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Abstract

We present Nonlinear Spherical Shells (NSS)
as a non-iterative model-free method for con-
structing approximate principal curves skele-
tons in volumes of d dimensional data points.
NSS leverages existing model-free techniques
for nonlinear dimension to remove nonlin-
ear artifacts in data. With nonlinearities re-
moved and topology preserved, data embed-
ded by such procedures are assumed to have
properties amenable to simple skeletoniza-
tion procedures. Given these assumptions,
NSS is able extract points in the “middle” of
the volume data and hierarchically link them
into principal curves, or a set of 1-manifolds
connected at junctions.

1. Introduction

Skeletonization is the process of extracting curves or
surfaces that describes the shape of an object or con-
nected distribution of points in a d dimensional space.
Skeletonization can be performed through a variety of
techniques, including morphological thinning, Delau-
nay triangulation, self-organizing maps, and distance
transforms. Additionally, the representations pro-
duced through skeletonization take a variety of forms,
such as a star-skeleton (Fujiyoshi & Lipton, 1998), a
shock scaffold (Leymarie & Kimia, 2003), principal
curves (Hastie & Stuetzle, 1989), and the (well-known)
medial-axis (Blum, 1967). While skeletonization has
applicability to a diverse range or topics, including
medical image analysis, robotics, computer graphics,
and biometrics, no single method for skeletonization
has been demonstrated as the clear choice for all skele-
tonization problems.

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Motivated by recent work in model-free markerless mo-
tion capture (Chu et al., 2003), we present Nonlinear
Spherical Shells (NSS) as a model-free non-iterative
skeletonization method that leverages existing nonlin-
ear dimension reduction techniques. Similar to work
by Kegl and Krzyzak (Kégl & Krzyzak, 2002), NSS
aims to skeletonize d-dimensional distributions of data
points as principal curves (Hastie & Stuetzle, 1989).
Principal curves are a nonlinear generalization of prin-
cipal components as a set of 1-manifolds that pass
through the “middle” of a d-dimensional data distribu-
tion and connected by junctions. For data with dimen-
sionality d > 2, principal curves provide more compact
skeletons than medial-axes, which produces skeletons
of higher manifold dimensionality as surfaces.

In the remainder of this paper, we describe the NSS
method and its foundation in nonlinear dimension re-
duction. Results are presented that illustrate the ef-
fectiveness of NSS through its application to 2D data
of handwritten digits and 3D data of human volumes.

2. Easier Skeletonization through
Dimension Reduction

NSS assumes the inherent difficulty in skeletonization
is due to shape-specific nonlinearities, obfuscating the
topology underlying a data distribution. In this sit-
uation, a transformation of great benefit could rein-
terpret data such that nonlinearities are removed and
underlying topology is preserved. Given this transfor-
mation, a set of input data points can be reduced to a
form amenable to skeletonization. For example, con-
sider a collection of points that comprise the volume
of a human arm. In a fully extended state, the arm
could plausibly be modeled as a cylinder, whose skele-
ton could be a segment of the cylinder axis. However,
as this arm moves, rotation about the elbow causes this
cylinder assumption to be violated. Given a topology-
preserving transformation mechanism, any pose of the
arm could be reduced a pose-independent configura-
tion (i.e., straightened out) amenable to the cylinder
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assumption, allowing for simple skeletonization.

Fortunately for us, recent work in manifold learning
has produced a suite of useful techniques for model-
free nonlinear dimension reduction, including Isomap
(Tenenbaum et al., 2000), Kernel PCA (KPCA)
(Schölkopf et al., 1998), and Locally Linear Embed-
ding (LLE) (Roweis & Saul, 2000), based on pairwise
relationships between data points. Conceptually, these
methods should provide the appropriate topology-
preserving nonlinearity-removing we are seeking. Ad-
ditionally, these techniques do not require a priori
specification of the topology to be uncovered, unlike a
self-organizing map. However, each technique has its
own means for characterizing pairwise relationships,
leading to significantly different transformations. As
shown in Figure 1, KPCA, Isomap, and LLE each
produce different embeddings when applied to a set
of 3D points comprising a human volume, acquired
from multiple calibrated cameras through voxel carv-
ing (Szeliski, 1993).

Of these dimension reduction mechanisms, Isomap in-
tuitively appears the best suited for skeletonization
purposes. When applied to human volumes (Figure
1), Isomap consistently reduces the data to a con-
figuration similar to a “Da Vinci” pose in 3 dimen-
sions. Given distinguishable limbs and volumes of
genus 0, Isomap-reduced volumes have desirable reduc-
tion properties of: i) the center of mass of the embed-
ded volume is located at the origin, ii) the distance be-
tween the origin and other points in the volume mono-
tonically increase while moving along the body, and iii
articulations of the volume are separated as far apart
as possible. The applicability of Isomap to this prob-
lem is not surprising considering the use of shortest-
path geodesic distance in several skeletonization meth-
ods (Zhou & Toga, 1999; Fricout et al., 2002). These
methods, however, are sensitive to seed points selected
to serve as root points for shortest-path computation.
In contrast, Isomap performs multidimensional scaling
on a matrix of all-pairs shortest-paths, allowing use of
feature space centering to avoid explicit seed point se-
lection.

