
  

 

Statically Detecting Likely Buffer Overflow Vulnerabilities 
 

David Larochelle 
larochelle@cs.virginia.edu 

University of Virginia, Department of Computer Science 
David Evans 

evans@cs.virginia.edu 
University of Virginia, Department of Computer Science 

 
Abstract 

 
Buffer overflow attacks may be today’s single most important security threat.  This paper presents a new approach to 
mitigating buffer overflow vulnerabilities by detecting likely vulnerabilities through an analysis of the program source 
code.  Our approach exploits information provided in semantic comments and uses lightweight and efficient static 
analyses.   This paper describes an implementation of our approach that extends the LCLint annotation-assisted static 
checking tool.  Our tool is as fast as a compiler and nearly as easy to use.  We present experience using our approach to 
detect buffer overflow vulnerabilities in two security-sensitive programs. 
 
 
1.   Introduction 
 
Buffer overflow attacks are an important and persistent 
security problem.  Buffer overflows account for 
approximately half of all security vulnerabilities 
[CWPBW00, WFBA00].  Richard Pethia of CERT 
identified buffer overflow attacks as the single most im-
portant security problem at a recent software 
engineering conference [Pethia00]; Brian Snow of the 
NSA predicted that buffer overflow attacks would still 
be a problem in twenty years [Snow99].     
 
Programs written in C are particularly susceptible to 
buffer overflow attacks.  Space and performance were 
more important design considerations for C than safety.  
Hence, C allows direct pointer manipulations without 
any bounds checking.  The standard C library includes 
many functions that are unsafe if they are not used 
carefully.  Nevertheless, many security-critical pro-
grams are written in C. 
 
Several run-time approaches to mitigating the risks 
associated with buffer overflows have been proposed.  
Despite their availability, these techniques are not used 
widely enough to substantially mitigate the 
effectiveness of buffer overflow attacks.  The next 
section describes representative run-time approaches 
and speculates on why they are not more widely used.  
We propose, instead, to tackle the problem by detecting 
likely buffer overflow vulnerabilities through a static 
analysis of program source code.  We have implement-

ed a prototype tool that does this by extending LCLint 
[Evans96].  Our work differs from other work on static 
detection of buffer overflows in three key ways: (1) we 
exploit semantic comments added to source code to 
enable local checking of interprocedural properties; (2) 
we focus on lightweight static checking techniques that 
have good performance and scalability characteristics, 
but sacrifice soundness and completeness; and (3) we 
introduce loop heuristics, a simple approach for 
efficiently analyzing many loops found in typical 
programs.   
 
The next section of this paper provides some 
background on buffer overflow attacks and previous 
attempts to mitigate the problem.  Section 3 gives an 
overview of our approach.  In Section 4, we report on 
our experience using our tool on wu-ftpd and BIND, two 
security-sensitive programs.  The following two sec-
tions provide some details on how our analysis is done.  
Section 7 compares our work to related work on buffer 
overflow detection and static analysis.   

2. Buffer Overflow Attacks and Defenses 

The simplest buffer overflow attack, stack smashing 
[AlephOne96], overwrites a buffer on the stack to 
replace the return address.  When the function returns, 
instead of jumping to the return address, control will 
jump to the address that was placed on the stack by the 
attacker.  This gives the attacker the ability to execute 
arbitrary code.  Programs written in C are particularly 



  

susceptible to this type of attack.  C provides direct 
low-level memory access and pointer arithmetic 
without bounds checking.   Worse, the standard C 
library provides unsafe functions (such as gets) that 
write an unbounded amount of user input into a fixed 
size buffer without any bounds checking [ISO99].  
Buffers stored on the stack are often passed to these 
functions.  To exploit such vulnerabilities, an attacker 
merely has to enter an input larger than the size of the 
buffer and encode an attack program binary in that 
input.  The Internet Worm of 1988 [Spafford88, RE89] 
exploited this type of buffer overflow vulnerability in 
fingerd.  More sophisticated buffer overflow attacks 
may exploit unsafe buffer usage on the heap.  This is 
harder, since most programs do not jump to addresses 
loaded from the heap or to code that is stored in the 
heap. 
 
Several run-time solutions to buffer overflow attacks 
have been proposed.  StackGuard [CPMH+98] is a 
compiler that generates binaries that incorporate code 
designed to prevent stack smashing attacks.  It places a 
special value on the stack next to the return address, 
and checks that it has not been tampered with before 
jumping.  Baratloo, Singh and Tsai describe two run-
time approaches: one replaces unsafe library functions 
with safe implementations; the other modifies 
executables to perform sanity checking of return ad-
dresses on the stack before they are used [BST00]. 
 
Software fault isolation (SFI) is a technique that inserts 
bit mask instructions before memory operations to 
prevent access of out-of-range memory [WLAG93].  
This alone does not offer much protection against 
typical buffer overflow attacks since it would not 
prevent a program from writing to the stack address 
where the return value is stored.  Generalizations of SFI 
can insert more expressive checking around potentially 
dangerous operations to restrict the behavior of 
programs more generally.  Examples include Janus, 
which observes and mediates behavior by monitoring 
system calls [GWTB96]; Naccio [ET99, Evans00a] and 
PSLang/PoET [ES99, ES00] which transform object 
programs according to a safety policy; and Generic 
Software Wrappers [FBF99] which wraps system calls 
with security checking code.   
 
Buffer overflow attacks can be made more difficult by 
modifications to the operating system that put code and 
data in separate memory segments, where the code 
segment is read-only and instructions cannot be 
executed from the data segment.  This does not 
eliminate the buffer overflow problem, however, since 
an attacker can still overwrite an address stored on the 
stack to make the program jump to any point in the 
code segment.  For programs that use shared libraries, it 

is often possible for an attacker to jump to an address in 
the code segment that can be used maliciously (e.g., a 
call to system).  Developers decided against using this 
approach in the Linux kernel since it did not solve the 
real problem and it would prevent legitimate uses of 
self-modifying code [Torvalds98, Coolbaugh99].  
 
