the balls are not ordered by inclusion. This yields a “median balls”
analogue of the scale curve described above, which, however, remains open for
investigation.
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2.3. A simple illustration

To illustrate the above definitions in familiar terms, note that for d = 1 and
univariate F', we have B°(0) = (—1,+1), S¥(0) = {-r,r}, Mp = F~'(3), and
Qr(u) = F7H3+4), -1 < u < 1. It is readily seen that Q' (z) = 2F(z) — 1,
and, accordingly, |2F(x) — 1| serves as a measure of the outlyingness of = relative
to the distribution F on R. Note that if F' is constant over an interval [x1,z2],
then F(z) and thus also Q' (z) are constant over this interval. The central regions
Cr(r) consist of (nested) “interquantile intervals” whose widths form the volume

functional

™) or(r) = F'(4+3) —F'(-3), 0<r <1,

2

which increases with r and shrinks to Mp as r — 0. This is recognized to be a
classical nonparametric spread measure arising in many treatments of skewness
and kurtosis in the univariate case (see, for example, Avérous and Meste, 1990,
and Balanda and MacGillivray, 1990).

3. A “spatial” depth function
3.1. Depth functions

By “depth function” we mean a nonnegative real-valued function D(z, F') adopted
for the purpose of providing an F-based center-outward ordering of points x in R.
A data set with empirical distribution F;, may thus be ordered using D(x, F},). The
role of “center” is played by the point(s) of maximal depth, and the depth-induced
“contours” are interpreted as multivariate analogues of univariate rank and order
statistics. The smallest inner region {z € R? : D(z, F) > a} having probability
> p is called the “pth central region”.

The use of such depth functions was initiated by Tukey (1975) with the
halfspace depth, defined for each z in R? as the minimum probability mass carried
by any closed halfspace containing x:

Dy(x, F) = inf{Pr(H) : H a closed halfspace, € H}, = € R%.

Tukey pointed out the appeal of “beginning in the middle” for some purposes of
data summarization. Clearly, lower halfspace depth is associated with greater out-
lyingness. For d = 1, we have D, (z, F) = min{F(z),1 — F(z—)}, € R. Donoho
(1982) and Donoho and Gasko (1992) provided detailed development of the half-
space depth, which remains a leading example and continues to receive extensive
investigation. Liu (1990) introduced an important new variety of depth function,
the “simplicial depth”, and emphasized the general role of a depth function as
providing a center-outward ranking of data points. Additional depth functions
have been introduced by Liu and Singh (1993), Liu, Parelius and Singh (1999),
Zuo and Serfling (2000a,b) and others, and these references along with Zuo and
Serfling (2000c,d) and Serfling (2002a) may be consulted for detailed background
and further references.
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3.2. A “spatial” notion of depth

Corresponding to the spatial quantile function Qr associated with F' on R?, and
recalling the interpretation of ||Q,'(z)| as a measure of outlyingness, a natural
notion of “spatial depth” is thus given by taking

Dy(z, F) =1~ Q7 (@)l

Clearly, from our previous discussion, this depth function is invariant under shift,
orthogonal and homogeneous scale transformations. The point of maximal depth is
the spatial median, and decreasing depth corresponds to increasing outlyingness.

An important aspect of any depth function is whether its sample version
converges to the population counterpart, as discussed in Zuo and Serfling (2000a,
Remark A.3) and Zuo and Serfling (2000b, Appendix B), along with results for
several depth functions. In particular, for the halfspace depth this convergence is
given in Donoho and Gasko (1992). For the spatial depth function, the desired
convergence follows from Theorem 5.5 of Koltchinskii (1997). Specifically, for any
bounded set S in R, we obtain supg |Ds(z, F,,) — Ds(z, F)| — 0 a.s. In turn,
by Theorem 4.1 of Zuo and Serfling (2000b), this yields almost sure convergence
of the central regions, CFp, (r) — Cr(r) a.s., provided that the boundary {z :
Q7" (x)|| = r} of Cr(r) has F-probability 0.

In the one-dimensional case the spatial depth is equivalent to the halfspace
depth, as seen from

Dy(x,F)=1—-[2F(z) — 1| = 2min{F(z),1 — F(z)}.

