
U CLA
CO M P U TAT IO NALAND AP P LIE D M ATHE M AT ICS

CreatingDistributed ApplicationsinJ ava w ith the

cam.netapp P ackage

Christopher R .And erson

Septemb er 1998

CAM R eport 98-39

D epartmentofM athematics
U niversityofCalifornia,L os A ngeles

L os A ngeles,CA .90 0 95-1 555

Creating Distributed Applications In Java Using
cam.netapp Classes

Abstract : The purpose of this document is to describe the package cam.netapp, a collection of classes that
provides a "minimal" software infrastructure for creating distributed applications. The process of creating a
distributed application is discussed, and several examples are presented.

Contents

Introduction
NetworkConnection
SetStreams
ServerManager
Operational diagram
Data driven synchronization
Communication between components
Miscellaneous notes

Sample Programs

Front.java Back.java, Front2.java Back2.java, Front3.java Back3.java

Class Reference

cam.netapp package reference
cam.dataxchg package reference

Package Source
cam.netapp , cam.dataxchg

Chris Anderson
Dept. of Mathematics
UCLA Los Angeles, CA 91555
10/30/97 © UCLA 1997

Dan Delsol implemented the original versions of the ServerManager and
NetworkConnection classes. His contributions are gratefully acknowledged.

These software components were developed in conjunction with the research supported by Air Force Office of
Scientific Research Grant F49620-96-I-0327 and National Science Foundation/ARPA Grant
NSF-DMS-961584

Updated 07/15/98 CRA

1 of 9

Introduction

The purpose of this document is to describe a "minimal" software infrastructure that
facilitates the construction of applications/programs which have the form shown in the
following figure

These applications consist of two components, a "front" component and a "back "
component. Typically, the "front" component provides a user interface that allows data
input, data display, and mechanisms for user control while the "back" component consists
of a program providing a specialized or CPU intensive computational service. Because the
two components of the application often (but not always) reside on different machines, we
refer to such applications as "distributed" applications.

Within the realm of scientific/technical computing, distributed applications allow one to

provide access to a particular piece of software or capability without having to port
code to multiple machines.
place CPU intensive components on specialized platforms and/or distribute
computational tasks among multiple computational resources.

There are a number of software constructs that have been created to facilitate the
development of distributed applications. (The Remote Method Invocation package
contained within Java 1.1, ActiveX components, COM objects, CORBA objects, the

2 of 9

Message Passing Interface (MPI) library for parallel programs, etc.) However, the
applications that motivated this work didn't require much of the functionality implemented
by these constructs; and so we sought to create a "minimal" software infrastructure that
would allow us to create distributed applications. The requirements of the software
infrastructure we sought were

1. To coordinate/enable stream communication between "front" and "back"
components.

2. The ability to start, stop, pause, and check the status of a "back" component.
3. The ability to request that a "back" component be loaded and connected (i.e. with

respect to data streams and control) to the "front" component.

A combination of three Java classes in the cam.netapp package provide these capabilities
--- the NetworkConnection class, the SetStreams class and the ServerManager class.

The NetworkConnection Class

Instances of the NetworkConnection class are included in the "front" component (one
instance for each "back" component to which the "front" component is communicating).
This class is responsible for

Connecting to the "back" component (referred to as a "remote" application)
Providing access to the streams connected to the "back" component.
Providing control of the "back"component.

The manner in which these capabilities are provided is revealed by the following code
fragments

 NetworkConnection netConnect = new NetworkConnection();

 try
 {netConnect.connectRemoteApplication("127.0.0.1",6789,"Back");}
 catch(Exception e){System.out.println(e);}
 }

 FrontInputStream = netConnect.getInputStream();
 FrontOutputStream = netConnect.getOutputStream();

 netConnect.startRemoteApplication();
//
// Data communication between the "front" component and the "back"
// component occurs using FrontInputStream and FrontOutputStream ...
//
 netConnect.stopRemoteApplication();

In this instance, the "back" component is located on a machine with Internet address
[127.0.0.1] (which is the loop-back address for my PC), is being serviced by a
ServerManager listening on port 6789 (see below), and is a Java class named Back.class.

3 of 9

The "back" component does not require an instance of the NetworkConnection class --- it
is only required to implement the Runnable interface and the SetStreams interface.

The SetStreams Class

The SetStreams class is an interface class; and the methods within it must be implemented
by the "back" or "remote" component in order to communicate with a "front" component
using a NetworkConnection instance. The "back" or "remote" components must also
implement the Runnable interface.

There are only two methods in the SetStreams class; setInputStream(...) and
setOutputStream(...). As the following code fragment from Back.java indicates, their
implementation is rather simple

//
// SetStreams interface implementation
//
public boolean setInputStream(InputStream s)
{
 BackInputStream = s;
 return true;
}
public boolean setOutputStream(OutputStream s)
{
 BackOutputStream = s;
 return true;
}

Here BackInputStream and BackOutputStream are class variables of type InputStream
and OutputStream respectively.

The ServerManager Class

Instances of the ServerManager class are run on a remote machine to service requests for
loading and running classes on the remote machine. The ServerManager class is typically
invoked from the command line on a remote machine. An instance of the ServerManager
class has a port associated with it; this is the port upon which the ServerManager is
"listening" for connections. A NetworkConnection instance must use both the machine
address and the port number to connect to a ServerManager. The default port number is
6789, alternate port numbers can be specified on the command line invocation of a
ServerManager.