Despite the availability of these and other run-time 
approaches, buffer overflow attacks remain a persistent 
problem.  Much of this may be due to lack of awareness 
of the severity of the problem and the availability of 
practical solutions.  Nevertheless, there are legitimate 
reasons why the run-time solutions are unacceptable in 
some environments.  Run-time solutions always incur 
some performance penalty (StackGuard reports 
performance overhead of up to 40% [CBDP+99]).  The 
other problem with run-time solutions is that while they 
may be able to detect or prevent a buffer overflow 
attack, they effectively turn it into a denial-of-service 
attack.  Upon detecting a buffer overflow, there is often 
no way to recover other than terminating execution.   
 
Static checking overcomes these problems by detecting 
likely vulnerabilities before deployment.  Detecting 
buffer overflow vulnerabilities by analyzing code in 
general is an undecidable problem.1  Nevertheless, it is 
possible to produce useful results using static analysis.  
Rather than attempting to verify that a program has no 
buffer overflow vulnerabilities, we wish to have 
reasonable confidence of detecting a high fraction of 
likely buffer overflow vulnerabilities.  We are willing 
to accept a solution that is both unsound and 
incomplete.  This means that our checker will 
sometimes generate false warnings and sometimes miss 
real problems.  Our goal is to produce a tool that 
produces useful results for real programs with a 
reasonable effort.  The next section describes our 
approach.  We compare our work with other static 
approaches to detecting buffer overflow vulnerabilities 
in Section 7. 

3. Approach 

Our static analysis tool is built upon LCLint [EGHT94, 
Evans96, Evans00b], an annotation-assisted lightweight 
static checking tool.  Examples of problems detected by  
LCLint include violations of information hiding, 
inconsistent modifications of caller-visible state or uses 
of global variables, misuses of possibly NULL 
references, uses of dead storage, memory leaks and 
problems with parameters aliasing.  LCLint is actually 

                                                           
1 We can trivially reduce the halting problem to the buffer 
overflow detection problem by inserting code that causes a 
buffer overflow before all halt instructions. 



  

used by working programmers, especially in the open 
source development community [Orcero00, PG00]. 
 
Our approach is to exploit semantic comments 
(henceforth called annotations) that are added to source 
code and standard libraries.  Annotations describe 
programmer assumptions and intents. They are treated 
as regular C comments by the compiler, but recognized 
as syntactic entities by LCLint using the @ following 
the /* to identify a semantic comment.  For example, 
the annotation /*@notnull@*/ can be used 
syntactically like a type qualifier.  In a parameter 
declaration, it indicates that the value passed for this 
parameter may not be NULL.  Although annotations can 
be used on any declaration, for this discussion we will 
focus exclusively on function and parameter 
declarations.  We can also use annotations similarly in 
declarations of global and local variables, types and 
type fields. 
 
Annotations constrain the possible values a reference 
can contain either before or after a function call.  For 
example, the /*@notnull@*/ annotation places a 
constraint on the parameter value before the function 
body is entered.  When LCLint checks the function 
body, it assumes the initial value of the parameter is not 
NULL.  When LCLint checks a call site, it reports a 
warning unless it can determine that the value passed as 
the corresponding parameter is never NULL. 
 
Prior to this work, all annotations supported by LCLint 
classified references as being in one of a small number 
of possible states.  For example, the annotation 
/*@null@*/ indicated that a reference may be NULL, 
and the annotation /*@notnull@*/ indicated that a 
reference is not NULL.  In order to do useful checking 
of buffer overflow vulnerabilities, we need annotations 
that are more expressive.  We are concerned with how 
much memory has been allocated for a buffer, 
something that cannot be adequately modeled using a 
finite number of states.  Hence, we need to extend 
LCLint to support a more general annotation language.  
The annotations are more expressive, but still within the 
spirit of simple semantic comments added to programs. 
 
The new annotations allow programmers to explicitly 
state function preconditions and postconditions using 
requires and ensures clauses.2  We can use these 
clauses to describe assumptions about buffers that are 
passed to functions and constrain the state of buffers 
when functions return.  For the analyses described in 
                                                           
2 The original Larch C interface language LCL [GH93], on 
which LCLint’s annotation language was based, did 
include a notion of general preconditions and post-
conditions specified by requires and ensures clauses. 

this paper, four kinds of assumptions and constraints 
are used: minSet, maxSet, minRead and maxRead.3  
 
When used in a requires clause, the minSet and maxSet 
annotations describe assumptions about the lowest and 
highest indices of a buffer that may be safely used as an 
lvalue (e.g., on the left-hand side of an assignment).  
For example, consider a function with an array 
parameter a and an integer parameter i that has a pre-
condition requires maxSet(a) >= i.  The analysis 
assumes that at the beginning of the function body, 
a[i] may be used as an lvalue.  If a[i+1] were used 
before any modifications to the value of a or i, LCLint 
would generate a warning since the function 
preconditions are not sufficient to guarantee that 
a[i+1] can be used safely as an lvalue.  Arrays in C 
start with index 0, so the declaration  
         char buf[MAXSIZE]  

generates the constraints  

         maxSet(buf) = MAXSIZE – 1 and  
         minSet(buf) = 0. 

Similarly, the minRead and maxRead constraints 
indicate the minimum and maximum indices of a buffer 
that may be read safely.  The value of maxRead for a 
given buffer is always less than or equal to the value of 
maxSet.  In cases where there are elements of the buffer 
have not yet been initialized, the value of maxRead 
may be lower than the value of maxSet. 
 
