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ABSTRACT. We investigate the optimal regularity of the weak solution of an obstacle problem for a
parabolic nonlinear integral equation.

1. INTRODUCTION

In this paper, we present our results about the optimal regularity of parabolic nonlocal obstacle
problems with measurable kernels. Namely, we consider a parabolic obstacle problem with measurable

kernels of the form

min{w; — /[w(y,t) —w(z,t)|K(y — z)dy,w — ¢} = 0in R™ x [0,T],
w(z,0) = wo(x) in R™,
where, K(z) is a symmetric and “bounded measurable” kernel i.e.

A A

W < K(z,y) < Wa

| ‘152 w(z,t) = 0 for every ¢t. Non-local “heat equations” arise in material sciences in cases where
tilere 0;re long range interactions, like in polymers, or stochastic processes with jump (Levi) processes.
Obstacle-like problems appear in both cases as an optimization change of strategy (optimal temperature
control or American options in financial mathematics). In [1], the problem is analyzed for the weak
solution without the obstacle. In [3, 4], some a priori estimates are obtained and in [2] a similar problem

is analyzed for the fractional obstacle problem. We use the penalization method so that the solution

of the equation (1.2) can be approximated by the sequence of solutions of the following equation for

Be(z) = e=%/%:

Wy _Bs(w_(p) = /[w(yvt) _w(ﬂfvt)]K(y—CE)dy (1.2)
w(z,0) = wo(x)
Here, for simplifying the notation, solutions are denoted as w instead of we.

At first we will consider R™ with some initial condition, then we will look at this problem on a subset

Q of R™. We can write the equation (1.2) as

(w— @)t = Be(w —p) = /[(w —o)(y,t) — (w —p)(z,1)|K(y — z)dy + /[cﬁ(y) — ¢(z)|K (y — =)dy.
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Theorem 1.1. Let w(z,t) be a weak solution of (1.2) with an initial data in £2. Then, w is bounded

and Hélder continuous.

Proof. We will use the test functions wy, = (w — ¢ —9)*. First, multiply (1.2) with wy, then integrate

T
/ /w¢ (w — @)dadt — / /wwﬁg (w — @)dzdt =

/ //% w—)(y,t) — (w — ) (z,1)]K(y — x)dydzdt+

/T1 //W’ ()] K (y — x)dydadt,

RHS can be symmetrized(exchange y and ),
[ [wele i = 0)w.0) - w - o). 01Ky~ o)dyde+
//ww (&, )lp(y) — ple)] Ky — 2)dyde =
—5 [ 0060 = wola 015 Dl - 9)0:0) — (0 = ) o, O+
- / [1w0(0:0) = (o DKy = D)oly) — @)ldyds =

(U)¢,w @)+B(wwv )]

inxandt

then we get
T>
B [ st ot [ (Bl o)+ By ol =0

/ ww )edx
Ty

T2 T2
/wi(m,Tg)dx - / /w¢55(w — @)dxdt —|—/ B(wy, wy)dt =
T, T

/wi(w,Tl)dﬂc + B(wy, wy, —w)dt

T
Here we have the following energy inequality:

T

/’Uji}({E,TQ)d(E + B(way, wy)dt >
T

T2 T2
sup /wi(m,t)dm +/ |w¢,|%pdt > / |wy| %, dt, for some 2 < g < p.
Ty <t<T, T T

Let 1 +1 =1and ¢g=2+Z, then

[wide = [with < / de)%(/wpdx i
(f widzr)i < sup ‘;(/wpdx @
Th<t<T>
We will apply the following lemma: g

Lemma 1.2. Let w < ¢ = max(2, |z|¢) be a subsolution of (1.2) such that |[{w > o} < § in Ty =
By x [—4,0], ¢ = g|z|?, then w — ¢ < min(§|z|* + 1,) in R™ x [-1,0].
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Proof. Define ¢y, = min(g|z|? 4 (1 —27%),¢) and wy, = (w — ¢ — )", then we will show that "w.." =
"(w— ¢ —1eo)T” =0 in R® x [-1,0]. Let

0
Ay = / /wi(m)dxdt,with T = —(1+270),
Ty

we will show that Ay < C*(Ay_1)'*¢ that implies Ay — 0, as k — oo. We have the following inequalities:

Ay = /TO /wi(x,t)dxdt < (/Ti/wg(x,t)dxdtf {w, > 0}

By the Sobolev Inequality,
0
A< [ B war o> 0 < { [ udte o)+
T
now, we kwill find the bounds of the terms of RHS.

