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I. Introduction
Multiple regression analysis is a statistical tool for understanding the relationship
between two or more variables.1 Multiple regression involves a variable to be
explained—called the dependent variable—and additional explanatory variables
that are thought to produce or be associated with changes in the dependent
variable.2 For example, a multiple regression analysis might estimate the effect of
the number of years of work on salary. Salary would be the dependent variable
to be explained; years of experience would be the explanatory variable.

Multiple regression analysis is sometimes well suited to the analysis of data
about competing theories in which there are several possible explanations for
the relationship among a number of explanatory variables.3 Multiple regression
typically uses a single dependent variable and several explanatory variables to
assess the statistical data pertinent to these theories. In a case alleging sex dis-
crimination in salaries, for example, a multiple regression analysis would exam-
ine not only sex, but also other explanatory variables of interest, such as educa-
tion and experience.4 The employer–defendant might use multiple regression to
argue that salary is a function of the employee’s education and experience, and
the employee–plaintiff might argue that salary is also a function of the individual’s
sex.

Multiple regression also may be useful (1) in determining whether a particu-
lar effect is present; (2) in measuring the magnitude of a particular effect; and (3)
in forecasting what a particular effect would be, but for an intervening event. In
a patent infringement case, for example, a multiple regression analysis could be

1. A variable is anything that can take on two or more values (for example, the daily temperature in
Chicago or the salaries of workers at a factory).

2. Explanatory variables in the context of a statistical study are also called independent variables. See
David H. Kaye & David A. Freedman, Reference Guide on Statistics, § II.A.1, in this manual. That
guide also offers a brief discussion of multiple regression analysis. Id. § V.

3. Multiple regression is one type of statistical analysis involving several variables. Other types
include matching analysis, stratification, analysis of variance, probit analysis, logit analysis, discriminant
analysis, and factor analysis.

4. Thus, in Ottaviani v. State University of New York, 875 F.2d 365, 367 (2d Cir. 1989) (citations
omitted), cert. denied, 493 U.S. 1021 (1990), the court stated:

In disparate treatment cases involving claims of gender discrimination, plaintiffs typically use multiple regres-
sion analysis to isolate the influence of gender on employment decisions relating to a particular job or job
benefit, such as salary.

The first step in such a regression analysis is to specify all of the possible “legitimate” (i.e., nondiscrimina-
tory) factors that are likely to significantly affect the dependent variable and which could account for dispari-
ties in the treatment of male and female employees. By identifying those legitimate criteria that affect the
decision-making process, individual plaintiffs can make predictions about what job or job benefits similarly
situated employees should ideally receive, and then can measure the difference between the predicted treat-
ment and the actual treatment of those employees. If there is a disparity between the predicted and actual
outcomes for female employees, plaintiffs in a disparate treatment case can argue that the net “residual”
difference represents the unlawful effect of discriminatory animus on the allocation of jobs or job benefits.
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used to determine (1) whether the behavior of the alleged infringer affected the
price of the patented product; (2) the size of the effect; and (3) what the price of
the product would have been had the alleged infringement not occurred.

Over the past several decades the use of multiple regression analysis in court
has grown widely. Although regression analysis has been used most frequently
in cases of sex and race discrimination5 and antitrust violation,6 other applica-
tions include census undercounts,7 voting rights,8 the study of the deterrent

5. Discrimination cases using multiple regression analysis are legion. See, e.g., Bazemore v. Friday,
478 U.S. 385 (1986), on remand, 848 F.2d 476 (4th Cir. 1988); King v. General Elec. Co., 960 F.2d 617
(7th Cir. 1992); Diehl v. Xerox Corp., 933 F. Supp. 1157 (W.D.N.Y. 1996) (age and sex discrimina-
tion); Csicseri v. Bowsher, 862 F. Supp. 547 (D.D.C. 1994) (age discrimination), aff’d, 67 F.3d 972
(D.C. Cir. 1995); Tennes v. Massachusetts Dep’t of Revenue, No. 88-C3304, 1989 WL 157477 (N.D.
Ill. Dec. 20, 1989) (age discrimination); EEOC v. General Tel. Co. of N.W., 885 F.2d 575 (9th Cir.
1989), cert. denied, 498 U.S. 950 (1990); Churchill v. IBM, Inc., 759 F. Supp. 1089 (D.N.J. 1991);
Denny v. Westfield State College, 880 F.2d 1465 (1st Cir. 1989) (sex discrimination); Black Law
Enforcement Officers Ass’n v. City of Akron, 920 F.2d 932 (6th Cir. 1990); Bridgeport Guardians, Inc.
v. City of Bridgeport, 735 F. Supp. 1126 (D. Conn. 1990), aff’d, 933 F.2d 1140 (2d Cir.), cert. denied,
502 U.S. 924 (1991); Dicker v. Allstate Life Ins. Co., No. 89-C-4982, 1993 WL 62385 (N.D. Ill. Mar.
5, 1993) (race discrimination). See also Keith N. Hylton & Vincent D. Rougeau, Lending Discrimination:
Economic Theory, Econometric Evidence, and the Community Reinvestment Act, 85 Geo. L.J. 237, 238 (1996)
(“regression analysis is probably the best empirical tool for uncovering discrimination”).

6. E.g., United States v. Brown Univ., 805 F. Supp. 288 (E.D. Pa. 1992) (price-fixing of college
scholarships), rev’d, 5 F.3d 658 (3d Cir. 1993); Petruzzi IGA Supermarkets, Inc. v. Darling-Delaware
Co., 998 F.2d 1224 (3d Cir.), cert. denied, 510 U.S. 994 (1993); Ohio v. Louis Trauth Dairy, Inc., 925
F. Supp. 1247 (S.D. Ohio 1996); In re Chicken Antitrust Litig., 560 F. Supp. 963, 993 (N.D. Ga. 1980);
New York v. Kraft Gen. Foods, Inc., 926 F. Supp. 321 (S.D.N.Y. 1995). See also Jerry Hausman et al.,
Competitive Analysis with Differenciated Products, 34 Annales D’Economie et de Statistique 159 (1994);
Gregory J. Werden, Simulating the Effects of Differentiated Products Mergers: A Practical Alternative to Struc-
tural Merger Policy, 5 Geo. Mason L. Rev. 363 (1997).

7. See, e.g., City of New York v. United States Dep’t of Commerce, 822 F. Supp. 906 (E.D.N.Y.
1993) (decision of Secretary of Commerce not to adjust the 1990 census was not arbitrary and capri-
cious), vacated, 34 F.3d 1114 (2d Cir. 1994) (applying heightened scrutiny), rev’d sub nom. Wisconsin v.
City of New York, 517 U.S. 565 (1996); Cuomo v. Baldrige, 674 F. Supp. 1089 (S.D.N.Y. 1987);
Carey v. Klutznick, 508 F. Supp. 420, 432–33 (S.D.N.Y. 1980) (use of reasonable and scientifically
valid statistical survey or sampling procedures to adjust census figures for the differential undercount is
constitutionally permissible), stay granted, 449 U.S. 1068 (1980), rev’d on other grounds, 653 F.2d 732 (2d
Cir. 1981), cert. denied, 455 U.S. 999 (1982); Young v. Klutznick, 497 F. Supp. 1318, 1331 (E.D. Mich.
1980), rev’d on other grounds, 652 F.2d 617 (6th Cir. 1981), cert. denied, 455 U.S. 939 (1982).

8. Multiple regression analysis was used in suits charging that at-large area-wide voting was insti-
tuted to neutralize black voting strength, in violation of section 2 of the Voting Rights Act, 42 U.S.C.
§ 1973 (1988). Multiple regression demonstrated that the race of the candidates and that of the elector-
ate were determinants of voting. See, e.g., Williams v. Brown, 446 U.S. 236 (1980); Bolden v. City of
Mobile, 423 F. Supp. 384, 388 (S.D. Ala. 1976), aff’d, 571 F.2d 238 (5th Cir. 1978), stay denied, 436
U.S. 902 (1978), rev’d, 446 U.S. 55 (1980); Jeffers v. Clinton, 730 F. Supp. 196, 208–09 (E.D. Ark.
1989), aff’d, 498 U.S. 1019 (1991); League of United Latin Am. Citizens, Council No. 4434 v. Clements,
986 F.2d 728, 774–87 (5th Cir.), reh’g en banc, 999 F.2d 831 (5th Cir. 1993), cert. denied, 498 U.S. 1060
(1994). For commentary on statistical issues in voting rights cases, see, e.g., Symposium, Statistical and
Demographic Issues Underlying Voting Rights Cases, 15 Evaluation Rev. 659 (1991); Stephen P. Klein et
al., Ecological Regression versus the Secret Ballot, 31 Jurimetrics J. 393 (1991); James W. Loewen & Bernard
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effect of the death penalty,9 rate regulation,10 and intellectual property.11