Operational Diagram

The following diagram illustrates how the NetworkConnection and ServerManager classes
operate to create a functional distributed application.

4 of 9

5 of 9

The top part of the diagram illustrates what occurs when the
connectRemoteApplication(...) method of the NetworkConnection class is executed;
a service request goes to an instance of the ServerManager running on a remote machine.
This action initiates a sequence of events whose result is the loading of the requested
class, the creation and connection of streams to that class (i.e. it invokes the SetStreams
functions), and the creation of a thread in which the requested class will be run.
Additionally, connections are made between the NetworkConnection instance and this
latter thread, so that program control may be exercised over the requested class. The net
result of these actions is the situation depicted in the bottom part of the diagram.

In order for this process to be carried out, it is necessary that the requested class on the
remote machine be located within the classpath associated with the ServerManager
instance. One way to ensure this is to place the remote classes in the same directory as the
ServerManager. Alternately, one can append the appropriate classpath when creating an
instance of the ServerManager from the command line.

Data Driven Synchronization

The synchronization of the execution of code in the "front" and "back" components is data
driven. Specifically, I/O in Java is blocking --- if an attempt is made to read data from a
stream and none is available, the thread associated with that statement will block until data
is available. Therefore, after the streams between components have been connected, one
coordinates the execution of code in the components by alternating reads and writes. For
example; in the run() methods of Front.java and Back.java we have the sequence of reads
and writes as depicted in following diagram.

For both components, when a read statement is executed in one component and no data is
available, execution halts until the write statement is executed in the other component.
Because this method of synchronization often leads to the "front" component being in a

6 of 9

blocked state, it is a wise idea to have the communication code and the user interface code
run in separate threads. (So that when the communication code is blocked a user is still
able to interact the interface.)

Communication Between Components

The sample programs give one an idea how simple data types (numbers, strings, etc.) can
be exchanged between the front and back components. Its clear that if complex collections
of data are exchanged the communication code quickly becomes unwieldy, cluttered, and
difficult to debug. One can simplify the communication process and improve its reliability
by using the idea of serialization. If you are using Java 1.0 you have to implement
serialization yourself; if you are using Java 1.1 you can use the classes
java.io.InputObjectStream and java.io.OutputObjectStream contained within the java.io
package.

Serialization means that a class has methods capable of writing information to a stream in
such a way that the information can later be read from a stream and that instance of the
class reconstructed. An example of a class with this capability is the ParameterList class in
the cam.dataxchg package. This class has routines

void output(OutputStream D)

void outputBinary(OutputStream D)

void input(InputStream D)

void inputBinary(InputStream D)

To communicate a ParameterList across a stream, one needs just use a matched pair of
Output/Input or OutputBinary/InputBinary method invocations. The following code
fragment from Front2.java illustrates this.

 netConnect.startRemoteApplication();
//
// Exchange data with the remote class
//
// create a ParameterList
//
 cam.dataxchg.ParameterList P = new cam.dataxchg.ParameterList("Test Parameters");
 P.addDouble(" dt ",1.0);
 P.addInt(" N ", 100);
//
// send
//
 P.output(FrontOutputStream);
//
// receive (using the binary version as an example...)
//
 P.inputBinary(FrontInputStream);
//

7 of 9

// output results to the screen
//
 P.output(System.out);

 netConnect.stopRemoteApplication();

In the run() method of Back2.java, corresponding input and output statements occur.

The ParameterList class was created before Java 1.1 was available, and so the methods
Input, InputBinary, Output, OutputBinary were implemented by the programmer. With the
java.io.ObjectInputStream and java.io.ObjectOutputStream classes in Java 1.1 one can
utilize serialization procedures without having to create ones own serialization methods.
Using these constructs the process of transmitting a ParameterList class instance across a
stream becomes

 netConnect.startRemoteApplication();
//
// Exchange data with the remote class
//
// create a ParameterList
//
 cam.dataxchg.ParameterList P = new cam.dataxchg.ParameterList("Test Parameters");
 P.addDouble(" dt ",1.0);
 P.addInt(" N ", 100);
//
// send
//
 try
 {
 java.io.ObjectOutputStream Os = new java.io.ObjectOutputStream(FrontOutputStream);
 Os.writeObject(P);
 }
 catch(Exception e){System.out.println(e);};
//
// receive
//
 try
 {
 java.io.ObjectInputStream Is = new java.io.ObjectInputStream(FrontInputStream);
 P = (cam.dataxchg.ParameterList)Is.readObject();
 }
 catch(Exception e){System.out.println(e);}

 P.output(System.out);

 netConnect.stopRemoteApplication();

These code fragements come from the Front3.java. (Back3.java has the corresponding
input and output statements).

Miscellaneous Notes

No security mechanism is implemented in the ServerManager class.

8 of 9

Once a remote class is loaded by the ServerManager, the class remains loaded even after
the execution of the remote class stops. Subsequent requests for the class do not cause a
re-load to occur. This means that the ServerManager must be restarted if one wants the
ServerManager to use a new version of a remote class.

9 of 9