3. Nonlinear Spherical Shells

NSS is a five-step procedure, described as follows:

1. embedding of input data into topology-preserving
nonlinearity-removing coordinates (e.g., Isomap)

2. partitioning the embedded data into concentric
spherical shells

3. clustering data points in each shell partition
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Figure 1. (Left column) A 3D human volume consisting of
1073 points embedded through KPCA (top, Gaussian RBF
neighborhood = 3), Isomap (middle, neighborhood radius
= 2), and LLE (bottom, 7 nearest neighbors). (Right col-
umn) Plot input volume points weighted by embedding-
space distances with respect to the most extremal point
on the right hand. The embedding-space distance for each
point is illustrated as small and green for small distances
and large and blue for large distances.

4. linking of data clusters in adjacent shell partitions
into a hierarchy

5. computing skeleton points as centroids of data
clusters
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Nonlinear dimension reduction is used in the first step
of the NSS procedure to produce an embedding that
realizes a shape-independent topology-preserving con-
figuration of the input data. The resulting config-
uration is expected to have the reduction properties
mentioned in the previous section. For our NSS im-
plementation, we applied the Isomap1 directly to the
input data. Isomap requires user specification spec-
ify of only the dimensionality of the embedding and
a function for constructing local neighborhoods about
each data point (e.g., K-nearest neighbors or an ep-
silon radius). Dimension reduction is not necessarily
the aim of the step. Thus, the embedded space can po-
tentially be of equal or greater dimensionality as the
input space.

Assuming adherence to the reduction properties, the
embedded data can be partitioned into concentric
spherical shells S:

(i− 1) ‖ xmax ‖
| S |

≤‖ x ‖< (i) ‖ xmax ‖
| S |

⇒ x ∈ Si (1)

where Si is the set of points in the ith shell partition,
| S | is the number of shell partitions, and xmax is
the furthest point from the origin. The motivation for
this partitioning is that separable clusters correspond-
ing to individual articulations of the volume will form
as we move away from the origin. Additionally, the
boundary of a spherical shell in the embedding space
corresponds to a potentially non-spherical and nonlin-
ear boundary in the input space.

A clustering mechanism is applied to individual shell
partitions to identify clusters Ci,j , where i and j
are shell and cluster identifiers, respectively. Many
clustering mechanisms (Jain & Dubes, 1988) can be
used for this purpose. We chose to cluster using the
one-dimensional “sweep-and-prune” technique (Cohen
et al., 1995) for bounding clusters by axis-aligned
boxes. Sweep-and-prune clustering requires specifica-
tion of a partitioning distance threshold data projected
onto a single axis. Clustering is performed by parti-
tioning data with respect to its projection on a single
axis and iterating over every axis. Clustering in this
fashion avoids the need to estimate the expected num-
ber of clusters in a partition.

Once established, partitioned clusters in adjacent shell
partitions are linked together to define the topology of
the skeleton. For each partitioned cluster Ci,j , parent

1Isomap code was provided by the authors
of Isomap (Thank you!) and is available at
http://isomap.stanford.edu/.

clusters Pi,j in the parent shell partition Si−1 can be
found through the minimum distance between mem-
bers of different clusters:

min
a∈Ci,j ,b∈Ci−1,k

‖ a− b ‖ < εm ⇒ Ci−1,k ∈ Pi,j (2)

or (for lighter computation) through the minimum dis-
tance between the cluster centroid m′

i,j and the mem-
bers of the potential parent cluster:

min
b∈Ci−1,k

‖ m′
i,j − b ‖ < εc ⇒ Ci−1,k ∈ Pi,j (3)

where εm and εc are user-selected thresholds (poten-
tially based on values for ‖ xmax ‖ and | S |).

Given the partitioned clusters Ci,j and cluster link-
ages Pi,j , the approximate principal curve for the input
data can be computed by one of two different means.
Both of these mechanisms rely on the fact that 1-to-
1 correspondences exist between input and embedded
data points to estimate principal points mi,j . The sim-
plest of these mechanisms computes mi,j as the cen-
troid of Ci,j in the input space. The other mechanism
uses an interpolation mechanism (e.g., Shepard’s in-
terpolation (Shepard, 1968)) to map embedding space
centroids m′

i,j into input space centroids mi,j . The
principal curve is finally formed by linking mi,j to its
parents specified by Pi,j . Chu et al. (Chu et al., 2003)
discuss additional refinement steps for the procedure
to produce more aesthetic principal curves.

4. Experiments

In this section, we describe two experiments with our
MATLAB NSS implementation applied to data of 2D
handwritten digits and 3D human volumes. No mod-
ifications to the NSS code were made in order to ac-
commodate the differing dimensionality between these
data sets.