Multiple regression analysis can be a source of valuable scientific testimony in
litigation. However, when inappropriately used, regression analysis can confuse
important issues while having little, if any, probative value. In EEOC v. Sears,
Roebuck & Co.,12 in which Sears was charged with discrimination against women
in hiring practices, the Seventh Circuit acknowledged that “[m]ultiple regres-
sion analyses, designed to determine the effect of several independent variables
on a dependent variable, which in this case is hiring, are an accepted and com-
mon method of proving disparate treatment claims.”13 However, the court
affirmed the district court’s findings that the “E.E.O.C’s regression analyses did
not ‘accurately reflect Sears’ complex, nondiscriminatory decision-making pro-
cesses’” and that the “‘E.E.O.C.’s statistical analyses [were] so flawed that they
lack[ed] any persuasive value.’”14 Serious questions also have been raised about
the use of multiple regression analysis in census undercount cases and in death
penalty cases.15

Moreover, in interpreting the results of a multiple regression analysis, it is
important to distinguish between correlation and causality. Two variables are
correlated when the events associated with the variables occur more frequently

Grofman, Recent Developments in Methods Used in Vote Dilution Litigation, 21 Urb. Law. 589 (1989);
Arthur Lupia & Kenneth McCue, Why the 1980s Measures of Racially Polarized Voting Are Inadequate for
the 1990s, 12 Law & Pol’y 353 (1990).

9. See, e.g., Gregg v. Georgia, 428 U.S. 153, 184–86 (1976). For critiques of the validity of the
deterrence analysis, see National Research Council, Deterrence and Incapacitation: Estimating the
Effects of Criminal Sanctions on Crime Rates (Alfred Blumstein et al. eds., 1978); Edward Leamer,
Let’s Take the Con Out of Econometrics, 73 Am. Econ. Rev. 31 (1983); Richard O. Lempert, Desert and
Deterrence: An Assessment of the Moral Bases of the Case for Capital Punishment, 79 Mich. L. Rev. 1177
(1981); Hans Zeisel, The Deterrent Effect of the Death Penalty: Facts v. Faith, 1976 Sup. Ct. Rev. 317.

10. See, e.g., Time Warner Entertainment Co. v. FCC, 56 F.3d 151 (D.C. Cir. 1995) (challenge to
FCC’s application of multiple regression analysis to set cable rates), cert. denied, 516 U.S. 1112 (1996).

11. See Polaroid Corp. v. Eastman Kodak Co., No. 76-1634-MA, 1990 WL 324105, at *29, *62–
*63 (D. Mass. Oct. 12, 1990) (damages awarded because of patent infringement), amended by No. 76-
1634-MA, 1991 WL 4087 (D. Mass. Jan. 11, 1991); Estate of Vane v. The Fair, Inc., 849 F.2d 186, 188
(5th Cir. 1988) (lost profits were due to copyright infringement), cert. denied, 488 U.S. 1008 (1989).
The use of multiple regression analysis to estimate damages has been contemplated in a wide variety of
contexts. See, e.g., David Baldus et al., Improving Judicial Oversight of Jury Damages Assessments: A Proposal
for the Comparative Additur/Remittitur Review of Awards for Nonpecuniary Harms and Punitive Damages, 80
Iowa L. Rev. 1109 (1995); Talcott J. Franklin, Calculating Damages for Loss of Parental Nurture Through
Multiple Regression Analysis, 52 Wash. & Lee L. Rev. 271 (1997); Roger D. Blair & Amanda Kay
Esquibel, Yardstick Damages in Lost Profit Cases: An Econometric Approach, 72 Denv. U. L. Rev. 113
(1994).

12. 839 F.2d 302 (7th Cir. 1988).
13. Id. at 324 n.22.
14. Id. at 348, 351 (quoting EEOC v. Sears, Roebuck & Co., 628 F. Supp. 1264, 1342, 1352

(N.D. Ill. 1986)). The district court commented specifically on the “severe limits of regression analysis
in evaluating complex decision-making processes.” 628 F. Supp. at 1350.

15. See David H. Kaye & David A. Freedman, Reference Guide on Statistics, § II.A.e, B.1, in this
manual.
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together than one would expect by chance. For example, if higher salaries are
associated with a greater number of years of work experience, and lower salaries
are associated with fewer years of experience, there is a positive correlation
between salary and number of years of work experience. However, if higher
salaries are associated with less experience, and lower salaries are associated with
more experience, there is a negative correlation between the two variables.

A correlation between two variables does not imply that one event causes the
second. Therefore, in making causal inferences, it is important to avoid spurious
correlation.16 Spurious correlation arises when two variables are closely related
but bear no causal relationship because they are both caused by a third,
unexamined variable. For example, there might be a negative correlation be-
tween the age of certain skilled employees of a computer company and their
salaries. One should not conclude from this correlation that the employer has
necessarily discriminated against the employees on the basis of their age. A third,
unexamined variable, such as the level of the employees’ technological skills,
could explain differences in productivity and, consequently, differences in sal-
ary.17 Or, consider a patent infringement case in which increased sales of an
allegedly infringing product are associated with a lower price of the patented
product. This correlation would be spurious if the two products have their own
noncompetitive market niches and the lower price is due to a decline in the
production costs of the patented product.

Pointing to the possibility of a spurious correlation should not be enough to
dispose of a statistical argument, however. It may be appropriate to give little
weight to such an argument absent a showing that the alleged spurious correla-
tion is either qualitatively or quantitatively substantial. For example, a statistical
showing of a relationship between technological skills and worker productivity
might be required in the age discrimination example above.18

Causality cannot be inferred by data analysis alone; rather, one must infer that
a causal relationship exists on the basis of an underlying causal theory that ex-
plains the relationship between the two variables. Even when an appropriate

16. See David H. Kaye & David A. Freedman, Reference Guide on Statistics, § V.B.3, in this
manual.

17. See, e.g., Sheehan v. Daily Racing Form Inc., 104 F.3d 940, 942 (7th Cir.) (rejecting plaintiff’s
age discrimination claim because statistical study showing correlation between age and retention ig-
nored the “more than remote possibility that age was correlated with a legitimate job-related
qualification”), cert. denied, 521 U.S. 1104 (1997).

18. See, e.g., Allen v. Seidman, 881 F.2d 375 (7th Cir. 1989) (Judicial skepticism was raised when
the defendant did not submit a logistic regression incorporating an omitted variable—the possession of
a higher degree or special education; defendant’s attack on statistical comparisons must also include an
analysis that demonstrates that comparisons are flawed.). The appropriate requirements for the defendant’s
showing of spurious correlation could, in general, depend on the discovery process. See, e.g., Boykin v.
Georgia Pac. Co., 706 F.2d 1384 (1983) (criticism of a plaintiff’s analysis for not including omitted
factors, when plaintiff considered all information on an application form, was inadequate).
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theory has been identified, causality can never be inferred directly. One must
also look for empirical evidence that there is a causal relationship. Conversely,
the fact that two variables are correlated does not guarantee the existence of a
relationship; it could be that the model—a characterization of the underlying
causal theory—does not reflect the correct interplay among the explanatory
variables. In fact, the absence of correlation does not guarantee that a causal
relationship does not exist. Lack of correlation could occur if (1) there are
insufficient data; (2) the data are measured inaccurately; (3) the data do not
allow multiple causal relationships to be sorted out; or (4) the model is specified
wrongly because of the omission of a variable or variables that are related to the
variable of interest.

There is a tension between any attempt to reach conclusions with near cer-
tainty and the inherently probabilistic nature of multiple regression analysis. In
general, statistical analysis involves the formal expression of uncertainty in terms
of probabilities. The reality that statistical analysis generates probabilities that
there are relationships should not be seen in itself as an argument against the use
of statistical evidence. The only alternative might be to use less reliable anec-
dotal evidence.

This reference guide addresses a number of procedural and methodological
issues that are relevant in considering the admissibility of, and weight to be
accorded to, the findings of multiple regression analyses. It also suggests some
standards of reporting and analysis that an expert presenting multiple regression
analyses might be expected to meet. Section II discusses research design—how
the multiple regression framework can be used to sort out alternative theories
about a case. Section III concentrates on the interpretation of the multiple re-
gression results, from both a statistical and practical point of view. Section IV
briefly discusses the qualifications of experts. Section V emphasizes procedural
aspects associated with use of the data underlying regression analyses. Finally,
the Appendix delves into the multiple regression framework in further detail; it
also contains a number of specific examples that illustrate the application of the
technique.