At a call site, LCLint checks that the preconditions 
implied by the requires clause of the called function are 
satisfied before the call.  Hence, for the requires 
maxSet(a) >= i example, it would issue a warning if it 
cannot determine that the array passed as a is allocated 
to hold at least as many elements as the value passed as 
i.  If minSet or maxSet is used in an ensures clause, it 
indicates the state of a buffer after the function returns.  
Checking at the call site proceeds by assuming the 
postconditions are true after the call returns.   
 
For checking, we use an annotated version of the 
standard library headers.  For example, the function 
strcpy is annotated as4:  
                                                           
3 LCLint also supports a nullterminated annotation that 
denotes storage that is terminated by the null character.  Many 
C library functions require null-terminated strings, and can 
produce buffer overflow vulnerabilities if they are passed a 
string that is not properly null-terminated.  We do not cover 
the nullterminated annotation and related checking in this 
paper.  For information on it, see [LHSS00]. 
4 The standard library specification of strcpy also includes 
other LCLint annotations: a modifies clause that indicates that 
the only thing that may be modified by strcpy is the storage 
referenced by s1, an out annotation on s1 to indicate that it 



  

char *strcpy (char *s1, const char *s2)
/*@requires maxSet(s1) >= maxRead(s2)@*/
/*@ensures maxRead(s1) == maxRead(s2)

/\ result == s1@*/;

The requires clause specifies the precondition that the 
buffer s1 is allocated to hold at least as many char-
acters as are readable in the buffer s2 (that is, the 
number of characters up to and including its null 
terminator).  The postcondition reflects the behavior of 
strcpy – it copies the string pointed to by s2 into the 
buffer s1, and returns that buffer.  In ensures clauses, 
we use the result keyword to denote the value returned 
by the function. 
 
Many buffer overflows result from using library 
functions such as strcpy in unsafe ways.  By 
annotating the standard library, many buffer overflow 
vulnerabilities can be detected even before adding any 
annotations to the target program.  Selected annotated 
standard library functions are shown in Appendix A.    

4. Experience 

In order to test our approach, we used our tool on wu-
ftpd, a popular open source ftp server, and BIND 
(Berkeley Internet Name Domain), a set of domain 
name tools and libraries that is considered the reference 
implementation of DNS.  This section describes the 
process of running LCLint on these applications, and 
illustrates how our checking detected both known and 
unknown buffer overflow vulnerabilities in each  appli-
cation. 

4.1 wu-ftpd 

We analyzed wu-ftp-2.5.05, a version with known secur-
ity vulnerabilities.   

Running LCLint is similar to running a compiler.  It is 
typically run from the command line by listing the 
                                                                                           
need not point to defined storage when strcpy is called, a 
unique annotation on s1 to indicate that it may not alias the 
same storage as s2, and a returned annotation on s1 to 
indicate that the returned pointer references the same storage 
as s1.  For clarity, the examples in this paper show only the 
annotations directly relevant to detecting buffer overflow 
vulnerabilities.  For more information on other LCLint 
annotations, see [Evans96, Evans00c]. 
5 The source code for wu-ftpd is available from 
http://www.wu-ftpd.org.  We analyzed the version in 
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/wu-ftpd-2.5.0.tar.gz.    
We configured wu-ftpd using the default configuration for 
FreeBSD systems.  Since LCLint performs most of its 
analyses on code that has been pre-processed, our analysis did 
not examine platform-specific code in wu-ftpd for platforms 
other than FreeBSD. 

source code files to check, along with flags that set 
checking parameters and control which classes of 
warnings are reported.  It takes just over a minute for 
LCLint to analyze all 17 000 lines of wu-ftpd.  Running 
LCLint on the entire unmodified source code for wu-
ftpd without adding any annotations resulted in 243 
warnings related to buffer overflow checking. 

Consider a representative message6: 
ftpd.c:1112:2: Possible out-of-bounds store.  Unable to  
   resolve constraint:  
      maxRead ((entry->arg[0] @ ftpd.c:1112:23)) <= (1023) 
   needed to satisfy precondition:  
      requires maxSet ((ls_short @ ftpd.c:1112:14))  
                  >= maxRead ((entry->arg[0] @ ftpd.c:1112:23)) 
   derived from strcpy precondition: 
      requires maxSet (<param 1>) >= maxRead (<param 2>)  

Relevant code fragments are shown below with line 
1112 in bold:   
char ls_short[1024];
…
extern struct aclmember *
getaclentry(char *keyword,

struct aclmember **next);
…
int main(int argc, char **argv,

char **envp)
{

…
entry = (struct aclmember *) NULL;
if (getaclentry("ls_short", &entry)

&& entry->arg[0]
&& (int)strlen(entry->arg[0]) > 0)
{

strcpy(ls_short,entry->arg[0]);
…

This code is part of the initialization code that reads 
configuration files.  Several buffer overflow vulnerabil-
ities were found in the wu-ftpd initialization code.  
Although this vulnerability is not likely to be exploited, 
it can cause security holes if an untrustworthy user is 
able to alter configuration files. 
 
The warning message indicates that a possible out-of-
bounds store was detected on line 1112 and contains 
information about the constraint LCLint was unable to 
resolve.  The warning results from the function call to 
strcpy.  LCLint generates a precondition constraint 
corresponding to the strcpy requires clause 

                                                           
6 For our prototype implementation, we have not yet 
attempted to produce messages that can easily be interpreted 
by typical programmers.  Instead, we generate error messages 
that reveal information useful to the LCLint developers.  
Generating good error messages is a challenging problem; we 
plan to devote more effort to this before publicly releasing our 
tool. 



  

maxSet(s1) >= maxRead(s2) by substituting the actual 
parameters:  

   maxSet (ls_short @ ftpd.c:1112:14)  
    >= maxRead (entry->arg[0] @ ftpd.c:1112:23).   