In higher dimension, however, such an equivalence does not hold, these two depth
functions differing in how they measure “centrality”. This is illustrated in Table
3.1, which compares the sample halfspace and spatial depths for a (contrived)
bivariate data set of size n = 12.

Further, in higher dimension, the spatial and halfspace depths differ with
respect to smoothness. From comparison of the respective contours in Figure 3.1
in the case of F' the uniform distribution on the unit square, it is evident that
surface and contours of the spatial depth are somewhat smoother than those of
the halfspace depth. The halfspace and spatial depth functions used for this F' are
straightforward to obtain. For the spatial depth we have

DS((x,y),F) =1- \/CLQ(l‘,y) + aQ(y,x),

where

1
awy) = [ WE=2P + =P = VT 9P ) de.
0
For the halfspace depth we have
Dy (z,y) = 2 min(z,1 — x) min(y, 1 — y),
as given by Rousseeuw and Ruts (1999).
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Table 3.1. Halfspace and spatial depths, Dy, ,(x) and Ds (), for a bivariate

data set.

T Dsn(z) Dpan(z)
0,1) 0.7480 4/12
0,—1) 0.7480 4/12
—1,0) | 0.7270  2/12
1,0) 0.7270  2/12
0,3) 0.4940  3/12
1.7,0) | 04923  1/12

0,-3.1) | 04921  3/12
0,15) 0.2640  2/12
0,—15) | 0.2640  2/12
—-10,0) | 02578  1/12
0,20) 0.0921  1/12
0,-20) | 0.0921  1/12

For the data set of Table 3.1, the spatial median is (0,0), while the halfspace
“median” is the line joining (0,1) and (0, —1). Both depth functions agree that
(0,1) and (0, —1) are the most central, and (0, 20) and (0, —20) the most outlying,
points. Otherwise they differ somewhat. The halfspace depth selects (0,3) and
(0,—3.1) as the two next most central points (forming a configuration of four
points on a line as the “middle third” of the data set), whereas the spatial depth
selects (—1,0) and (1,0) (forming a square as the “middle third”). Neither depth
function is strictly compatible with the Euclidean distance, of course. More or less
the same findings are obtained if the data points are slightly perturbed so that no
three lie on the same line.

In Figure 3.1 we see that for ' uniform on the unit square the contours of the
spatial depth approximate circles, while those of the halfspace depth approximate
squares which in the middle are rotated 90° relative to the boundary square. Since
any depth function is equivalent to itself multiplied by any constant, we do not
force agreement of vertical scales in these 3D plots. Rather, we let the vertical
scales be chosen to accommodate ease of viewing. Note that in fact the maximum
depth has value 1 for the spatial depth and 1 for the halfspace depth.



Spatial Depth Function and Scale Curve

Spatial Depth Contours

Halfspace Depth Contours

Spatial Depth Function

l‘\
AN

AN

2725

W

A

S SINNN

AN

Wl OO ARSI

221100 g Gy OO N NNINNTN
RIS >

':,"0.:‘.“ Ngie

RS

COERERISS
LXRKKS
QERLES

Halfspace Depth Function

/
y N
435?%%’%1" 0“ “ \\\\%&i&‘
“Z R
I NN
il S

Spatial Depth Function

Halfspace Depth Function

FIGURE 3.1. Views of Spatial and Halfspace Depth Functions,
for F' Uniform on Unit Square.




10 Robert Serfling

3.3. Other quantile functions based on the L; norm

Besides the spatial quantiles, there are other versions of Li-based multivariate
quantiles. For example, Abdous and Theorodescu (1992) generalize (1) in a way
quite different from Chaudhuri (1996). See Serfling (2002b) for comparison of the
two approaches. Further, certain depth functions are based on the L; norm, and
these yield corresponding quantile functions. Examples are

1

D F) =
e F) = A = X

1
1+ E{llz = Xllz@)-1})
with ||z| s = Va’Mz for x € R? and X(F) the usual covariance matrix of F, and

1
@+ Tz~ Mrllggr )

DQ(LC,F) =

Dg(x,F) =

with My the spatial median as previously and S(F) a suitable version of covariance
matrix for F. The motivation for Dy (x, F') over Dy (z, F) is its full affine invariance.
Interest in Ds(x, F') arises by comparison with the well-known (but not L;-based)
Mahalanobis depth,

1
A+ 7= aF) By )
with u(F) the mean of F. The depth functions Dy, D2 and D, are studied in Zuo
and Serfling (2002a,b), for example, while D3 is newly formulated here and will

be investigated elsewhere, along with further study of the spatial depth defined
above.