EN 2 1
a*,where — + — = 1.
p g

0

B(wk,wwdt} [ > O},
Tk

Since {wy, > 0} C {wy_1 > 2%}, we have

0
{we > 0} < [{wes > 2-F}| < 2%/ /wi_l(x,t)dxdt.
Tk

0 0

0
B(wg, wg)dt < /w,%(a:,Tk)dx —l—/ /wk,ﬁg(w —@)dxdt + | B(wg,w, —w)dt.
Tk T2

/ wi(z,0)dx +
Tk
Let us analyze the RHS term by term:

We may replace the first term by . ir<11Z<T / w? (x,t)dz, since that will only increase Ay, then
k—1>U>1E

Ty,
inf /w,%(x,t)dx < 2’“/ /wi(m,t)dmdt <28A_1;
Ty—1<t<T} Ty 1

the second term has a sign which is < 0;

we can write the last term as
0

0 0
/ B(wg, wy, — w)dt = / B(wg, (w — ¢ —vg) " )dt — / B(wg, ¢ + ¢y)dt,
T T T
SiIlQCG wy and (w — @ — T/Jk)27 have disjoint support, we ha2ve

B(wg, (w— ¢ —¢p)7) = //wk(w)K(x, Y)(—(w — ¢ — )~ (y))dydz <0,

lastly, B(wg, ¢ + ¢1) equals to

/ / (w0 () — 0k (1)) Ot 50) (2) + Xgun 03 1) K (@ 5) (9 + 1) (@) — (0 + 1) (1)) e
- / / (w0 () — W) KKV (x g0 (@) + Xgung 50y 1) (0 + 0)(@) — (0 + 1))yl

145 [ [ EK@n) 0@ + X @)@ + o)) = (o + b)) dyd

IN
I
S
B
¥
S
o

By the Lipschitz regularity and the slow decay at infinity of K(x,y)(¢ + ¢), when we fixed
one variable the second term will be integrable on the other variable. So, let’s say x is fixed on
the support of wy, then the second term of the RHS will be bounded by|{wy, > 0}|.
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To sum up,
0
A < { wi(z,0)dx + B(wk,wk)dt} {wy > 0}°,
0
< { wi(z, Ty dx—l—/ /wkﬁa w — )dxdt + B(wk,wk—w)dt}szeAi_l
Tk T2
0
< {2kAk 1+/ B(wg, (w — ¢ — )7 )dt — B(wk>@+¢k)dt}22k8Ai_1
T
< {2kAk 1 — B(wk7cp+wk)dt}22kaAi_l
§ {QkAk 1 — fB(wk,wk) — *|{’u)k > 0}}22kEAE 1

O

Lemma 1.3. Let [{w < 0}| > p > 0 in Ty = By X [—4,0], then for some (very tiny) value N\*(u), we

have

{w > -A"} <,

i.e. the measure goes below critical value, the first lemma applies and w < -y in 'y

Proof. Consider the following three consecutive cut offs:
1
Yo = min(¢, = (Ix\2 4)),
)\
2 - ),
2

v = min(6, - (Jaf? ~ 4))

where A is much smaller than p. We will show that some mass is lost going from the set {w > g} to

11 = min(¢,

{w > 19}, which implies after a finite number of cut offs we have |{w > —v}| < §, and the first lemma
will apply.
Consider the equality with the cut-off 1)y:

T>

T
JICA / Jwersetw—@asat+ [ Bl wi) = [ Bl w, - wyi
1 1
T
/(w?ﬂl) dx Tf + B(w1/117w¢1 / /wwlﬁa w— @)dl‘dt + B(www (w — Y- ¢1)7)dt
T1 Tl

B(ww17<ﬂ+¢1)
T

we have

By, +01) £ 3Bwawn) + [ [ K= 20, 01 @)(0 +02)(@) - (¢ + 62)(0) dydz,

where / / Ky~ 2) (X, 503 (2) (9 + 1)) — (9 + 1) (1)) dydar < CA2
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[ s

T, T T
Loy / Blwg, wy,) = / / W Be(w — ) dadi + / B, (w — o — 1) )dt
Ty

Ty T

Ts
- / Blwy,. o+ )t

T

|

Theorem 1.4. (Comparison Principle) Let w,v be two weak solutions of (??) s.t. w(x,0) > v(x,0),

then w(z,t) > v(x,t) for every t.

Proof. (BWOC) Assume that w and v are two weak solutions of (??) s.t. w(z,0) > v(z,0) and w(z,t) <
v(x,t) for some t. Let tg be the smallest t s.t. w(z,t) < v(z,t). By the Fundamental Theorem of Calculus,

we have
to
wlasto) — w(@,0) = [ wilat)at,
0
to
v(x, tg) —v(x,0) = / ve(x, t)dt.
0
We will take n(z,t) = (w — v)(z,t) > 0 as a test function, since it is measurable, we can use the

approximation to the identity as a smoothed version of 7. For simplicity, we will take it as it is.