4.1. 2D Handwritten Digit Skeletonization

Figure 2 shows results from applying NSS to 10
handwritten digits, from the Yonsei University Digit
Database, comprised of points in 2D. Skeletioniza-
tion of the digits was performed using no embedding,
Isomap embedding, and LLE embedding. While the
Isomap embeddings typically produced the most vi-
sually appropriate skeletons, we use these results to
discuss issues in the NSS method.

The 7 digit is a case illustrating the purpose of nonlin-
ear dimension reduction. The non-embedded 7 skele-
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Figure 2. Results from applying NSS to 10 sets of 2D point comprising handwritten digits with 15 shell partitions. (First
column) Handwritten digit images from the Yonsei University Digit Database. (Second column) NSS skeletonization in
the input space without embedding. (Third column) NSS skeletonization and (fourth column) Isomap embedding with
an epsilon neighborhood of 2. (Fifth column) NSS skeletonization and (sixth column) LLE embedding with 7 nearest
neighbors.
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ton is rooted in the middle of the long branch of the
7. Spherical partitioning results in the short branch of
the 7 having no parents but instead being connected
to the root through its children at the top of the 7.
In contrast, the Isomap 7 skelton produces partitions
that geodesically move along the curvature of the 7.
Thus, the skeletonization of the 7 is reduced to the
skeletonization of the 1 digit. Additionally, the left
branch of the 4 digit has a significant nonlinearity that
is appropriately handled by the Isomap skeleton and
not handled by the non-embedded skeleton. However,
junctions in the volume, such as the upper junction of
the 5 digit, present problems for tuning cluster parti-
tioning thresholds.

The 6, 8, and 9 digits illustrates how NSS works for
data of genus greater than 0. NSS provides visually
and topologically appropriate skeletons for these vol-
umes. However, these skeletons are not guaranteed to
be topologically consistent with the input data. For
instance, the use of centroids for parent linking (Fig-
ure ??), produces that are not guaranteed to close
around the loops of digit. Thus, the skeleton is unable
to match the genus of the input data. While mini-
mum inter-member distance works for these digits, we
currently have no general guarantee for approporiate
genus matching. However, NSS is able to handle some
sparsity in the input, such as in the rightmost side of
the loop in the 6 digit.

The 0 digit is a case where NSS, in its current form,
is not suited for skeletonization, but provides a rough
approximation. Even though the embedding of the 0
digit does not violate the reduction properties assumed
by NSS, degenerate conditions are encountered that
cause errors in the procedure. First, no points are lo-
cated with the first several shell partitions. Thus, root
cluster determination must be handled as a singular
case. Our heuristic for handling this case is to consider
the first populated shell partition as the first partition.
The root shell partition in this case is likely to consist
of a single cluster. Consequently, the centroid of the
root cluster will not be among the points of this clus-
ter. In general, the placement of cluster centers is not
quite accurate for this digit, but the topology of the
digit is captured and skeleton is a roughly located in
an appropriate position.

4.2. 3D Human Volume Skeletonization

Figure 2 shows results from applying NSS to 10 hu-
man volumes, acquired using methods described in
(Chu et al., 2003), comprised of points in 3D. Each
of the volumes were of genus 0. NSS skeletionization
of the volumes was performed using Isomap embed-

Figure 3. A case in which NSS inappropriately skeletonizes
data of a 9 digit of genus 1 (left) to a genus 0 skeleton
(right) using centroid parent linking.

ding. Visually appropriate skeletons were produced
for each volume. The skeleton in the eighth frame
with a visually errant skeleton link is actually appro-
priate due to outlier points inappropriate embedded
by Isomap. Although not as aesthetic as skeletons pro-
duced by other methods, NSS relied on no postprocess-
ing mechanism. Postprocessing could greatly improve
the resulting skeleton aesthetic. Skeletons can also be
improved by using and increased number of shell parti-
tions. Higher resolution partitioning, however, would
require data of higher resolution.

5. Conclusion

We have presented Nonlinear Spherical Shells (NSS)
as a non-iterative model-free method for constructing
approximate principal curves skeletons in volumes of d
dimensional data points. We examine the use of non-
linear dimension reduction to reduce data distributions
into configurations amenable to simple principal curve
skeletonization. While NSS is not as matured as ex-
isting skeletonization methods, its simplicity and flex-
ibility exhibits promise for compact skeltonization of
various types of volumetric shapes without significant
a priori assumptions and manual tuning. In addition,
NSS procedures will greatly benefit and improve with
progress of techniques in manifold learning.
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Figure 4. Results from applying NSS to 10 sets of 3D points comprising human volumes. (Top rows) Human volumes
obtained from a moving human captured from multiple calibrated cameras. (Middle rows) Skeletons produced for each
volume. (Bottom rows) Isomap embedding (epsilon=2), clusters, and color coded partitions for each volume.
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