II. Research Design: Model Specification
Multiple regression allows the testifying economist or other expert to choose
among alternative theories or hypotheses and assists the expert in distinguishing
correlations between variables that are plainly spurious from those that may
reflect valid relationships.
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A. What Is the Specific Question That Is Under Investigation by
the Expert?

Research begins with a clear formulation of a research question. The data to be
collected and analyzed must relate directly to this question; otherwise, appropri-
ate inferences cannot be drawn from the statistical analysis. For example, if the
question at issue in a patent infringement case is what price the plaintiff’s prod-
uct would have been but for the sale of the defendant’s infringing product,
sufficient data must be available to allow the expert to account statistically for
the important factors that determine the price of the product.

B. What Model Should Be Used to Evaluate the Question at
Issue?

Model specification involves several steps, each of which is fundamental to the
success of the research effort. Ideally, a multiple regression analysis builds on a
theory that describes the variables to be included in the study. For example, the
theory of labor markets might lead one to expect salaries in an industry to be
related to workers’ experience and the productivity of workers’ jobs. A belief
that there is job discrimination would lead one to add a variable or variables
reflecting discrimination.

Models are often characterized in terms of parameters—numerical character-
istics of the model. In the labor market example, one parameter might reflect
the increase in salary associated with each additional year of job experience.
Multiple regression uses a sample, or a selection of data, from the population (all
the units of interest) to obtain estimates of the values of the parameters of the
model. An estimate associated with a particular explanatory variable is an esti-
mated regression coefficient.

Failure to develop the proper theory, failure to choose the appropriate vari-
ables, or failure to choose the correct form of the model can bias substantially
the statistical results, that is, create a systematic tendency for an estimate of a
model parameter to be too high or too low.

1. Choosing the Dependent Variable
The variable to be explained, the dependent variable, should be the appropriate
variable for analyzing the question at issue.19 Suppose, for example, that pay

19. In multiple regression analysis, the dependent variable is usually a continuous variable that takes
on a range of numerical values. When the dependent variable is categorical, taking on only two or three
values, modified forms of multiple regression, such as probit analysis or logit analysis, are appropriate.
For an example of the use of the latter, see EEOC v. Sears, Roebuck & Co., 839 F.2d 302, 325 (7th Cir.
1988) (EEOC used logit analysis to measure the impact of variables, such as age, education, job-type
experience, and product-line experience, on the female percentage of commission hires). See also David
H. Kaye & David A. Freedman, Reference Guide on Statistics § V, in this manual.
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discrimination among hourly workers is a concern. One choice for the depen-
dent variable is the hourly wage rate of the employees; another choice is the
annual salary. The distinction is important, because annual salary differences
may be due in part to differences in hours worked. If the number of hours
worked is the product of worker preferences and not discrimination, the hourly
wage is a good choice. If the number of hours is related to the alleged discrimi-
nation, annual salary is the more appropriate dependent variable to choose.20

2. Choosing the Explanatory Variable That Is Relevant to the Question at
Issue

The explanatory variable that allows the evaluation of alternative hypotheses
must be chosen appropriately. Thus, in a discrimination case, the variable of
interest may be the race or sex of the individual. In an antitrust case, it may be a
variable that takes on the value 1 to reflect the presence of the alleged
anticompetitive behavior and the value 0 otherwise.21

3. Choosing the Additional Explanatory Variables
An attempt should be made to identify additional known or hypothesized ex-
planatory variables, some of which are measurable and may support alternative
substantive hypotheses that can be accounted for by the regression analysis. Thus,
in a discrimination case, a measure of the skills of the workers may provide an
alternative explanation—lower salaries may have been the result of inadequate
skills.22

20. In job systems in which annual salaries are tied to grade or step levels, the annual salary corre-
sponding to the job position could be more appropriate.

21. Explanatory variables may vary by type, which will affect the interpretation of the regression
results. Thus, some variables may be continuous and others may be categorical.

22. In Ottaviani v. State University of New York, 679 F. Supp. 288, 306–08 (S.D.N.Y. 1988), aff’d,
875 F.2d 365 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the court ruled (in the liability phase of
the trial) that the university showed there was no discrimination in either placement into initial rank or
promotions between ranks, so rank was a proper variable in multiple regression analysis to determine
whether women faculty members were treated differently from men.

However, in Trout v. Garrett, 780 F. Supp. 1396, 1414 (D.D.C. 1991), the court ruled (in the
damage phase of the trial) that the extent of civilian employees’ prehire work experience was not an
appropriate variable in a regression analysis to compute back pay in employment discrimination. Ac-
cording to the court, including the prehire level would have resulted in a finding of no sex discrimina-
tion, despite a contrary conclusion in the liability phase of the action. Id. See also Stuart v. Roache, 951
F.2d 446 (1st Cir. 1991) (allowing only three years of seniority to be considered as the result of prior
discrimination), cert. denied, 504 U.S. 913 (1992). Whether a particular variable reflects “legitimate”
considerations or itself reflects or incorporates illegitimate biases is a recurring theme in discrimination
cases. See, e.g., Smith v. Virginia Commonwealth Univ., 84 F.3d 672, 677 (4th Cir. 1996) (en banc)
(suggesting that whether “performance factors” should have been included in a regression analysis was
a question of material fact); id. at 681–82 (Luttig, J., concurring in part) (suggesting that the regression
analysis’ failure to include “performance factors” rendered it so incomplete as to be inadmissible); id. at
690–91 (Michael, J., dissenting) (suggesting that the regression analysis properly excluded “performance
factors”); see also Diehl v. Xerox Corp., 933 F. Supp. 1157, 1168 (W.D.N.Y. 1996).



Reference Manual on Scientific Evidence

188

Not all possible variables that might influence the dependent variable can be
included if the analysis is to be successful; some cannot be measured, and others
may make little difference.23 If a preliminary analysis shows the unexplained
portion of the multiple regression to be unacceptably high, the expert may seek
to discover whether some previously undetected variable is missing from the
analysis.24

Failure to include a major explanatory variable that is correlated with the
variable of interest in a regression model may cause an included variable to be
credited with an effect that actually is caused by the excluded variable.25 In
general, omitted variables that are correlated with the dependent variable re-
duce the probative value of the regression analysis.26 This may lead to inferences
made from regression analyses that do not assist the trier of fact.27

Omitting variables that are not correlated with the variable of interest is, in
general, less of a concern, since the parameter that measures the effect of the
variable of interest on the dependent variable is estimated without bias. Sup-

23. The summary effect of the excluded variables shows up as a random error term in the regression
model, as does any modeling error. See infra the Appendix for details. But see David W. Peterson,
Reference Guide on Multiple Regression, 36 Jurimetrics J. 213, 214 n.2 (1996) (review essay) (asserting that
“the presumption that the combined effect of the explanatory variables omitted from the model are
uncorrelated with the included explanatory variables” is “a knife-edge condition . . . not likely to
occur”).

24. A very low R-square (R2) is one indication of an unexplained portion of the multiple regression
model that is unacceptably high. However, the inference that one makes from a particular value of R2

will depend, of necessity, on the context of the particular issues under study and the particular data set
that is being analyzed. For reasons discussed in the Appendix, a low R2 does not necessarily imply a poor
model (and vice versa).

25. Technically, the omission of explanatory variables that are correlated with the variable of inter-
est can cause biased estimates of regression parameters.

26. The importance of the effect depends on the strength of the relationship between the omitted
variable and the dependent variable, and the strength of the correlation between the omitted variable
and the explanatory variables of interest.

27. See Bazemore v. Friday, 751 F.2d 662, 671–72 (4th Cir. 1984) (upholding the district court’s
refusal to accept a multiple regression analysis as proof of discrimination by a preponderance of the
evidence, the court of appeals stated that, although the regression used four variable factors (race,
education, tenure, and job title), the failure to use other factors, including pay increases which varied by
county, precluded their introduction into evidence), aff’d in part, vacated in part, 478 U.S. 385 (1986).

Note, however, that in Sobel v. Yeshiva University, 839 F.2d 18, 33, 34 (2d Cir. 1988), cert. denied,
490 U.S. 1105 (1989), the court made clear that “a [Title VII] defendant challenging the validity of a
multiple regression analysis [has] to make a showing that the factors it contends ought to have been
included would weaken the showing of salary disparity made by the analysis,” by making a specific
attack and “a showing of relevance for each particular variable it contends . . . ought to [be] includ[ed]”
in the analysis, rather than by simply attacking the results of the plaintiffs’ proof as inadequate for lack of
a given variable. See also Smith v. Virginia Commonwealth Univ., 84 F.3d 672 (4th Cir. 1996) (en
banc) (finding that whether certain variables should have been included in a regression analysis is a
question of fact that precludes summary judgment).