0 > w(z,to) — v(x,to) =

w(z,0) —v(z,0 +f0 (@, t) — vi(z,t)]dt
[ [0z, 0)[w(z, to) — v(z, to)|dedt = f

z,0)
(axt)[w (,0) —v(z 0)]dxdt

In
ff n(z
f

+ z, t)[w(z,t) — vi(z, t)]dtdzdt

= S @, )[(w —v)(y,t) — (w —v)(x,t)| K (y — z)dy|dtdzdtdy

:O 1 oL [ () = ny, B)]l(w — v)(y,t) — (w —v)(z, 1)K (y — x)dy]dtdzdtd;
>

by symmetrization, change the variables x and y and add them up. We get a contradiction. Hence, we

have the comparison principle. O
Theorem 1.5. Let ¢ € CY!, wy € CHY, and C = max(sup —ecip, SUp —Decwy), then Oeew > —C.
Proof. Consider the second incremental quotients:

o(x + se) — p(x — se)
2

+Cs? > P,

wo(z + se) — wp(xz — se)

5 + Cs? > wy.

Hence,

o) = w(ac—&-sej);w(:r—se,t) Ot > o
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and
wi(x + se,t) —w(x — se, t)
2
/W@J%ﬂﬂx+%imﬂy*$*%My*/mwi%ﬂﬂxfwimﬂy*$+%ﬂy
2
[ty +se.0) — wie -+ se 0}~ a)dy [ fwly = sest) = wla - se. 1K (g~ )y

VK (y — x)dy

/( [w(y + se,t) —w(y —se,t)]  [w(z+ sg, t) —w(x — se,t)]
2 2

— [(0(.0) = ol 1)Ky - 2)dy
i.e. it is a weak solution of (??), also
v(x,0) > w(z,0) = wo(x).
By the comparison principle,
v(x,t) > w(x,t),

ie.
w(z + se,t) — w(x — se, t)
2

Hence, 0gcw > —C. Therefore, for every x,t there exists a paraboloid of opening C' touching w from

+ Cs? > w(a, t).

below, i.e. w is semiconvex. O

Remark 1.6. We know that w is bounded and Hélder continuous. We want to show that w € C1%. Let’s

look at the equation satisfied by v = we:

w,— Belw— ) — [ lwlot) - w(e 0Ky - 2)dy
= /[w(m + 2,t) —w(x,t)]K(2)dz, by change of variable y = z + z
ve— BLw—p).(v—p.) = /[v(erz,t) —v(z, 1)K (2)dz.

Hence, v = w, satisfies

v — BL(w— 9).(v— pe) = / [y, 1) — vl O] K (y — 2)dy.

If we can show that v is Holder continuous, we will be done, up to the regularity of ¢ and the ellipticity
of K.
Here 5’ < 0, and we I need to check the comparison principle for this equation, then hopefully I can

show the result, I might use also DeGiorgi method again.

Let us try to prove the comparison principle for this equation

v — Bl(w — 0)-(v — p) = / [y, t) — v(z, O] K (y — 2)dy. (1.3)
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Theorem 1.7. (Comparison Principle) Let u and v be two weak solutions of (1.3) s.t. u(z,0) > v(z,0),
then u(z,t) > v(z,t) for every t.

Proof. (BWOC) Assume that v and v are two weak solutions of (1.3) s.t. u(z,0) > v(x,0) and u(z,t) <
v(x,t) for some t. Let ¢y be the smallest ¢ s.t. wu(z,t) < v(x,t). By the Fundamental Theorem of

Calculus, we have

ulz,to) — u(z,0) = / (o, t)dt,
v(x, tg) —v(z,0) = /0 ' ve(x, t)dt.

We can take 1(7,1) = X{(u—v)(y,t)>(u—v)(=.t)} (T, 1) as a test function, since it is measurable, we can use
the approximation to the identity as a smoothed version of 1. For simplicity, we will take it as it is.

0> u(a: to) — v(z,to) = u(z,0) —v(a: 0) —i—f ug(z,t) —vt(a: t)]dt
I [ nlu(z, to) — v(x, to)]dads ffn u(x,0) — v(z,0)] da;ds—i—fffo [ug(z,t) — ve(, t)]dtdrds

> ffn ug(z,t) — ve(, t)]dtdzds
= ffnﬁ w— <p) (u — v)dxdsdt
+ f I [nl(uw—=v)(y,t) = (u—v)(z,t)|K(y — z)dydadsdt
>
contradiction. Hence, we have the comparison principle. (|
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