Note that the locations of the expressions passed as 
actual parameters are recorded in the constraint.  Since 
values of expressions may change through the code, it 
is important that constraints identify values at particular 
program points.   

The global variable ls_short was declared as an array 
of 1024 characters.  Hence, LCLint determines maxSet 
(ls_short) is 1023.  After the call to getaclentry, the 
local entry->arg[0] points to a string of arbitrary 
length read from the configuration file.  Because there 
are no annotations on the getaclentry function, 
LCLint does not assume anything about its behavior.  In 
particular, the value of maxRead (entry->arg[0]) is 
unknown. LCLint reports a possible buffer misuse, 
since the constraint derived from the strcpy requires 
clause may not be satisfied if the value of maxRead 
(entry->arg[0]) is greater than 1023. 
 
To fix this problem, we modified the code to handle 
these values safely by using strncpy.  Since 
ls_short is a fixed size buffer, a simple change to use 
strncpy and store a null character at the end of the 
buffer is sufficient to ensure that the code is safe.7   
 
In other cases, eliminating a vulnerability involved both 
changing the code and adding annotations.  For 
example, LCLint generated a warning for a call to 
strcpy in the function acl_getlimit:  
int acl_getlimit(char *class,

char *msgpathbuf) {
int limit;
struct aclmember *entry = NULL;

if (msgpathbuf) *msgpathbuf = '\0';
while (getaclentry("limit", &entry)) {

…
if (!strcasecmp(class, entry->arg[0]))
{

…
if (entry->arg[3]

&& msgpathbuf != NULL)
strcpy(msgpathbuf, entry->arg[3]);

…

If the size of msgputhbuf is less than the length of the 
string in entry->arg[3], there is a buffer overflow.  
To fix this we replaced the strcpy call with a safe call 
to strncpy: 
                                                           
7 Because strncpy does not guarantee null termination, it is 
necessary to explicitly put a null character at the end of the 
buffer. 

strncpy(msgpathbuf, entry->arg[3], 199);
msgpathbuf[199] = '\0';          

and added a requires clause to the function declaration: 
/*@requires maxSet(msgpathbuf) >= 199@*/

The requires clause documents an assumption (that may 
be incorrect) about the size of the buffer passed to 
acl_getlimit.  Because of the constraints denoted by 
the requires clauses, LCLint does not report a warning 
for the call to strncpy.  
 
When call sites are checked, LCLint produces a warn-
ing if it is unable to determine that this requires clause 
is satisfied.  Originally, we had modified the function 
acl_getlimit by adding the precondition maxSet 
(msgpathbuf) >= 1023.  After adding this precondition, 
LCLint produced a warning for a call site that passed a 
200-byte buffer to acl_getlimit.  Hence, we re-
placed the requires clause with the stronger constraint 
and used 199 as the parameter to strncpy. 
 
This vulnerability was still present in the current ver-
sion of wu-ftpd.  We contacted the wu-ftpd developers 
who acknowledged the bug but did not consider it 
security critical since the string in question is read from 
a local file not user input [Luckin01, Lundberg01]. 
  
In addition to the previously unreported buffer 
overflows in the initialization code, LCLint detected a 
known buffer overflow in wu-ftpd.  The buffer overflow 
occurs in the function do_elem shown below, which 
passes a global buffer and its parameters to the library 
function strcat.  The function mapping_chdir calls 
do_elem with a value entered by the remote user as its 
parameter.  Because wu-ftpd fails to perform sufficient 
bounds checking, a remote user is able to exploit this 
vulnerability to overflow the buffer by carefully 
creating a series of directories and executing the cd 
command.8 
  
char mapped_path [200];
…
void do_elem(char *dir) {

…
if (!(mapped_path[0] == '/'

&& mapped_path[1] == '\0'))
strcat (mapped_path, "/");

strcat (mapped_path, dir);
}

                                                           
8 Advisories for this vulnerability can be found at 
http://www.cert.org/advisories/CA-1999-13.html and 
ftp://www.auscert.org.au/security/advisory/AA-
1999.01.wu-ftpd.mapping_chdir.vul.  



  

LCLint generates warnings for the unsafe calls to 
strcat.  This was fixed in latter versions of wu-ftpd by 
calling strncat instead of strcat.  

Because of the limitations of static checking, LCLint 
sometimes generates spurious error messages.  If the 
user believes the code is correct, annotations can be 
added to precisely suppress spurious messages.   

Often the code was too complex for LCLint to analyze 
correctly.  For example, LCLint reports a spurious 
warning for this code fragment since it cannot 
determine that ((1.0*j*rand()) / (RAND_MAX +

1.0)) always produces a value between 1 and j: 
i = passive_port_max

– passive_port_min + 1;
port_array = calloc (i, sizeof (int));
for (i = 3; … && (i > 0); i--) {

for (j = passive_port_max
– passive_port_min + 1;

… && (j > 0); j--) {
k = (int) ((1.0 * j * rand())

/ (RAND_MAX + 1.0));
pasv_port_array [j-1]

= port_array [k];

Determining that the port_array[k] reference is safe 
would require far deeper analysis and more precise 
specifications than is feasible within a lightweight static 
checking tool. 
 
Detecting buffer overflows with LCLint is an iterative 
process.   Many of the constraints we found involved 
functions that are potentially unsafe.  We added 
function preconditions to satisfy these constraints where 
possible.  In certain cases, the code was too convoluted 
for LCLint to determine that our preconditions satisfied 
the constraints.  After convincing ourselves the code 
was correct, we added annotations to suppress the 
spurious warnings. 
 
Before any annotations were added, running LCLint on 
wu-ftpd resulted in 243 warnings each corresponding to 
an unresolved constraint.   We added 22 annotations to 
the source code through an iterative process similar to 
the examples described above.  Nearly all of the 
annotations were used to indicate preconditions 
constraining the value of maxSet for function 
parameters.   
 