Also, in Bazemore v. Friday, the Court, declaring that the Fourth Circuit’s view of the evidentiary
value of the regression analyses was plainly incorrect, stated that “[n]ormally, failure to include variables
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pose, for example, that the effect of a policy introduced by the courts to encour-
age husbands’ payments of child support has been tested by randomly choosing
some cases to be handled according to current court policies and other cases to
be handled according to a new, more stringent policy. The effect of the new
policy might be measured by a multiple regression using payment success as the
dependent variable and a 0 or 1 explanatory variable (1 if the new program was
applied; 0 if it was not). Failure to include an explanatory variable that reflected
the age of the husbands involved in the program would not affect the court’s
evaluation of the new policy, since men of any given age are as likely to be
affected by the old policy as they are the new policy. Randomly choosing the
court’s policy to be applied to each case has ensured that the omitted age vari-
able is not correlated with the policy variable.

Bias caused by the omission of an important variable that is related to the
included variables of interest can be a serious problem.28 Nevertheless, it is pos-
sible for the expert to account for bias qualitatively if the expert has knowledge
(even if not quantifiable) about the relationship between the omitted variable
and the explanatory variable. Suppose, for example, that the plaintiff’s expert in
a sex discrimination pay case is unable to obtain quantifiable data that reflect the
skills necessary for a job, and that, on average, women are more skillful than
men. Suppose also that a regression analysis of the wage rate of employees (the
dependent variable) on years of experience and a variable reflecting the sex of
each employee (the explanatory variable) suggests that men are paid substantially
more than women with the same experience. Because differences in skill levels
have not been taken into account, the expert may conclude reasonably that the
wage difference measured by the regression is a conservative estimate of the true
discriminatory wage difference.

The precision of the measure of the effect of a variable of interest on the
dependent variable is also important.29 In general, the more complete the ex-
plained relationship between the included explanatory variables and the depen-
dent variable, the more precise the results. Note, however, that the inclusion of
explanatory variables that are irrelevant (i.e., not correlated with the dependent
variable) reduces the precision of the regression results. This can be a source of
concern when the sample size is small, but it is not likely to be of great conse-
quence when the sample size is large.

will affect the analysis’ probativeness, not its admissibility. Importantly, it is clear that a regression
analysis that includes less than ‘all measurable variables’ may serve to prove a plaintiff’s case.” 478 U.S.
385, 400 (1986) (footnote omitted).

28. See also David H. Kaye & David A. Freedman, Reference Guide on Statistics § V.B.3, in this
manual.

29. A more precise estimate of a parameter is an estimate with a smaller standard error. See infra the
Appendix for details.
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4. Choosing the Functional Form of the Multiple Regression Model
Choosing the proper set of variables to be included in the multiple regression
model does not complete the modeling exercise. The expert must also choose
the proper form of the regression model. The most frequently selected form is
the linear regression model (described in the Appendix). In this model, the
magnitude of the change in the dependent variable associated with the change
in any of the explanatory variables is the same no matter what the level of the
explanatory variables. For example, one additional year of experience might add
$5,000 to salary, irrespective of the previous experience of the employee.

In some instances, however, there may be reason to believe that changes in
explanatory variables will have differential effects on the dependent variable as
the values of the explanatory variables change. In these instances, the expert
should consider the use of a nonlinear model. Failure to account for nonlinearities
can lead to either overstatement or understatement of the effect of a change in
the value of an explanatory variable on the dependent variable.

One particular type of nonlinearity involves the interaction among several
variables. An interaction variable is the product of two other variables that are
included in the multiple regression model. The interaction variable allows the
expert to take into account the possibility that the effect of a change in one
variable on the dependent variable may change as the level of another explana-
tory variable changes. For example, in a salary discrimination case, the inclusion
of a term that interacts a variable measuring experience with a variable repre-
senting the sex of the employee (1 if a female employee, 0 if a male employee)
allows the expert to test whether the sex differential varies with the level of
experience. A significant negative estimate of the parameter associated with the
sex variable suggests that inexperienced women are discriminated against, whereas
a significant negative estimate of the interaction parameter suggests that the
extent of discrimination increases with experience.30

Note that insignificant coefficients in a model with interactions may suggest
a lack of discrimination, whereas a model without interactions may suggest the
contrary. It is especially important to account for the interactive nature of the
discrimination; failure to do so may lead to false conclusions concerning dis-
crimination.

30. For further details concerning interactions, see infra the Appendix. Note that in Ottaviani v.
State University of New York, 875 F.2d 365, 367 (2d Cir. 1989), cert. denied, 493 U.S. 1021 (1990), the
defendant relied on a regression model in which a dummy variable reflecting gender appeared as an
explanatory variable. The female plaintiff, however, used an alternative approach in which a regression
model was developed for men only (the alleged protected group). The salaries of women predicted by
this equation were then compared with the actual salaries; a positive difference would, according to the
plaintiff, provide evidence of discrimination. For an evaluation of the methodological advantages and
disadvantages of this approach, see Joseph L. Gastwirth, A Clarification of Some Statistical Issues in Watson
v. Fort Worth Bank and Trust, 29 Jurimetrics J. 267 (1989).
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5. Choosing Multiple Regression as a Method of Analysis
There are many multivariate statistical techniques other than multiple regression
that are useful in legal proceedings. Some statistical methods are appropriate
when nonlinearities are important.31 Others apply to models in which the de-
pendent variable is discrete, rather than continuous.32 Still others have been
applied predominantly to respond to methodological concerns arising in the
context of discrimination litigation.33

It is essential that a valid statistical method be applied to assist with the analysis
in each legal proceeding. Therefore, the expert should be prepared to explain
why any chosen method, including multiple regression, was more suitable than
the alternatives.

III. Interpreting Multiple Regression Results
Multiple regression results can be interpreted in purely statistical terms, through
the use of significance tests, or they can be interpreted in a more practical,
nonstatistical manner. Although an evaluation of the practical significance of
regression results is almost always relevant in the courtroom, tests of statistical
significance are appropriate only in particular circumstances.

A. What Is the Practical, as Opposed to the Statistical, Significance
of Regression Results?

Practical significance means that the magnitude of the effect being studied is not
de minimis—it is sufficiently important substantively for the court to be con-
cerned. For example, if the average wage rate is $10.00 per hour, a wage differ-
ential between men and women of $0.10 per hour is likely to be deemed prac-
tically insignificant because the differential represents only 1% ($0.10/$10.00) of

31. These techniques include, but are not limited to, piecewise linear regression, polynomial re-
gression, maximum likelihood estimation of models with nonlinear functional relationships, and
autoregressive and moving average time-series models. See, e.g., Robert S. Pindyck & Daniel L. Rubinfeld,
Econometric Models and Economic Forecasts 117–21, 136–37, 273–84, 463–601 (4th ed. 1998).

32. For a discussion of probit analysis and logit analysis, techniques that are useful in the analysis of
qualitative choice, see id. at 248–81.

33. The correct model for use in salary discrimination suits is a subject of debate among labor
economists. As a result, some have begun to evaluate alternative approaches, including urn models
(Bruce Levin & Herbert Robbins, Urn Models for Regression Analysis, with Applications to Employment
Discrimination Studies, Law & Contemp. Probs., Autumn 1983, at 247) and, as a means of correcting for
measurement errors, reverse regression (Delores A. Conway & Harry V. Roberts, Reverse Regression,
Fairness, and Employment Discrimination, 1 J. Bus. & Econ. Stat. 75 (1983)). But see Arthur S. Goldberger,
Redirecting Reverse Regressions, 2 J. Bus. & Econ. Stat. 114 (1984); Arlene S. Ash, The Perverse Logic of
Reverse Regression, in Statistical Methods in Discrimination Litigation 85 (D.H. Kaye & Mikel Aickin
eds., 1986).
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the average wage rate.34 That same difference could be statistically significant,
however, if a sufficiently large sample of men and women was studied.35 The
reason is that statistical significance is determined, in part, by the number of
observations in the data set.

Other things being equal, the statistical significance of a regression coefficient
increases as the sample size increases. Thus, a $1 per hour wage differential
between men and women that was determined to be insignificantly different
from zero with a sample of 20 men and women could be highly significant if the
sample were increased to 200.

Often, results that are practically significant are also statistically significant.36

However, it is possible with a large data set to find statistically significant
coefficients that are practically insignificant. Similarly, it is also possible (espe-
cially when the sample size is small) to obtain results that are practically significant
but statistically insignificant. Suppose, for example, that an expert undertakes a
damages study in a patent infringement case and predicts “but-for sales”—what
sales would have been had the infringement not occurred—using data that pre-
date the period of alleged infringement. If data limitations are such that only
three or four years of preinfringement sales are known, the difference between
but-for sales and actual sales during the period of alleged infringement could be
practically significant but statistically insignificant.