D4(£C, F) =

4. Asymptotic behavior of sample versions

Here we define an empirical process associated with the spatial volume functional
and obtain its weak convergence to a Brownian bridge. Denote the sample version
of vg by vy, let 9p(p) denote the volume functional of the spatial central regions
as indexed by their probability content p, and let o, (p) denote the corresponding
sample version. Recalling the mappings ¢ g : r — p, and w;l : p — rp of Section
2.3, with p, = ¢¥p(r) and r, = w;l(p), it follows that the spatial central region
having probability p is Cr(rp) and thus

(8) or(p) = vr(rp) = ve(vp' (p))

and, assuming differentiability of vr(r) (see Condition C1 below) and of ¢ (r),
9) T (p) = vp(¥p' (0)/Ve(Wp (p).
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Similar expressions relate the sample versions. In terms of these quantities, we
define the empirical spatial scale curve process as

G
(10) En(r) = ,F( ) n2 (v, (r) —vp(r), 0 <r < 1.

vp(r)
The relevance of the scaling factor in (10) derives from reexpression in terms of o,
and Up. Namely, using (8) and (9) and their sample versions with r = w;l(p), we
may rewrite (10) as
(1) &)= =

p) ==
" Up(p)

This is precisely the empirical depth-based scale process in the form considered for
general depth functions in Serfling (2002a), where weak convergence to a Brownian
bridge is established in a result from which we derive the following lemma. Assume
the conditions

n'/? (5, (p) — p(p)), 0<p < 1.

C1 The probability distribution F' possesses a density f(z) positive for all
x € supp(F).

C2 The volume functional 0r(p) is finite, strictly decreasing and possesses a
continuous derivative.

Let “~L7 denote weak convergence in (D[a,b], D), where Dla,b] is the space

of left-continuous functions on [a,b] and D? is the class of corresponding Borel
sets generated by the supremum norm on [a,b]. Also, let B(-) denote the usual
Brownian bridge process.

Lemma 4.1. Under C1 and C2, for any closed interval [ag, bo] in (0,1) we have

(12) {€u(p), a0 <p < bo} —= {B(p), ao <p < bo} on (Dlag, bo], D).

PRrROOF. The validity of (12) follows under conditions A1-A3 of Theorem 3.1 of
Serfling (2002a). Now, Al and A3 are essentially C1 and C2, respectively. For
A2 we need the spatial depth function Dg(z, F') defined in Section 3.2 to satisfy
(i) Dg(x, F) is continuous in z, vanishes for « ¢ supp(F’), and converges to 0 as
|z|| = oo, and (ii) the set {z : Dy(x, F') = a} is nonempty for all 0 < o < 1. Now
(i) follows if || Q%" ()| is continuous in z, = 1 for z ¢ supp(F), and — 1 as ||z||
— 00. And (ii) is equivalent to nonemptiness of the set {z : |Qz'(z)|| = 1 — o}
for all 0 < a < 1. These requirements for the spatial quantile function follow
from Proposition 2.6 and Example 2.7 of Koltchinskii (1997), which give strict
continuity and strict monotonicity of the “M-distribution” (which here we denote
Q}l) associated with Q. O

By the relation &,(r) = &,(p) with p = ¥p(r), the preceding lemma converts
to the following result for the empirical spatial scale process as indexed by the
“outlyingness” parameter r.
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Proposition 4.1. Under C1 and C2, for any closed interval [a,b] in (0,1) we have

(13)  {&(r), a<r <b} -5 {B@r(r)), a<r <b} on (Dla,b], D).

Since the mapping 1 is not easy to determine, in practice the process fn (p) is
more straightforward to use. Of course, practical implementation of (13) requires
studentization, replacing 9% (p) in (11) by a suitable estimator based on the sample
(see Serfling and Wang, 2002).
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