After adding these annotations and modifying the code, 
running LCLint produced 143 warnings.  Of these, 88 
reported unresolved constraints involving maxSet.  
While we believe the remaining warnings did not 
indicate bugs in wu-ftpd, LCLint’s analyses were not 
sufficiently powerful to determine the code was safe.  
Although this is a higher number of spurious warnings 
than we would like, most of the spurious warnings can 

be quickly understood and suppressed by the user.  The 
source code contains 225 calls to the potentially buffer 
overflowing functions strcat, strcpy, strncat, 
strncpy, fgets and gets.  Only 18 of the unresolved 
warnings resulted from calls to these functions.  Hence, 
LCLint is able to determine that 92% of these calls are 
safe automatically.  The other warnings all dealt with 
classes of problems that could not be detected through 
simple lexical techniques.  

4.2 BIND 

BIND is a key component of the Internet infrastructure.  
Recently, the Wall Street Journal identified buffer 
overflow vulnerabilities in BIND as a critical threat to 
the Internet [WSJ01].  We focus on named, the DNS 
sever portion of BIND, in this case study.  We analyzed 
BIND version 8.2.2p79, a version with known bugs.  
BIND is larger and more complex than wu-ftpd. The 
name server portion of BIND, named, contains 
approximately 47 000 lines of C including shared libra-
ries.  LCLint took less than three and a half minutes to 
check all of the named code.   
 
We limited our analysis to a subset of named because 
of the time required for human analysis. We focused on 
three files: ns_req.c and two library files that contain 
functions which are called extensively by ns_req.c:  
ns_name.c and ns_sign.c.  These files contain slightly 
more than 3 000 lines of code. 
 
BIND makes extensive use of functions in its internal 
library rather than C library functions. In order to 
accurately analyze individual files, we needed to 
annotate the library header files.  The most accurate 
way to annotate the library would be to iteratively run 
LCLint on the library and add annotations.  However, 
the library was extremely large and contains deeply 
nested call chains.  To avoid the human analysis this 
would require, we added annotations to some of the 
library functions without annotating all the dependent 
functions.  In many cases, we were able to guess 
preconditions by using comments or the names of 
function parameters.  For example, several functions 
took a pointer parameter (p) and another parameter 
encoding it size (psize), from which we inferred a 
precondition MaxSet(p) >= (psize – 1).  After 
annotating selected BIND library functions, we were 
able to check the chosen files without needing to fully 
annotate all of BIND. 
 
LCLint produces warnings for a series of unguarded 
buffer writes in the function req_query.  The code in 
                                                           
9 The source code is available at 
ftp://ftp.isc.org/isc/bind/src/8.2.2-P7/bind-src.tar.gz 



  

question is called in response to a specific type of query 
which requests information concerning the domain 
name server version. BIND appends a response to the 
buffer containing the query that includes a global string 
read from a configuration file.  If the default 
configuration is used, the code is safe because this 
function is only called with buffers that are large 
enough to store the response.  However, the restrictions 
on the safe use of this function are not obvious and 
could easily be overlooked by someone modifying the 
code.  Additionally, it is possible that an administrator 
could reconfigure BIND to use a value for the server 
version string large enough to make the code unsafe.  
The BIND developers agreed that a bounds check 
should be inserted to eliminate this risk [Andrews01]. 
  
BIND uses extensive run time bounds checking. This 
type of defensive programming is important for writing 
secure programs, but does not guarantee that a program 
is secure.  LCLint detected a known buffer overflow in 
a function that used run time checking but specified 
buffer sizes incorrectly.10 
 
The function ns_req examines a DNS query and gen-
erates a response.  As part of its message processing, it 
looks for a signature and signs its response with the 
function ns_sign.  LCLint reported that it was unable 
to satisfy a precondition for ns_sign that requires the 
size of the message buffer be accurately described by a 
size parameter.  This precondition was added when we 
initially annotated the shared library.  A careful hand 
analysis of this function reveals that to due to careless 
modification of variables denoting buffer length, it is 
possible for the buffer length to be specified incorrectly 
if the message contains a signature but a valid key is 
not found.  This buffer overflow vulnerability was 
introduced when a digital signature feature was added 
to BIND (ironically to increase security).  Static analysis 
tools can be used to quickly alert programmers to 
assumptions that are broken by incremental code 
changes. 
   
Based on our case studies, we believe that LCLint is a 
useful tool for improving the security of programs.  It 
does not detect all possible buffer overflow 
vulnerabilities, and it can generate spurious warnings.  
In practice, however, it provides programmers 
concerned about security vulnerabilities with useful 
assistance, even for large, complex programs.  In 
addition to aiding in the detection of exploitable buffer 
overflows, the process of adding annotations to code 
encourages a disciplined style of programming and 

                                                           
10 An advisory for this vulnerability can be found at 
http://lwn.net/2001/0201/a/covert-bind.php3. 

produces programs that include reliable and precise 
documentation.  

5. Implementation 

Our analysis is implemented by combining traditional 
compiler data flow analyses with constraint generation 
and resolution.  Programs are analyzed at the function 
level; all interprocedural analyses are done using the 
information contained in annotations.   
 
We support four types of constraints corresponding to 
the annotations introduced in Section 2: maxSet, 
minSet, maxRead, and minRead.  Constraints can also 
contain constants and variables and allow the arithmetic 
operations: + and -.  Terms in constraints can refer to 
any C expression, although our analysis will not be able 
to evaluate some C expressions statically. 
 