1. When Should Statistical Tests Be Used?
A test of a specific contention, a hypothesis test, often assists the court in deter-
mining whether a violation of the law has occurred in areas in which direct
evidence is inaccessible or inconclusive. For example, an expert might use hy-
pothesis tests in race and sex discrimination cases to determine the presence of a
discriminatory effect.

34. There is no specific percentage threshold above which a result is practically significant. Practical
significance must be evaluated in the context of a particular legal issue. See also David H. Kaye & David
A. Freedman, Reference Guide on Statistics § IV.B.2, in this manual.

35. Practical significance also can apply to the overall credibility of the regression results. Thus, in
McCleskey v. Kemp, 481 U.S. 279 (1987), coefficients on race variables were statistically significant, but
the Court declined to find them legally or constitutionally significant.

36. In Melani v. Board of Higher Education, 561 F. Supp. 769, 774 (S.D.N.Y. 1983), a Title VII suit
was brought against the City University of New York (CUNY) for allegedly discriminating against
female instructional staff in the payment of salaries. One approach of the plaintiff’s expert was to use
multiple regression analysis. The coefficient on the variable that reflected the sex of the employee was
approximately $1,800 when all years of data were included. Practically (in terms of average wages at the
time) and statistically (in terms of a 5% significance test), this result was significant. Thus, the court
stated that “[p]laintiffs have produced statistically significant evidence that women hired as CUNY in-
structional staff since 1972 received substantially lower salaries than similarly qualified men.” Id. at 781
(emphasis added).  For a related analysis involving multiple comparison, see Csicseri v. Bowsher, 862 F.
Supp. 547, 572 (D.D.C. 1994) (noting that plaintiff’s expert found “statistically significant instances of
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Statistical evidence alone never can prove with absolute certainty the worth
of any substantive theory. However, by providing evidence contrary to the
view that a particular form of discrimination has not occurred, for example, the
multiple regression approach can aid the trier of fact in assessing the likelihood
that discrimination has occurred.37

Tests of hypotheses are appropriate in a cross-section analysis, in which the
data underlying the regression study have been chosen as a sample of a popula-
tion at a particular point in time, and in a time-series analysis, in which the data
being evaluated cover a number of time periods. In either analysis, the expert
may want to evaluate a specific hypothesis, usually relating to a question of
liability or to the determination of whether there is measurable impact of an
alleged violation. Thus, in a sex discrimination case, an expert may want to
evaluate a null hypothesis of no discrimination against the alternative hypothesis
that discrimination takes a particular form.38 Alternatively, in an antitrust dam-
ages proceeding, the expert may want to test a null hypothesis of no legal impact
against the alternative hypothesis that there was an impact. In either type of case,
it is important to realize that rejection of the null hypothesis does not in itself
prove legal liability. It is possible to reject the null hypothesis and believe that an
alternative explanation other than one involving legal liability accounts for the
results.39

Often, the null hypothesis is stated in terms of a particular regression coefficient
being equal to 0. For example, in a wage discrimination case, the null hypothesis
would be that there is no wage difference between sexes. If a negative difference
is observed (meaning that women are found to earn less than men, after the
expert has controlled statistically for legitimate alternative explanations), the dif-
ference is evaluated as to its statistical significance using the t-test.40 The t-test
uses the t-statistic to evaluate the hypothesis that a model parameter takes on a
particular value, usually 0.

discrimination” in 2 of 37 statistical comparisons, but suggesting that “2 of 37 amounts to roughly 5%
and is hardly indicative of a pattern of discrimination”), aff’d, 67 F.3d 972 (D.C. Cir. 1995).

37. See International Bhd. of Teamsters v. United States, 431 U.S. 324 (1977) (the Court inferred
discrimination from overwhelming statistical evidence by a preponderance of the evidence).

38. Tests are also appropriate when comparing the outcomes of a set of employer decisions with
those that would have been obtained had the employer chosen differently from among the available
options.

39. See David H. Kaye & David A. Freedman, Reference Guide on Statistics § IV.C.5, in this
manual.

40. The t-test is strictly valid only if a number of important assumptions hold. However, for many
regression models, the test is approximately valid if the sample size is sufficiently large. See infra the
Appendix for a more complete discussion of the assumptions underlying multiple regression.
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2. What Is the Appropriate Level of Statistical Significance?
In most scientific work, the level of statistical significance required to reject the
null hypothesis (i.e., to obtain a statistically significant result) is set convention-
ally at .05, or 5%.41 The significance level measures the probability that the null
hypothesis will be rejected incorrectly, assuming that the null hypothesis is true.
In general, the lower the percentage required for statistical significance, the
more difficult it is to reject the null hypothesis; therefore, the lower the prob-
ability that one will err in doing so. Although the 5% criterion is typical, report-
ing of more stringent 1% significance tests or less stringent 10% tests can also
provide useful information.

In doing a statistical test, it is useful to compute an observed significance
level, or p-value. The p-value associated with the null hypothesis that a regres-
sion coefficient is 0 is the probability that a coefficient of this magnitude or
larger could have occurred by chance if the null hypothesis were true. If the p-
value were less than or equal to 5%, the expert would reject the null hypothesis
in favor of the alternative hypothesis; if the p-value were greater than 5%, the
expert would fail to reject the null hypothesis.42

3. Should Statistical Tests Be One-Tailed or Two-Tailed?
When the expert evaluates the null hypothesis that a variable of interest has no
association with a dependent variable against the alternative hypothesis that there
is an association, a two-tailed test, which allows for the effect to be either posi-
tive or negative, is usually appropriate. A one-tailed test would usually be ap-
plied when the expert believes, perhaps on the basis of other direct evidence
presented at trial, that the alternative hypothesis is either positive or negative,
but not both. For example, an expert might use a one-tailed test in a patent
infringement case if he or she strongly believes that the effect of the alleged
infringement on the price of the infringed product was either zero or negative.
(The sales of the infringing product competed with the sales of the infringed
product, thereby lowering the price.)

41. See, e.g., Palmer v. Shultz, 815 F.2d 84, 92 (D.C. Cir. 1987) (“‘the .05 level of significance . . .
[is] certainly sufficient to support an inference of discrimination’” (quoting Segar v. Smith, 738 F.2d
1249, 1283 (D.C. Cir. 1984), cert. denied, 471 U.S. 1115 (1985))).

42. The use of 1%, 5%, and, sometimes, 10% levels for determining statistical significance remains
a subject of debate. One might argue, for example, that when regression analysis is used in a price-fixing
antitrust case to test a relatively specific alternative to the null hypothesis (e.g., price-fixing), a some-
what lower level of confidence (a higher level of significance, such as 10%) might be appropriate.
Otherwise, when the alternative to the null hypothesis is less specific, such as the rather vague alterna-
tive of “effect” (e.g., the price increase is caused by the increased cost of production, increased demand,
a sharp increase in advertising, or price-fixing), a high level of confidence (associated with a low
significance level, such as 1%) may be appropriate. See, e.g., Vuyanich v. Republic Nat’l Bank, 505 F.
Supp. 224, 272 (N.D. Tex. 1980) (noting the “arbitrary nature of the adoption of the 5% level of
[statistical] significance” to be required in a legal context).



Reference Guide on Multiple Regression

195

Because using a one-tailed test produces p-values that are one-half the size of
p-values using a two-tailed test, the choice of a one-tailed test makes it easier for
the expert to reject a null hypothesis. Correspondingly, the choice of a two-
tailed test makes null hypothesis rejection less likely. Since there is some arbi-
trariness involved in the choice of an alternative hypothesis, courts should avoid
relying solely on sharply defined statistical tests.43 Reporting the p-value or a
confidence interval should be encouraged, since it conveys useful information
to the court, whether or not a null hypothesis is rejected.

B. Are the Regression Results Robust?
The issue of robustness—whether regression results are sensitive to slight
modifications in assumptions (e.g., that the data are measured accurately)—is of
vital importance. If the assumptions of the regression model are valid, standard
statistical tests can be applied. However, when the assumptions of the model are
violated, standard tests can overstate or understate the significance of the results.

The violation of an assumption does not necessarily invalidate a regression
analysis, however. In some instances in which the assumptions of multiple re-
gression analysis fail, there are other statistical methods that are appropriate.
Consequently, experts should be encouraged to provide additional information
that goes to the issue of whether regression assumptions are valid, and if they are
not valid, the extent to which the regression results are robust. The following
questions highlight some of the more important assumptions of regression analysis.

