
Data Movement and Control Substrate for

parallel scienti�c computing�

Nikos Chrisochoides���� Induprakas Kodukula� and Keshav Pingali�

Computer Science Department
Cornell University� Ithaca� NY ����������

Abstract� In this paper� we describe the design and implementation
of a data�movement and control substrate �DMCS	 for network�based�
homogeneous communication within a single multiprocessor
 DMCS is
an implementation of an API for communication and computation that
has been proposed by the PORTS consortium
 One of the goals of this
consortium is to de�ne an API that can support heterogeneous comput�
ing without undue performance penalties for homogeneous computing

Preliminary results in our implementation suggest that this is quite fea�
sible
 The DMCS implementation seeks to minimize the assumptions
made about the homogeneous nature of its target architecture
 Finally�
we present some extensions to the API for PORTS that will improve the
performance of sparse� adaptive and irregular type of numeric computa�
tions


Keywords� parallel processing� runtime systems� communication� threads�
networks

� Introduction

The portability of programs across supercomputers has been addressed very
successfully by MPI ��� which is intended to be an easy�to�use and attractive
interface for the application programmer and tool developer� However� it is not
intended to be a target for the runtime support systems software needed by com�
pilers and problem solving environments� since this software requires an e�cient
�and perhaps inevitably� less friendly� substrate for point�to�point communica�
tion� collective communication and control operations� Issues not addressed by
MPI� such as dynamic resource management� concurrency at the uniprocessor
level and interoperability at the language level� need to be addressed by such
substrates�

These issues are being addressed by a consortium called POrtable Run�time
Systems �PORTS� �	
� which consists of research universities� national labo�
ratories� and computer vendors interested in advancing research for software

� This work supported by the Cornell Theory Center which receives major funding
from the National Science Foundation� IBM corporation� New York State and
members of the its Corporate Research Institute


�� Chrisochoides
 current address is Department of Computer Science and Engineering�
University of Notre Dame� Notre Dame� IN �����




substrates that provide support to compilers and tools for current and next
generation supercomputers� Speci�c goals of the group are�

	� to promote the development of standard applications programming interfaces
�APIs� in multithreading� communication� dynamic resource management�
and performance measurement that will be used as a compiler target for
various task�parallel and data�parallel languages�


� to provide support for interoperability across parallel languages and problem
solving environments� and

�� to encourage the development of a community code repository that will result
from this consortium�s activities�

To achieve these ends� the PORTS consortium has come up with several
APIs� The �rst API� ports threads� has already been agreed upon by the PORTS
consortium� It comprises of a set of functions for lightweight thread management�
modeled after a subset of the POSIX thread interface� An implementation of the
ports threads interface is available from Argonne National Laboratory �	��� In
addition� a set of functions have been speci�ed for timing and event logging�
using the high resolution� synchronized clocks available on many shared and
distributed memory supercomputers� The timer package is thread safe� but not
thread aware� In other words� a correct implementation of this speci�cation can
be used in a preemptive thread environment� however the speci�cation does not
require threads� An extremely fast implementation of ports timing is available
from University of Oregon �
���

There is a proposed API for communication� and for the integration of com�
munication with threads�	��� The PORTS consortium has been experimenting
with four di�erent approaches�

	� Thread�to�thread communication� supported by CHANT �
��

� Remote service request communication� supported by NEXUS �		��
�� Hybrid communication� supported by TULIP �

��
�� The DMCS approach outlined in this paper�

In this context� our DMCS implementation accomplishes the following�

� We provide a simple mechanism for reducing the scheduling latency of urgent
remote service requests� as well as the communication overhead associated
with remote service requests for sparse� adaptive and irregular numeric com�
putations�

� We isolate the interaction between threads and communication into a simple
module which is easy to understand and modify� called control�

� We provide a global address space and a threaded model of execution that
provides a common programming model for SMPs� clusters of SMPs and
MPPs�

� We want a very lean and modular layer that allows us to �plug�and�play�
with di�erent module implementations from PORTS community�



The rest of the paper is organized as follows� In Section 
� we outline the
architecture of the data�movement and communication substrate� including the
interaction of the threads and communication modules� In Section �� we discuss
the implementation details of DMCS� Preliminary performance data for simple
kernels from sparse and adaptive computations are given in Section �� Finally�
the related work and a summary with discussion are presented in Sections 

and � respectively�

� Architecture

DMCS consists of three modules� �i� a threads module �ii� a communication
module and �iii� a control module� The threads and communication modules are
independent� with some clearly de�ned interface requirements� while the control
module is built on top of the point�to�point communication and thread primi�
tives� The threads module supports the primitives de�ned by the PORTS consor�
tium� ports threads� We are using the implementation provided by the Argonne
group� PORTS� �	��� augmented by an extra routine� ports thread create atonce�
The e�cient implementation of this routine is necessary to minimize the schedul�
ing latency of certain urgent� remote service requests ���� Clearly� this extension
can be implemented on top of the existing ports threads primitives provided by
PORTS��for example� using the thread priority attributes�� but for e�ciency
reasons� we choose to implement it� whenever possible� directly on the underly�
ing thread package� A prototype is implemented on top of the QuickThreads �	���
which has been ported to a wide variety of workstation and PC architectures�

The communication module provides the necessary support for the imple�
mentation of a global address space over both shared and distributed memory
machines� Collective communication primitives are not considered in this pa�
per� In the future� we plan to evaluate and use the �rope� primitives introduced
in �	�� and �
��� As in Split�C� NEXUS� TULIP and Cid� our communication
abstraction is the global pointer� A global pointer essentially consists of a con�
text number and a pointer to the local address space� The functionality of the
communication module for point�to�point data�movement includes routines like
get�put to initiate the transfer of data from�to a remote context to�from a local
context� The interaction of the communication module and threads takes place
in the control module which integrates the thread scheduler with the point�to�
point communication mechanism� Figure 	 depicts the three modules of the
DMCS and their interaction�

The control module provides support for remote procedure invocation� also
known as remote service requests �RSRs�� Remote procedures are either sys�
tem�compiler procedures or user de�ned handlers� These handlers can be threaded
or non�threaded� The threaded handlers can be either urgent �scheduled after a
�xed quanta of time�� or can be lazy �scheduled only after all other computation
and manager threads have been suspended or completed�� The non�threaded

� The time interval of a timeslice or the time it takes for the next context�swithch of
the current thread in the case of a non�preemptive scheduling environment




Network
NI/AMs

Threads
Control

Communication

gp
tr. . .

AMs/Uniprocessor/OS

ge
t/p
ut

P
O
R
T
S
0

th
re
ad
_c
re
at
e_
at
on
ce

rs
r_
th
re
ad
ed
_u
rg
en
t

rs
r_
th
re
ad
ed

rs
r_
no
n_
th
re
ad
ed

th
re
ad
_a
rb
itr
at
e_
cr
ea
te

Fig� �� Architecture

handlers are executed either as the message is being retrieved from the network
interface�� or after the message retrieval has been completed �	�� Finally� the con�
trol module provides some limited support for simple load balancing by allowing
associating a window within which load on any processor can be balanced� This
load�balancing support was chosen after experiments with the SplitThreads �
��
system�

� Implementation

In this section� we discuss the thread� communication and control modules of
DMCS�

��� Thread subpackage

The underlying threads package consists of a user�level threads core called Quick�
Threads� which is a non�preemptive user�level threads package for thread cre�
ation and initialization� It provides no scheduling policies or mechanisms� It
also lacks semaphores� monitors� non�blocking I�O etc� It provides machine de�
pendent code for creating� running and stopping threads� It also provides an

� This works by overlapping computation and communication in the instruction level
by interleaving the computation and �ow of control that corresponds to the incom�
ing message and the load�store operations needed to retrieve the message from the
network interface




easy interface for writing and porting thread packages� The higher level thread
package has the responsibility of providing any additional functionality� Since
the QuickThreads package is very �exible� clients can be designed with speci�c
applications in mind and can be selectively tuned very easily�

DMCS implements a non�preemptive threads package� The thread routines
in DMCS can be classi�ed into scheduling routines and management routines�
depending on their functionality� In DMCS� thread creation is separated from
thread execution� DMCS maintains a queue of runnable threads� and thread cre�
ation routines simply insert a new thread into this runnable queue� Two di�erent
creationmechanismare provided �dmcs thread create atonce� dmcs thread create�
corresponding respectively to a low priority and a high priority for the newly
created thread� It is important to note that these routines simply create and
initialize a new thread� but do not actually run the thread� Thread management
routines are responsible for actually running any threads in the run queue main�
tained by DMCS� The dmcs run routine examines the run queue to check if it
contains any threads� runs all of them to completion and then returns� Since
DMCS provides non�preemptive threads� a dmcs yield routine is provided to en�
able a thread to voluntarily de�schedule itself� For the sake of e�ciency� DMCS
also preallocates stack segments� which can be used by a thread creation routines
instead of allocating memory on the �y� This leads to a more e�cient thread
creation routine� Finally� threads in DMCS can have several attributes that can
be con�gured on a per�thread basis� Attributes currently implemented are the
stack size of a thread� and whether the thread should use a pre�allocated stack�
or do a fresh allocation for its stack�

��� Communication subpackage

The communication subpackage is implemented on top of a generic active mes�
sage implementation on the SP�
�	� 
	�� Active messages are a mechanism for
asynchronous� low�overhead communication� The fundamental idea in Active
Messages is that every message is sent along with a reference to a handler which
is invoked on receipt of the message� The generic active message speci�cation
provides for small messages as well as bulk transfer routines� The implementa�
tion of this speci�cation on the SP�
�
	� is optimized so that small messages are
delivered as e�ciently as possible� for su�ciently large messages� the bandwidth
attained is very close to the peak hardware bandwidth�

DMCS provides a homogeneous� data driven� asynchronous and e�cient run�
time environment� The communication subpackage of DMCS consists of three
modules�

� global pointers module� DMCS provides the notion of a global pointer through
which remote data can be accessed� When a program using DMCS runs on
a N processors� each processor is assigned a unique integer id �known as a
dmcs context� and returned by the routine dmcs mycontext��� in the range
� � � � N � 	� Any processor can access local data through a regular pointer�
However� any remote data must be accessed through a global pointer� A



global pointer is made up of a dmcs context and a local pointer� Routines are
provided to make a global pointer out of a local pointer and a dmcs context�
and also to extract these �elds from a global pointer� This module is the
only module that depends on the homogeneity of the underlying hardware
�in the determination of unique context numbers��

� Acknowledgement Variables� Since DMCS is asynchronous by nature� a mech�
anism is provided to enable programs to �nd out about data transfer com�
pletion� This mechanism is an acknowledgement variable� An acknowledge�
ment variable is represented as a 	��bit integer for e�ciency reasons� An
acknowledgement variable can have three states� cleared� set� and unitial�
ized� To use an acknowledgement variable� a program must �rst request one
using the routine dmcs newack��� which returns an unused acknowledge�
ment variable� This return value can be used as a handle to perform various
operations on the acknowledgement variable� For example� dmcs testack��
checks if the acknowledgement variable has been set or not� and return im�
mediately� On the other hand� dmcs waitack�� waits until the variable in
question has been set� It is also possible to clear an acknowledgement vari�
able using dmcs clearack��� Finally� it is possible to �anticipate� the use
of an acknowledgement variable in future data transfer using the function
dmcs anticipateack��� The last routine has an important role in one�sided
data transfer operations� which will be described later� Finally� it is possi�
ble to use the same acknowledgement variable in conjunction with multiple
data transfer operations� Use of an acknowledgement variable is always op�
tional and a value of NULL for an argument of this type indicates that the
particular acknowledgement variable in question is not being used�

� Get and Put operations� DMCS provides routines for one�sided communi�
cation� In other words� communication does not happen through a pair of
matched sends and receives� Instead� get and put routines are provided for
fetching remote data and storing remote data respectively� Both these oper�
ations are inherently asynchronous� Acknowledgement variables can be used
to determine the state of one of these transfers� A Get operation transfers
data from a source speci�ed by a global pointer to a destination speci�ed by
a local pointer� A single acknowledgement variable passed as an argument
to this routine is set when the data transfer operation is complete� A Put
operation transfers data from a local bu�er speci�ed by a local pointer to
a remote data bu�er speci�ed by a global pointer� A put operation has as�
sociated with it three acknowledgement variables� a local ack� which is set
when the local data bu�er can be reused by the application program� a re�
mote ack� which is set on the processor that initiated the put operation to
indicate that the put operation on the remote processor is complete� and
�nally a remote remote ack which is set on the remote processor to indicate
that the put operation there has been completed� For the remote�processor
intimation to work correctly� it must �rst anticipate this put operation by
calling dmcs anticipateack�� on the acknowledgement variable speci�ed as
the remote remote ack in the put operation� As mentioned previously� all



these acknowledgement variables are optional and a value of NULL can be
passed as the corresponding argument to indicate dis�interest in that partic�
ular acknowledgement variable�

��� Control subpackage

The control subpackage is layered on top of the threads subpackage and the com�
munication subpackage� The control subpackage consists of two sets of modules�
remote�service requests and load�balancing routines�

� Remote Service Requests� DMCS provides several kinds of remote service
requests� A remote service request consists of a remote context� a function
to be executed at the remote context and the arguments to the function� In
addition� a type argument is also passed� indicating the type of the remote
service request� This type argument can take three possible values� and de�
termines how the function at the remote end is executed� The function can
be executed immediately on arrival� or it can be threaded� If the handler
is threaded� then it can executed as either a low�priority thread or a high�
priority thread� The type argument for the remote service request determines
which of these modes of execution is performed�
DMCS recognizes that passing a function as part of the remote service re�
quest may not be always desirable� This is the case in adaptive mesh re�ne�
ment� where the components of a mesh are distributed on various processors�
Di�erent processors use di�erent �interpolation functions� to transfer data
between di�erent grids at di�erent stages of the mesh re�nement process�
When data related to a mesh is sent to another processor that needs it� it is
not always known at the sender what kind of interpolation function the re�
ceiver needs to apply� Also� in a non�SPMD environment� a function address
valid at the center may not be valid at the receiver� To provide a solution
to this problem� DMCS provides the notion of an indexed remote service re�
quest� At any processor� a function can be �registered� with an integer tag�
When a message with that particular tag is received� the function registered
with that tag is invoked as the handler for the message� This mechanism
enables di�erent processes to register di�erent handlers with the same tag
and allows great �exibility�
Some message passing system provide more e�cient routines to transfer
small amounts of data which are more e�cient than using the generic bulk
transfers� Keeping this in mind� DMCS optimizes the bulk transfer routines
as well as the remote service request routines for small message sizes� For
our implementation� this provides an improvement of almost 
�� for small
message sizes over the unoptimized case of using the same underlying generic
bulk transfer routine� The generic form of the remote service request takes
as arguments a remote context� a remote handler �either a function� or an
index to one�� a bu�er of arguments and a length parameter counting the
size of the arguments�



Finally� it is common in programs to transfer some data to a remote pro�
cessor� followed by the invocation of a remote service request acting on the
data just transferred� For such operations� it is more e�cient to do the data
transfer and the remote service invocation in one step� rather than trans�
ferring the data �rst� and then invoking the remote service request� This
is because� the second approach usually involves some additional synchro�
nization delays that can avoided by the �rst approach� For this purpose�
DMCS provides putw rsr routines� which combine the data transfer and the
remote service action at the end of the data transfer� This is similar to the
functionality speci�ed in the generic active message speci�cation�

� Load balancing� DMCS implements a simple parametrized load balancing
primitive� The load on a processor is de�ned to be simply the number of
threads on that processor� DMCS provides a primitive than enables a pro�
cessor to start a new thread on the least loaded processor within a certain
window size� The window size is a parameter that can be customized� Proces�
sors are divided into groups of size equal to the parameter� Load balancing
is provided by DMCS within each of the groups� By tuning the window size
parameter� load balancing can be con�ned to a small neighborhood or be
over the entire machine� It may be noted that this load�balancing happens
at thread creation� and a running thread is never migrated�

� Performance Data

0.0 200.0 400.0 600.0 800.0 1000.0
Size of message (bytes)