The full constraint grammar is:  

constraint ⇒ (requires | ensures)  
constraintExpression relOp constraintExpression 
relationalOp ⇒ == | > | >= | < | <= 
constraintExpression ⇒  
    constraintExpression binaryOp constraintExpresion 
  | unaryOp ( constraintExpression ) 
  | term 
binaryOp ⇒ + | - 
unaryOp ⇒ maxSet | maxRead | minSet | minRead 
term ⇒ variable | C expression | literal | result 

 
Source-code annotations allow arbitrary constraints (as 
defined by our constraint grammar) to be specified as 
the preconditions and postconditions of functions.  
Constraints can be conjoined (using /\), but there is no 
support for disjunction.  All variables used in 
constraints have an associated location.  Since the value 
stored by a variable may change in the function body, it 
is important that the constraint resolver can distinguish 
the value at different points in the program execution. 
 
Constraints are generated at the expression level and 
stored in the corresponding node in the parse tree.  
Constraint resolution is integrated with the checking by 
resolving constraints at the statement level as checking 
traverses up the parse tree.  Although this limits the 
power of our analysis, it ensures that it will be fast and 
simple. The remainder of this section describes briefly 
how constraints are represented, generated and 
resolved. 
 
Constraints are generated for C statements by traversing 
the parse tree and generating constraints for each 
subexpression.  We determine constraints for a 
statement by conjoining the constraints of its 



  

subexpressions.  This assumes subexpressions cannot 
change state that is used by other subexpressions of the 
same expression.  The semantics of C make this a valid 
assumption for nearly all expressions – it is undefined 
behavior in C for two subexpressions not separated by a 
sequence point to read and write the same data.  Since 
LCLint detects and warns about this type of undefined 
behavior, it is reasonable for the buffer overflow 
checking to rely on this assumption.  A few C 
expressions do have intermediate sequence points (such 
as the comma operator which specifies that the left 
operand is always evaluated first) and cannot be 
analyzed correctly by our simplified assumptions.  In 
practice, this has not been a serious limitation for our 
analysis. 
 
Constraints are resolved at the statement level in the 
parse tree and above using axiomatic semantics 
techniques.  Our analysis attempts to resolve constraints 
using postconditions of earlier statements and function 
preconditions.  To aid in constraint resolution, we 
simplify constraints using standard algebraic techniques 
such as combining constants and substituting terms.  
We also use constraint-specific simplification rules 
such as maxSet(ptr + i) = maxSet(ptr) - i.  We have 
similar rules for maxRead, minSet, and minRead. 
 
Constraints for statement lists are produced using 
normal axiomatic semantics rules and simple logic to 
combine the constraints of individual statements.  For 
example, the code fragment 
1 t++;
2 *t = ‘x’;
3 t++;

leads to the constraints:  

requires maxSet(t @ 1:1) >= 1,  
ensures maxRead(t @ 3:4) >= -1 and  
ensures (t @ 3:4) = (t @ 1:1) + 2. 

The assignment to *t on line 2 produces the constraint 
requires maxSet(t @ 2:2) >= 0.  The increment on line 1 
produces the constraint ensures (t@1:4) = (t@1:1) + 1.  
The increment constraint is substituted into the maxSet 
constraint to produce requires maxSet (t@1:1 + 1) >= 0.  
Using the constraint-specific simplification rule, this 
simplifies to requires maxSet (t@1:1) - 1 >= 0 which 
further simplifies to requires maxSet(t @ 1:1) >= 1. 

6. Control Flow 

Statements involving control flow such as while and 
for loops and if statements, require more complex 
analysis than simple statement lists.  For if statements 
and loops, the predicate often provides a guard that 
makes a possibly unsafe operation safe.  In order to 

analyze such constructs well, LCLint must take into 
account the value of the predicate on different code 
paths.  For each predicate, LCLint generates three lists 
of postcondition constraints: those that hold regardless 
of the truth value of the predicate, those that hold when 
the predicate evaluates to true, and those that hold when 
the predicate evaluates to false.   
 
To analyze an if statement, we develop branch specific 
guards based on our analysis of the predicate and use 
these guards to resolve constraints within the body.  For 
example, in the statement  
   if (sizeof (s1) > strlen (s2))

strcpy(s1, s2); 

if s1 is a fixed-size array, sizeof (s1) will be equal 
to maxSet(s1) + 1.  Thus the if predicate allows LCLint 
to determine that the constraint maxSet(s1) >= 
maxRead(s2) holds on the true branch.  Based on this 
constraint LCLint determines that the call to strcpy is 
safe. 
 
Looping constructs present additional problems.  
Previous versions of LCLint made a gross 
simplification of loop behavior: all for and while 
loops in the program were analyzed as though the body 
executed either zero or one times.  Although this is 
clearly a ridiculous assumption, it worked surprisingly 
well for the types of analyses done by LCLint.  For the 
buffer overflow analyses, this simplified view of loop 
semantics does not provide satisfactory results – to 
determine whether buf[i] is a potential buffer 
overflow, we need to know the range of values i may 
represent.  Analyzing the loop as though its body 
executed only once would not provide enough 
information about the possible values of i. 
 
In a typical program verifier, loops are handled by 
requiring programmers to provide loop invariants.  
Despite considerable effort [Wegbreit75, Cousot77, 
Collins88, IS97, DLNS98, SI98], no one has yet been 
able to produce tools that generate suitable loop 
invariants automatically.  Some promising work has 
been done towards discovering likely invariants by 
executing programs [ECGN99], but these techniques 
require well-constructed test suites and many problems 
remain before this could be used to produce the kinds of 
loop invariants we need.  Typical programmers are not 
able or willing to annotate their code with loop 
invariants, so for LCLint to be effective we needed a 
method for handling loops that produces better results 
than our previous gross simplification method, but did 
not require expensive analyses or programmer-supplied 
loop invariants.  
 