1. What Evidence Exists That the Explanatory Variable Causes Changes in
the Dependent Variable?

In the multiple regression framework, the expert often assumes that changes in
explanatory variables affect the dependent variable, but changes in the depen-
dent variable do not affect the explanatory variables—that is, there is no feed-
back.44 In making this assumption, the expert draws the conclusion that a corre-
lation between an explanatory variable and the dependent variable is due to the
effect of the former on the latter and not vice versa. Were the assumption not
valid, spurious correlation might cause the expert and the trier of fact to reach
the wrong conclusion.45

43. Courts have shown a preference for two-tailed tests. See, e.g., Palmer v. Shultz, 815 F.2d 84,
95–96 (D.C. Cir. 1987) (rejecting the use of one-tailed tests, the court found that because some appel-
lants were claiming overselection for certain jobs, a two-tailed test was more appropriate in Title VII
cases). See also David H. Kaye & David A. Freedman, Reference Guide on Statistics § IV.C.2, in this
manual; Csicseri v. Bowsher, 862 F. Supp. 547, 565 (D.D.C. 1994) (finding that although a one-tailed
test is “not without merit,” a two-tailed test is preferable).

44. When both effects occur at the same time, this is described as “simultaneity.”
45. The assumption of no feedback is especially important in litigation, because it is possible for the

defendant (if responsible, for example, for price-fixing or discrimination) to affect the values of the
explanatory variables and thus to bias the usual statistical tests that are used in multiple regression.
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Figure 1 illustrates this point. In Figure 1(a), the dependent variable, Price, is
explained through a multiple regression framework by three explanatory vari-
ables, Demand, Cost, and Advertising, with no feedback. In Figure 1(b), there is
feedback, since Price affects Demand, and Demand, Cost, and Advertising affect
Price. Cost and Advertising, however, are not affected by Price. As a general
rule, there is no direct statistical test for determining the direction of causality;
rather, the expert, when asked, should be prepared to defend his or her assump-
tion based on an understanding of the underlying behavior of the firms or indi-
viduals involved.

Figure 1. Feedback

Price

Demand

Cost

Advertising

1(a).  No Feedback

Demand

Cost

Advertising

1(b).  Feedback

Price

Although there is no single approach that is entirely suitable for estimating
models when the dependent variable affects one or more explanatory variables,
one possibility is for the expert to drop the questionable variable from the re-
gression to determine whether the variable’s exclusion makes a difference. If it
does not, the issue becomes moot. Another approach is for the expert to expand
the multiple regression model by adding one or more equations that explain the
relationship between the explanatory variable in question and the dependent
variable.

Suppose, for example, that in a salary-based sex discrimination suit the
defendant’s expert considers employer-evaluated test scores to be an appropriate
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explanatory variable for the dependent variable, salary. If the plaintiff were to
provide information that the employer adjusted the test scores in a manner that
penalized women, the assumption that salaries were determined by test scores
and not that test scores were affected by salaries might be invalid. If it is clearly
inappropriate, the test-score variable should be removed from consideration.
Alternatively, the information about the employer’s use of the test scores could
be translated into a second equation in which a new dependent variable, test
score, is related to workers’ salary and sex. A test of the hypothesis that salary
and sex affect test scores would provide a suitable test of the absence of feed-
back.

2. To What Extent Are the Explanatory Variables Correlated with Each
Other?

It is essential in multiple regression analysis that the explanatory variable of in-
terest not be correlated perfectly with one or more of the other explanatory
variables. If there were perfect correlation between two variables, the expert
could not separate out the effect of the variable of interest on the dependent
variable from the effect of the other variable. Suppose, for example, that in a sex
discrimination suit a particular form of job experience is determined to be a
valid source of high wages. If all men had the requisite job experience and all
women did not, it would be impossible to tell whether wage differentials be-
tween men and women were due to sex discrimination or differences in expe-
rience.

When two or more explanatory variables are correlated perfectly—that is,
when there is perfect collinearity—one cannot estimate the regression param-
eters. When two or more variables are highly, but not perfectly, correlated—
that is, when there is multicollinearity—the regression can be estimated, but
some concerns remain. The greater the multicollinearity between two variables,
the less precise are the estimates of individual regression parameters (even though
there is no problem in estimating the joint influence of the two variables and all
other regression parameters).

Fortunately, the reported regression statistics take into account any multi-
collinearity that might be present.46 It is important to note as a corollary, how-
ever, that a failure to find a strong relationship between a variable of interest and
a dependent variable need not imply that there is no relationship.47 A relatively

46. See Denny v. Westfield State College, 669 F. Supp. 1146, 1149 (D. Mass. 1987) (The court
accepted the testimony of one expert that “the presence of multicollinearity would merely tend to
overestimate the amount of error associated with the estimate . . . . In other words, p-values will be
artificially higher than they would be if there were no multicollinearity present.”) (emphasis added).

47. If an explanatory variable of concern and another explanatory variable are highly correlated,
dropping the second variable from the regression can be instructive. If the coefficient on the explana-
tory variable of concern becomes significant, a relationship between the dependent variable and the
explanatory variable of concern is suggested.
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small sample, or even a large sample with substantial multicollinearity, may not
provide sufficient information for the expert to determine whether there is a
relationship.

3. To What Extent Are Individual Errors in the Regression Model
Independent?

If the expert calculated the parameters of a multiple regression model using as
data the entire population, the estimates might still measure the model’s popu-
lation parameters with error. Errors can arise for a number of reasons, including
(1) the failure of the model to include the appropriate explanatory variables; (2)
the failure of the model to reflect any nonlinearities that might be present; and
(3) the inclusion of inappropriate variables in the model. (Of course, further
sources of error will arise if a sample, or subset, of the population is used to
estimate the regression parameters.)

It is useful to view the cumulative effect of all of these sources of modeling
error as being represented by an additional variable, the error term, in the mul-
tiple regression model. An important assumption in multiple regression analysis
is that the error term and each of the explanatory variables are independent of
each other. (If the error term and an explanatory variable are independent, they
are not correlated with each other.) To the extent this is true, the expert can
estimate the parameters of the model without bias; the magnitude of the error
term will affect the precision with which a model parameter is estimated, but
will not cause that estimate to be consistently too high or too low.

The assumption of independence may be inappropriate in a number of cir-
cumstances. In some instances, failure of the assumption makes multiple regres-
sion analysis an unsuitable statistical technique; in other instances, modifications
or adjustments within the regression framework can be made to accommodate
the failure.

The independence assumption may fail, for example, in a study of individual
behavior over time, in which an unusually high error value in one time period
is likely to lead to an unusually high value in the next time period. For example,
if an economic forecaster underpredicted this year’s Gross National Product, he
or she is likely to underpredict next year’s as well; the factor that caused the
prediction error (e.g., an incorrect assumption about Federal Reserve policy) is
likely to be a source of error in the future.

Alternatively, the assumption of independence may fail in a study of a group
of firms at a particular point in time, in which error terms for large firms are
systematically higher than error terms for small firms. For example, an analysis of
the profitability of firms may not accurately account for the importance of ad-
vertising as a source of increased sales and profits. To the extent that large firms
advertise more than small firms, the regression errors would be large for the
large firms and small for the small firms.
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In some instances, there are statistical tests that are appropriate for evaluating
the independence assumption.48 If the assumption has failed, the expert should
ask first whether the source of the lack of independence is the omission of an
important explanatory variable from the regression. If so, that variable should be
included when possible, or the potential effect of its omission should be esti-
mated when inclusion is not possible. If there is no important missing explana-
tory variable, the expert should apply one or more procedures that modify the
standard multiple regression technique to allow for more accurate estimates of
the regression parameters.49

4. To What Extent Are the Regression Results Sensitive to Individual Data
Points?

Estimated regression coefficients can be highly sensitive to particular data points.
Suppose, for example, that one data point deviates greatly from its expected
value, as indicated by the regression equation, whereas the remaining data points
show little deviation. It would not be unusual in this situation for the coefficients
in a multiple regression to change substantially if the data point in question were
removed from the sample.

Evaluating the robustness of multiple regression results is a complex endeavor.
Consequently, there is no agreed-on set of tests for robustness which analysts
should apply. In general, it is important to explore the reasons for unusual data
points. If the source is an error in recording data, the appropriate corrections can
be made. If all the unusual data points have certain characteristics in common
(e.g., they all are associated with a supervisor who consistently gives high ratings
in an equal-pay case), the regression model should be modified appropriately.

One generally useful diagnostic technique is to determine to what extent the
estimated parameter changes as each data point in the regression analysis is dropped
from the sample. An influential data point—a point that causes the estimated
parameter to change substantially—should be studied further to determine
whether mistakes were made in the use of the data or whether important ex-
planatory variables were omitted.50

48. In a time-series analysis, the correlation of error values over time, the serial correlation, can be
tested (in most instances) using a Durbin-Watson test. The possibility that some error terms are consis-
tently high in magnitude and others are systematically low, heteroscedasticity, can also be tested in a
number of ways. See, e.g., Pindyck & Rubinfeld, supra note 31, at 146–59.