50.0

100.0

150.0

ti
m

e
 f

o
r 

tr
a

n
fe

r 
(m

ic
ro

 s
e

c
o

n
d

s
)

Put operation
Get operation

0.0 100000.0 200000.0 300000.0
Message size (bytes)

0.0

2000.0

4000.0

6000.0

8000.0

ti
m

e
 f

o
r 

tr
a

n
s
fe

r 
(m

ic
ro

 s
e

c
o

n
d

s
)

Put operation
Get operation

Fig� �� Communication time as a function of message size� small message
size�left�� large message size�right�



In this section� we discuss the performance of our run time system on the IBM
SP�
� comparing it with the performance of other systems�

The following are the basic parameters of our runtime system�

� Thread creation time � 	
�s
� Context switch time � 
�
�s
� Peak Data transfer bandwidth � ����MBytes�sec
� One�way latency for a ��byte message 
��s�
� Time elapsed for a non�threaded null remote service request � �	�s

The communication paramters of our runtime system parameters are very
close �within 	��� of the underlying active message layer� For example� one�way
latency for a ��byte message in DMCS is 
��s� which represents an overhead
of 	�� over the underlying active message latency of 
��s� This compares with
a handler to handler latency of ���s in Nexus� which represents an overhead
of ��� over the native MPL one�way latency of ���s� Similarly� the bandwidth
achieved in DMCS for bulk transfers is ����MBytes�sec for get operations�
and 
�MBytes�sec for put operations� These numbers are also within 	�� of
the corresponding parameters of the active message layer� This veri�es that the
overhead introduced by the DMCS layer is quite small�

An advantage of the homogeneity of the target architecture is that it enables
certain kind of optimizations in the runtime system implementation which are
very hard otherwise� For example� in our implementation� we have recognized
that certain kinds of remote service requests are very common�One such instance
occurs in matrix vector multiplication� where the non�local portion of the vector
needs to be fetched and then used in SAXPY operations� The usual manner
to accomplish this is simply using a putw rsr routine� with the remote service
request handler taking care of the saxpy operations� However� by noting that
the remote portion of the vector need not be stored� but can be simply used to
compute the relevant portion of the matrix vector operations� after which only
the results of the operations need to be stored� we can implement a more e�cient
matrix vector multiply operation in the runtime system itself� This routine avoids
all bu�ering of the data and does the relevant computation in the hardware
bu�er itself� As can be seen from Figure �� the performance saving can be quite
substantial when the number of �oating point operations is small for every data
element� which is the case for sparse computations�

DMCS is being currently used to implement a task�parallel version of the
Bowyer�Watson algorithm for mesh generation �	��� This algorithm provides an
ideal mesh re�nement strategy for a large class of unstructured mesh generation
techniques on both sequential and parallel computers� by preventing the need
for global mesh re�nements� This application has been ported from an active
message implementation to a PORTS implementation on top of DMCS� For the
most part� this port was straightforward� The specialized matrix vector product
routine of DMCS� described above� has been used to implement a sparse matrix�
vector multiply routine for use in iterative solvers for large systems of linear
equations�



0.0 5.0 10.0 15.0
Message size in Kbytes

0.0

500.0

1000.0

1500.0

R
o
u
n
d
 t

ri
p
 a

p
p
li

c
a
ti

o
n
 t

im
e
 (

u
s)

No copy avoidance at receiver
Copying avoided at receiver

0.0 100000.0 200000.0 300000.0
Stack size of thread (bytes)

0.0

500.0

1000.0

1500.0

2000.0

T
h

re
a

d
 c

re
a

ti
o

n
 t

im
e

 (
m

ic
ro

 s
e

c
o

n
d

s
)

pre allocated stacks
Stack allocation on-the-fly

Fig� �� Savings by copy avoidance at receiver�left�� Comparison between preal�
located and non preallocated threads�right�

� Related Work

Three other software systems that integrate communication with threads are
particularly interesting because they implement the same interface but have dif�
ferent design philosophies and objectives� CHANT implements thread�to�thread
communication on top of portable message passing software layers such as p�
�	��� PVM �	��� and MPI ���� The e�ciency of this mechanism depends critically
on the implementation of message polling or message delivery interrupt� There
are three common approaches to polling for messages� �i� individual threads
poll until all outstanding receives have been completed� �ii� the thread scheduler
polls before every context switch on behalf of all threads� and �iii� a dedicated
thread� called themessage thread� polls for all registered receives� For portability�
CHANT supports the �rst approach� since many thread packages do not allow
their scheduler to be modi�ed� Performance data in �
� indicate that there is
little di�erence in performance between the �rst two polling approaches�

NEXUS decouples the speci�cation of the destination of communication from
the speci�cation of the thread of control that responds to it� NEXUS supports
the remote service request �RSR� driven communication paradigmwhich is based
on the remote procedure call mechanism� The multithreaded system �or user�
registers a message handler which is a new thread and is to be invoked upon
receipt of an incoming message� The handler possesses a pointer to a user�level
bu�er into which the user wishes the message contents to be placed� The handler
threads are scheduled in the same manner as computation threads� In a preemp�
tive scheduling environment� each handler gets highest priority and will always
get scheduled after a �xed quanta of time� In a non�preemptive environment� the
handler thread gets assigned a low priority and gets scheduled only after other



threads have suspended� thus� there is no bound on the waiting time for the
handler in this case� The RSR driven communication paradigm is implemented
in NEXUS which a portable multithreaded communication library for parallel
language compilers and higher�level communication libraries �		��

TULIP�s hybrid approach is essentially a combination of thread�to�thread and
RSR driven communication paradigm �

�� The hybrid approach is essentially
a combination of thread�to�thread and RSR driven communication paradigm
and is supported by TULIP �

�� In the runtime substrate� TULIP provides
basic communication via global pointers and remote service requests� Then� at
the pC�� language level� there is the concept of threads and the notion of
group thread actions �	�� 
��� Communication is one module� the basic threads
functions �i�e�� creation� thread synchronization� etc� are in another module� and
the two are combined into the rope module�

Finally� functionality similar to DMCS threads and communication and con�
trol modules are provided by a number of other runtime systems like Cid� Split�
C� Cilk� and Multipol� Cid ��� and Split�C �

� are parallel extensions to C�
Both systems support a global address space through the abstraction of the
global pointer� They also implement asynchronous� one�sided communication�
and multithreading �either in the language as in Cid� or through extensions as
in SplitThreads �
���� and have mechanisms for overlapping computation with
communication and synchronization latencies� Cilk ��� is similar but it targets
a more restricted class of computations �strict computations�� The scheduling
policy is �xed� and for a certain class of applications is provably e�cient with
respect to time� space and communication� In contrast to the Cilk runtime sys�
tem� Multipol ��� allows more �exibility to the programmer� For example� the
programmer is free to use customized schedulers to accommodate application�
speci�c scheduling policies for better performance� and can also specify how
much of a thread state needs to be saved�

� Conclusions

We have described the design and implementation of a data�movement and con�
trol substrate �DMCS� for network�based� homogeneous communication within
a single multiprocessor� which implements an API for communication and com�
putation de�ned by the PORTS committee� Unlike systems like Nexus� which are
designed for a heterogenous environment� DMCS is targeted for a homogenous
environment� Although the scope of DMCS is therefore restricted� it permits us
to do optimizations which are di�cult in heterogenous environments�

� Acknowledgements

We thank Pete Beckman� Chi�chao Chang� Grzegorz Czajkowski� Thorsten von
Eicken� Ian Foster� Dennis Gannon� Matthew Haines� L� V� Kale� Carl Kessel�
man� Piyush Mehrotra� and Steve Tuecke for valuable discussions�



References

�
 Thorsten von Eicken� Davin E
 Culler� Seth Cooper Goldstein� and Klaus Erik
Schauser� Active Messages� a mechanism for integrated communication and compu�
tation Proceedings of the ��th International Symposium on Computer Architecture�

ACM Press� May ����

�
 Matthew Haines� David Cronk� and Piyush Mehrotra� On the design of Chant � A

talking threads package� NASA CR������� ICASE Report No
 ������ Institute for
Computer Applications in Science and Engineering Mail Stop ���C� NASA Langley
Research Center Hampton� VA ����������� April ����


�
 R
S
 Nikhil� Cid� A Parallel� �Shared�Memory� C for Distributed Memory Machines

In Lecture Notes in Computer Science� vol ���


�
 Christopher F
 Joerg
 The Cilk system for ParallelMultithreaded Computing
 Ph
D

Thesis� Department of Electrical Engineering and Computer Science� Massachusetts
Institute of Technology� January� ����


�
 L
V
 Kale and M
 Bhandarkar and N
 Jagathesan and S
 Krishnan and J
 Yelon�
CONVERSE� An Interoperability Framework for Parallel Programming� Parallel
Programming Laboratory Report ������ Dept
 of Computer Science� University of
Illinois� March ����

�
 Nikos Chrisochoides and Nikos Pitsianis� FFT Sensitive Messages� to appear as
Cornell Theory Center Technical Report� ����


�
 Nikos Chrisochoides and Juan Miguel del Rosario� A Remote Service Protocol for
Dynamic Load Balancing of Multithreaded Parallel Computations
 Poster presen�
tation in Frontiers
��


�
 MPI Forum� Message�Passing Interface Standard� April ��� ����

�
 Runtime Support for Portable Distributed Data Structures C
�P
 Wen� S


Chakrabarti� E
 Deprit� Chih�Po Wen� A
 Krishnamurthy� and K
 Yelick
 Work�
shop on Languages� Compilers� and Runtime Systems for Scalable Computers� May
����


��
 N
 Sundaresan and L
 Lee� An object�oriented thread model for parallel numerical
applications
 Proceedings of the �n Annual Object�Oriented Numerics Conference �

OONSKI ��� Sunriver� Oregon� pp �������� April ����� ����

��
 I
 Foster� Carl Kesselman� Steve Tuecke� Portable Mechanisms for Multithreaded

Distributed Computations Argonne National Laboratory� MCS�P��������

��
 Ian Foster� Carl Kesselman and Steven Tuecke� The NEXUS approach to integrat�

ing multithreading and communication� Argonne National Laboratory

��
 Ralph M
 Butler� and Ewing L
 Lusk� User	s Guide to p� Parallel Programming

System Oct ����� Mathematics and Computer Science division� Argonne National
Laboratory


��
 Nikos Chrisochoides� Florian Sukup� Task parallel implementation of the Bowyer�
Watson algorithm� CTC��TR���� Technical Report� Cornell Theory Center� ����


��
 Portable Runtime System �PORTS	 consortium�
http���www
cs
uoregon
edu�research�paracomp�ports�

��
 PORTS Level � Thread Modules from Argonne�CalTech�
ftp���ftp
mcs
anl
gov�pub�ports�

��
 A Proposal for PORTS Level � Communication Routines�
http���www
cs
uoregon
edu�research�paracomp�ports

��
 A
 Belguelin� J
 Dongarra� A
 Geist� R
 Manchek� S
 Otto� and J
 Walpore� PVM�
Experiences� current status and future direction
 Supercomputing
�� Proceedings�
pp �����




��
 David Keppel� Tools and Techniques for Building Fast Portable Threads Package�
UW�CSE���������� Technical Report� University of Washington at Seattle� ����


��
 Data Parallel Programming in a Multithreaded Environment� �Need au�
thors����to appear i a Special Issue of Scienti
c Programming� ����


��
 Chichao Chang� Grzegorz Czajkowski� Chris Hawblitzell and Thorsten von Eicken�
Low�latency communication on the IBM risc system����� SP
 To appear in Super�
computing 
��


��
 David E
 Culler� Andrea Dusseau� Seth Copen Goldstein� Arvind Krishnamurthy�
Steven Lumetta� Thorsten von Eicken and Katherine Yelick
 Parallel Programming
in Split�C
 Supercomputing
��


��
 Veena Avula
 SplitThreads � Split�C threads
 Masters thesis� Cornell University

����


��
 Portable Clock and Timer Module from Oregon�
http���www
cs
uoregon
edu�research�paracomp�ports

��
 Pete Beckman and Dennis Gannon� Tulip� Parallel Run�time Support System for
pC��� http���www
extreme
indiana
edu


This article was processed using the LATEX macro package with LLNCS style