  

Our solution is to take advantage of the idioms used by 
typical C programmers.  Rather than attempt to handle 
all possible loops in a general way, we observe that a 
large fraction of the loops in most C programs are 
written in a stylized and structured way.  Hence, we can 
develop heuristics for identifying and analyzing loops 
that match certain common idioms.  When a loop 
matches a known idiom, corresponding heuristics can 
be used to guess how many times the loop body will 
execute.  This information is used to add additional 
preconditions to the loop body that constrain the values 
of variables inside the loop.   
 
To further simplify the analysis, we assume that any 
buffer overflow that occurs in the loop will be apparent 
in either the first or last iterations.  This is a reasonable 
assumption in almost all cases, since it would be quite 
rare for a program to contain a loop where the extreme 
values of loop variables were not on the first and last 
iterations.  This allows simpler and more efficient loop 
checking. To analyze the first iteration of the loop, we 
treat the loop as an if statement and use the techniques 
described above.  To analyze the last iteration we use a 
series of heuristics to determine the number of loop 
iterations and generate additional constraints based on 
this analysis. 
 
An example loop heuristic analyzes loops of the form 

for (index = 0; expr; index++) body

where the body and expr do not modify the index 
variable and body does not contain a statement (e.g., a 
break) that could interfere with normal loop execution.  
Analyses performed by the original LCLint are used to 
aid loop heuristic pattern matching.  For example, we 
use LCLint’s modification analyses to determine that 
the loop body does not modify the index variable. 
 
For a loop that matches this idiom, it is reasonable to 
assume that the number of iterations can be determined 
solely from the loop predicate.   As with if statements, 
we generate three lists of postcondition constraints for 
the loop test.  We determine the terminating condition 
of the loop by examining the list of postcondition 
constraints that apply specifically to the true branch.  
Within these constraints, we look for constraints of the 
form index <= e.  For each of these constraints, we 
search the increment part of the loop header for 
constraints matching the form index = index + 1.  If we 
find a constraint of this form, we assume the loop runs 
for e iterations. 
  
Of course, many loops that match this heuristic will not 
execute for e iterations. Changes to global state or other 
variables in the loop body could affect the value of e.  
Hence, our analysis is not sound or complete.  For the 

programs we have tried so far, we have found this 
heuristic works correctly. 
 
Abstract syntax trees for loops are converted to a 
canonical form to increase their chances of matching a 
known heuristic.  After canonicalization, this loop 
pattern matches a surprisingly high number of cases.  
For example, in the loop  
   for (i = 0; buffer[i]; i++) body  

the postconditions of the loop predicate when the body 
executes would include the constraint ensures i < 
maxRead(buffer).  This would match the pattern so 
LCLint could determine that the loop executes for 
maxRead(buffer) iterations. 
 
Several other heuristics are used to match other 
common loop idioms used in C programs.  We can 
generalize the first heuristic to cases where the initial 
index value is not known.  If LCLint can calculate a 
reasonable upper bound on the number of iterations (for 
example, if we can determine that the initial value of 
the index is always non-negative), it can determine an 
upper bound on the number of loop iterations.  This can 
generate false positives if LCLint overestimates the 
actual number of loop iterations, but usually gives a 
good enough approximation for our purposes. 
 
Another heuristic recognizes a common loop form in 
which a loop increments and tests a pointer.  Typically, 
these loops match the pattern: 
   for (init; *buf; buf++)

A heuristic detects this loop form and assumes that loop 
executes for maxRead(buf) iterations. 
 
After estimating the number of loop iterations, we use a 
series of heuristics to generate reasonable constraints 
for the last iteration.  To do this, we calculate the value 
of each variable in the last iteration.  If a variable is 
incremented in the loop, we estimate that in the last 
iteration the variable is the sum of the number of loop 
iterations and the value of the variable in the first 
iteration.  For the loop to be safe, all loop preconditions 
involving the variable must be satisfied for the values 
of the variable in both the first and last iterations.  This 
heuristic gives satisfactory results in many cases. 
 
Our heuristics were initially developed based on our 
analysis of wu-ftpd.  We found that our heuristics were 
effective for BIND also.  To handle BIND, a few addi-
tional heuristics were added.  In particular, BIND fre-
quently used comparisons of pointer addresses to 
ensure a memory accesses is safe.  Without an appro-
priate heuristic, LCLint generated spurious warnings 
for these cases.  We added appropriate heuristics to 



  

handle these situations correctly.  While we expect 
experience with additional programs would lead to the 
addition of new loop heuristics, it is encouraging that 
only a few additional heuristics were needed to analyze 
BIND.  
 
Although no collection of loop heuristics will be able to 
correctly analyze all loops in C programs, our 
experience so far indicates that a small number of loop 
heuristics can be used to correctly analyze most loops 
in typical C programs.  This is not as surprising as it 
might seem – most programmers learn to code loops 
from reading examples in standard texts or other 
people’s code.  A few simple loop idioms are sufficient 
for programming many computations. 

7. Related Work 

In Section 2, we described run-time approaches to the 
buffer overflow problem.  In this section, we compare 
our work to other work on static analysis.   
 
It is possible to find some program flaws using lexical 
analysis alone.  Unix grep is often used to perform a 
crude analysis by searching for potentially unsafe 
library function calls.  ITS4 is a lexical analysis tool 
that searches for security problems using a database of 
potentially dangerous constructs [VBKM00].  Lexical 
analysis techniques are fast and simple, but their power 
is very limited since they do not take into account the 
syntax or semantics of the program. 
 
More precise checking requires a deeper analysis of the 
program.  Our work builds upon considerable work on 
constraint-based analysis techniques.  We do not 
attempt to summarize foundational work here.  For a 
summary see [Aiken99].   
 