49. When serial correlation is present, a number of closely related statistical methods are appropri-
ate, including generalized differencing (a type of generalized least-squares) and maximum-likelihood
estimation. When heteroscedasticity is the problem, weighted least-squares and maximum-likelihood
estimation are appropriate. See, e.g., id. All these techniques are readily available in a number of statis-
tical computer packages. They also allow one to perform the appropriate statistical tests of the significance
of the regression coefficients.

50. A more complete and formal treatment of the robustness issue appears in David A. Belsley et al.,
Regression Diagnostics: Identifying Influential Data and Sources of Collinearity 229–44 (1980). For a
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5. To What Extent Are the Data Subject to Measurement Error?
In multiple regression analysis it is assumed that variables are measured accu-
rately.51 If there are measurement errors in the dependent variable, estimates of
regression parameters will be less accurate, though they will not necessarily be
biased. However, if one or more independent variables are measured with error,
the corresponding parameter estimates are likely to be biased, typically toward
zero.52

To understand why, suppose that the dependent variable, salary, is measured
without error, and the explanatory variable, experience, is subject to measure-
ment error. (Seniority or years of experience should be accurate, but the type of
experience is subject to error, since applicants may overstate previous job re-
sponsibilities.) As the measurement error increases, the estimated parameter as-
sociated with the experience variable will tend toward 0, that is, eventually,
there will be no relationship between salary and experience.

It is important for any source of measurement error to be carefully evaluated.
In some circumstances, little can be done to correct the measurement-error
problem; the regression results must be interpreted in that light. In other cir-
cumstances, however, the expert can correct measurement error by finding a
new, more reliable data source. Finally, alternative estimation techniques (using
related variables that are measured without error) can be applied to remedy the
measurement-error problem in some situations.53

IV. The Expert
Multiple regression analysis is taught to students in extremely diverse fields,
including statistics, economics, political science, sociology, psychology, anthro-
pology, public health, and history. Consequently, any individual with substan-
tial training in and experience with multiple regression and other statistical meth-
ods may be qualified as an expert.54 A doctoral degree in a discipline that teaches
theoretical or applied statistics, such as economics, history, and psychology, usu-

useful discussion of the detection of outliers and the evaluation of influential data points, see R.D. Cook
& S. Weisberg, Residuals and Influence in Regression, in Monographs on Statistics and Applied Probability
(1982).

51. Inaccuracy can occur not only in the precision with which a particular variable is measured, but
also in the precision with which the variable to be measured corresponds to the appropriate theoretical
construct specified by the regression model.

52. Other coefficient estimates are likely to be biased as well.
53. See, e.g., Pindyck & Rubinfeld, supra note 31, at 178–98 (discussion of instrumental variables

estimation).
54. A proposed expert whose only statistical tool is regression analysis may not be able to judge

when a statistical analysis should be based on an approach other than regression analysis.
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ally signifies to other scientists that the proposed expert meets this preliminary
test of the qualification process.

The decision to qualify an expert in regression analysis rests with the court.
Clearly, the proposed expert should be able to demonstrate an understanding of
the discipline. Publications relating to regression analysis in peer-reviewed jour-
nals, active memberships in related professional organizations, courses taught on
regression methods, and practical experience with regression analysis can indi-
cate a professional’s expertise. However, the expert’s background and experi-
ence with the specific issues and tools that are applicable to a particular case
should also be considered during the qualification process.

V. Presentation of Statistical Evidence
The costs of evaluating statistical evidence can be reduced and the precision of
that evidence increased if the discovery process is used effectively. In evaluating
the admissibility of statistical evidence, courts should consider the following
issues:55

1. Has the expert provided sufficient information to replicate the multiple
regression analysis?

2. Are the methodological choices that the expert made reasonable, or are
they arbitrary and unjustified?

A. What Disagreements Exist Regarding Data on Which the
Analysis Is Based?

In general, a clear and comprehensive statement of the underlying research
methodology is a requisite part of the discovery process. The expert should be
encouraged to reveal both the nature of the experimentation carried out and the
sensitivity of the results to the data and to the methodology. The following
suggestions are useful requirements that can substantially improve the discovery
process.

1. To the extent possible, the parties should be encouraged to agree to use a
common database. Even if disagreement about the significance of the data
remains, early agreement on a common database can help focus the dis-
covery process on the important issues in the case.

2. A party that offers data to be used in statistical work, including multiple
regression analysis, should be encouraged to provide the following to the
other parties: (a) a hard copy of the data when available and manageable in
size, along with the underlying sources; (b) computer disks or tapes on

55. See also David H. Kaye & David A. Freedman, Reference Guide on Statistics § I.C, in this
manual.
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which the data are recorded; (c) complete documentation of the disks or
tapes; (d) computer programs that were used to generate the data (in hard
copy, on a computer disk or tape, or both); and (e) documentation of
such computer programs.

3. A party offering data should make available the personnel involved in the
compilation of such data to answer the other parties’ technical questions
concerning the data and the methods of collection or compilation.

4. A party proposing to offer an expert’s regression analysis at trial should ask
the expert to fully disclose: (a) the database and its sources;56 (b) the method
of collecting the data; and (c) the methods of analysis. When possible, this
disclosure should be made sufficiently in advance of trial so that the op-
posing party can consult its experts and prepare cross-examination. The
court must decide on a case-by-case basis where to draw the disclosure
line.

5. An opposing party should be given the opportunity to object to a data-
base or to a proposed method of analysis of the database to be offered at
trial. Objections may be to simple clerical errors or to more complex
issues relating to the selection of data, the construction of variables, and,
on occasion, the particular form of statistical analysis to be used. When-
ever possible, these objections should be resolved before trial.

6. The parties should be encouraged to resolve differences as to the appro-
priateness and precision of the data to the extent possible by informal
conference. The court should make an effort to resolve differences before
trial.

B. What Database Information and Analytical Procedures Will Aid
in Resolving Disputes over Statistical Studies? 57

The following are suggested guidelines that experts should follow in presenting
database information and analytical procedures. Following these guidelines can
be helpful in resolving disputes over statistical studies.

1. The expert should state clearly the objectives of the study, as well as the
time frame to which it applies and the statistical population to which the
results are being projected.

2. The expert should report the units of observation (e.g., consumers, busi-
nesses, or employees).

56. These sources would include all variables used in the statistical analyses conducted by the ex-
pert, not simply those variables used in a final analysis on which the expert expects to rely.

57. For a more complete discussion of these requirements, see The Evolving Role of Statistical
Assessments as Evidence in the Courts app. F at 256 (Stephen E. Fienberg ed., 1989) (Recommended
Standards on Disclosure of Procedures Used for Statistical Studies to Collect Data Submitted in Evi-
dence in Legal Cases).
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3. The expert should clearly define each variable.
4. The expert should clearly identify the sample for which data are being

studied,58 as well as the method by which the sample was obtained.
5. The expert should reveal if there are missing data, whether caused by a

lack of availability (e.g., in business data) or nonresponse (e.g., in survey
data), and the method used to handle the missing data (e.g., deletion of
observations).

6. The expert should report investigations that were made into errors associ-
ated with the choice of variables and assumptions underlying the regres-
sion model.

7. If samples were chosen randomly from a population (i.e., probability sam-
pling procedures were used),59 the expert should make a good-faith effort
to provide an estimate of a sampling error, the measure of the difference
between the sample estimate of a parameter (such as the mean of a depen-
dent variable under study) and the (unknown) population parameter (the
population mean of the variable).60

8. If probability sampling procedures were not used, the expert should re-
port the set of procedures that were used to minimize sampling errors.

58. The sample information is important because it allows the expert to make inferences about the
underlying population.

59. In probability sampling, each representative of the population has a known probability of being
in the sample. Probability sampling is ideal because it is highly structured, and in principle, it can be
replicated by others. Nonprobability sampling is less desirable because it is often subjective, relying to a
large extent on the judgment of the expert.

60. Sampling error is often reported in terms of standard errors or confidence intervals. See infra the
Appendix for details.
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Appendix: The Basics of Multiple Regression

I. Introduction
This appendix illustrates, through examples, the basics of multiple regression
analysis in legal proceedings. Often, visual displays are used to describe the rela-
tionship between variables that are used in multiple regression analysis. Figure 2
is a scatterplot that relates scores on a job aptitude test (shown on the x-axis) and
job performance ratings (shown on the y-axis). Each point on the scatterplot
shows where a particular individual scored on the job aptitude test and how his
or her job performance was rated. For example, the individual represented by
Point A in Figure 2 scored 49 on the job aptitude test and had a job performance
rating of 62.