Proof-carrying code [NL 96, Necula97] is a technique 
where a proof is distributed with an executable and a 
verifier checks the proof guarantees the executable has 
certain properties.  Proof-carrying code has been used 
to enforce safety policies constraining readable and 
writeable memory locations.  Automatic construction of 
proofs of memory safety for programs written in an 
unsafe language, however, is beyond current 
capabilities. 
 
Wagner, et al. have developed a system to statically 
detect buffer overflows in C [WFBA00, Wagner00].  
They used their tool effectively to find both known and 
unknown buffer overflow vulnerabilities in a version of 
sendmail.  Their approach formulates the problem as an 
integer range analysis problem by treating C strings as 
an abstract type accessed through library functions and 
modeling pointers as integer ranges for allocated size 

and length.  A consequence of modeling strings as an 
abstract data type is that buffer overflows involving 
non-character buffers cannot be detected.  Their system 
generates constraints similar to those generated by 
LCLint for operations involving strings.  These 
constraints are not generated from annotations, but 
constraints for standard library functions are built in to 
the tool.  Flow insensitive analysis is used to resolve the 
constraints.  Without the localization provided by 
annotations, it was believed that flow sensitive analyses 
would not scale well enough to handle real programs.  
Flow insensitive analysis is less accurate and does not 
allow special handling of loops or if statements. 
 
Dor, Rodeh and Sagiv have developed a system that 
detects unsafe string operations in C programs 
[DRS01].  Their system performs a source-to-source 
transformation that instruments a program with 
additional variables that describe string attributes and 
contains assert statements that check for unsafe string 
operations.  The instrumented program is then analyzed 
statically using integer analysis to determine possible 
assertion failures.  This approach can handle many 
complex properties such as overlapping pointers.  
However, in the worst case the number of variables in 
the instrumented program is quadratic in the number of 
variables in the original program.  To date, it has only 
been used on small example programs. 
 
A few tools have been developed to detect array bounds 
errors in languages other than C.  John McHugh 
developed a verification system that detects array 
bounds errors in the Gypsy language [McHugh84].  
Extended Static Checking uses an automatic theorem-
prover to detect array index bounds errors in Modula-3 
and Java [DLNS98].  Extended Static Checking uses 
information in annotations to assist checking.  
Detecting array bounds errors in C programs is harder 
than for Modula-3 or Java, since those languages do not 
provide pointer arithmetic.  

8. Conclusions 

We have presented a lightweight static analysis tool for 
detecting buffer overflow vulnerabilities.  It is neither 
sound nor complete; hence, it misses some vulnera-
bilities and produces some spurious warnings.  Despite 
this, our experience so far indicates that it is useful.  We 
were able to find both known and previously unknown 
buffer overflow vulnerabilities in wu-ftpd and BIND 
with a reasonable amount of effort using our approach.  
Further, the process of adding annotations is a con-
structive and useful step for understanding of a program 
and improving its maintainability. 
 



  

We believe it is realistic (albeit perhaps optimistic) to 
believe programmers would be willing to add annota-
tions to their programs if they are used to efficiently 
and clearly detect likely buffer overflow vulnerabilities 
(and other bugs) in their programs.  An informal sam-
pling of tens of thousands of emails received from 
LCLint users indicates that about one quarter of LCLint 
users add the annotations supported by previously 
released versions of LCLint to their programs.  Perhaps 
half of those use annotations in sophisticated ways (and 
occasionally in ways the authors never imagined).  
Although the annotations required for effectively 
detecting buffer overflow vulnerabilities are somewhat 
more complicated, they are only an incremental step 
beyond previous annotations.  In most cases, and 
certainly for security-sensitive programs, the benefits of 
doing so should far outweigh the effort required. 
 
These techniques, and static checking in general, will 
not provide the complete solution to the buffer overflow 
problem.  We are optimistic, though, that this work 
represents a step towards that goal. 

Availability 
LCLint source code and binaries for several platforms 
are available from http://lclint.cs.virginia.edu. 
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A.  Annotated Selected C Library Functions 

char *strcpy (char *s1, char *s2)
/*@requires maxSet(s1) >= maxRead(s2)@*/
/*@ensures maxRead(s1) == maxRead (s2)

/\ result == s1@*/;

char *strncpy (char *s1, char *s2,
size_t n)

/*@requires maxSet(s1) >= n – 1@*/
/*@ensures maxRead (s1) <= maxRead(s2)

/\ maxRead (s1) <= (n – 1)
/\ result == s1@*/;

char *strcat (char *s1, char *s2)
/*@requires maxSet(s1)

>= (maxRead(s1)
+ maxRead(s2))@*/

/*@ensures
maxRead(s1) == maxRead(s1)

+ maxRead(s2)
/\ result == s1@*/;

strncat (char *s1, char *s2, int n)
/*@requires maxSet(s1)

>= maxRead(s1) + n@*/
/*@ensures maxRead(result)

>= maxRead(s1) + n@*/;

extern size_t strlen (char *s)
/*@ensures result == maxRead(s)@*/;

void *calloc (size_t nobj, size_t size)
/*@ensures maxSet(result) == nobj@*/;

void *malloc (size_t size)
/*@ensures maxSet(result) == size@*/;

These annotations were determined based on ISO 
C standard [ISO99].  Note that the semantics of 
strncpy and strncat are different – strncpy 
writes exactly n characters to the buffer but does 

not guarantee that a null character is added; 
strncat appends n characters to the buffer and a 
null character.  The ensures clauses reveal these 
differences clearly.   
 
The full specifications for malloc and calloc also 
include null annotations on the result that indicate 
that they may return NULL.  Existing LCLint 
checking detects dereferencing a potentially null 
pointer.  As a result, the implicit actual 
postcondition for malloc is maxSet(result) == size ∨  
result == null.  LCLint does not support general 
disjunctions, but possibly NULL values can be 
handled straightforwardly. 
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