Figure 2. Scatterplot
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The relationship between two variables can be summarized by a correlation
coefficient, which ranges in value from –1 (a perfect negative relationship) to
+1 (a perfect positive relationship). Figure 3 depicts three possible relationships
between the job aptitude variable and the job performance variable. In Figure
3(a), there is a positive correlation: In general, higher job performance ratings
are associated with higher aptitude test scores, and lower job performance rat-
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ings are associated with lower aptitude test scores. In Figure 3(b), the correlation
is negative: Higher job performance ratings are associated with lower aptitude
test scores, and lower job performance ratings are associated with higher apti-
tude test scores. Positive and negative correlations can be relatively strong or
relatively weak. If the relationship is sufficiently weak, there is effectively no
correlation, as is illustrated in Figure 3(c).

Figure 3. Correlation
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3(a).  Positive correlation
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3(b).  Negative correlation
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3(c).  No correlation

Multiple regression analysis goes beyond the calculation of correlations; it is a
method in which a regression line is used to relate the average of one variable—
the dependent variable—to the values of other explanatory variables. As a result,
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regression analysis can be used to predict the values of one variable using the
values of others. For example, if average job performance ratings depend on
aptitude test scores, regression analysis can use information about test scores to
predict job performance.

A regression line is the best-fitting straight line through a set of points in a
scatterplot. If there is only one explanatory variable, the straight line is defined
by the equation

Y = a + bX (1)

In the equation above, a is the intercept of the line with the y-axis when X
equals 0, and b is the slope—the change in the dependent variable associated
with a 1-unit change in the explanatory variable. In Figure 4, for example,
when the aptitude test score is 0, the predicted (average) value of the job perfor-
mance rating is the intercept, 18.4. Also, for each additional point on the test
score, the job performance rating increases .73 units, which is given by the slope
.73. Thus, the estimated regression line is

Y = 18.4 + .73X (2)

The regression line typically is estimated using the standard method of least-
squares, where the values of a and b are calculated so that the sum of the squared
deviations of the points from the line are minimized. In this way, positive devia-
tions and negative deviations of equal size are counted equally, and large devia-
tions are counted more than small deviations. In Figure 4 the deviation lines are
vertical because the equation is predicting job performance ratings from apti-
tude test scores, not aptitude test scores from job performance ratings.
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Figure 4. Regression Line
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The important variables that systematically might influence the dependent
variable, and for which data can be obtained, typically should be included ex-
plicitly in a statistical model. All remaining influences, which should be small
individually, but can be substantial in the aggregate, are included in an addi-
tional random error term.61 Multiple regression is a procedure that separates the
systematic effects (associated with the explanatory variables) from the random
effects (associated with the error term) and also offers a method of assessing the
success of the process.

II. Linear Regression Model
When there is an arbitrary number of explanatory variables, the linear regression
model takes the following form:

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε (3)

where Y represents the dependent variable, such as the salary of an employee,
and X1 . . . Xk represent the explanatory variables (e.g., the experience of each

61. It is clearly advantageous for the random component of the regression relationship to be small
relative to the variation in the dependent variable.
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employee and his or her sex, coded as a 1 or 0, respectively). The error term, ε,
represents the collective unobservable influence of any omitted variables. In a
linear regression, each of the terms being added involves unknown parameters,
β

0
, β

1
, . . . β

k
,62 which are estimated by “fitting” the equation to the data using

least-squares.
Most statisticians use the least-squares regression technique because of its sim-

plicity and its desirable statistical properties. As a result, it also is used frequently
in legal proceedings.

A. An Example
Suppose an expert wants to analyze the salaries of women and men at a large
publishing house to discover whether a difference in salaries between employees
with similar years of work experience provides evidence of discrimination.63 To
begin with the simplest case, Y, the salary in dollars per year, represents the
dependent variable to be explained, and X

1
 represents the explanatory vari-

able—the number of years of experience of the employee. The regression model
would be written

Y = β0 + β1X1 + ε (4)

In equation (4), β
0
 and β

1
 are the parameters to be estimated from the data,

and ε is the random error term. The parameter β0 is the average salary of all
employees with no experience. The parameter β

1
 measures the average effect of

an additional year of experience on the average salary of employees.

B. Regression Line
Once the parameters in a regression equation, such as equation (3), have been
estimated, the fitted values for the dependent variable can be calculated. If we
denote the estimated regression parameters, or regression coefficients, for the
model in equation (3) by b0, b1, . . . bk, the fitted values for Y, denoted Y^ , are
given by

Y = b0 + b1X1 + b2X2 + . . . bkXk
^ (5)

62. The variables themselves can appear in many different forms. For example, Y might represent
the logarithm of an employee’s salary, and X

1
 might represent the logarithm of the employee’s years of

experience. The logarithmic representation is appropriate when Y increases exponentially as X in-
creases—for each unit increase in X, the corresponding increase in Y becomes larger and larger. For
example, if an expert were to graph the growth of the U.S. population (Y) over time (t), an equation of
the form
log (Y) = β

0
 + β

1
log(t) might be appropriate.

63. The regression results used in this example are based on data for 1,715 men and women, which
were used by the defense in a sex discrimination case against the New York Times that was settled in
1978. Professor Orley Ashenfelter, of the Department of Economics, Princeton University, provided
the data.
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Figure 5 illustrates this for the example involving a single explanatory vari-
able. The data are shown as a scatter of points; salary is on the vertical axis, and
years of experience is on the horizontal axis. The estimated regression line is
drawn through the data points. It is given by

Y = $15,000 + $2,000X1
^ (6)

Thus, the fitted value for the salary associated with an individual’s years of expe-
rience X1i is given by

Yi= b0 + b1X1i (at Point B).^ (7)

The intercept of the straight line is the average value of the dependent vari-
able when the explanatory variable or variables are equal to 0; the intercept b

0
 is

shown on the vertical axis in Figure 5. Similarly, the slope of the line measures
the (average) change in the dependent variable associated with a unit increase in
an explanatory variable; the slope b

1
 also is shown. In equation (6), the intercept

$15,000 indicates that employees with no experience earn $15,000 per year.
The slope parameter implies that each year of experience adds $2,000 to an
“average” employee’s salary.

Figure 5. Goodness-of-Fit
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Now, suppose that the salary variable is related simply to the sex of the em-
ployee. The relevant indicator variable, often called a dummy variable, is X

2
,

which is equal to 1 if the employee is male, and 0 if the employee is female.
Suppose the regression of salary Y on X

2 
yields the following result:

Y = $30,449 + $10,979X
2
. The coefficient $10,979 measures the difference

between the average salary of men and the average salary of women.64

1. Regression Residuals

For each data point, the regression residual is the difference between the actual
values and fitted values of the dependent variable. Suppose, for example, that
we are studying an individual with three years of experience and a salary of
$27,000. According to the regression line in Figure 5, the average salary of an
individual with three years of experience is $21,000. Since the individual’s salary
is $6,000 higher than the average salary, the residual (the individual’s salary
minus the average salary) is $6,000. In general, the residual e associated with a
data point, such as Point A in Figure 5, is given by e = Yi  –  Y^ i. Each data point
in the figure has a residual, which is the error made by the least-squares regres-
sion method for that individual.

2. Nonlinearities

Nonlinear models account for the possibility that the effect of an explanatory
variable on the dependent variable may vary in magnitude as the level of the
explanatory variable changes. One useful nonlinear model uses interactions among
variables to produce this effect. For example, suppose that

S = β1 + β2SEX + β3EXP + β4(EXP)(SEX) + ε (8)

where S is annual salary, SEX is equal to 1 for women and 0 for men, EXP
represents years of job experience, and ε is a random error term. The coefficient
β2 measures the difference in average salary (across all experience levels) be-
tween men and women for employees with no experience. The coefficient β

3

measures the effect of experience on salary for men (when SEX = 0), and the
coefficient β4 measures the difference in the effect of experience on salary be-
tween men and women. It follows, for example, that the effect of one year of
experience on salary for men is β3, whereas the comparable effect for women is
β3 + β4.

65

64. To understand why, note that when X
2
 equals 0, the average salary for women is $30,449 +

$10,979 × 0 = $30,449. Correspondingly, when X
2
 equals 1, the average salary for men is $30,449 +

$10,979 × 1 = $41,428. The difference, $41,428 – $30,449, is $10,979.
65. Estimating a regression in which there are interaction terms for all explanatory variables, as in

equation (8), is essentially the same as estimating two separate regressions, one for men and one for
women.
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III. Interpreting Regression Results
To explain how regression results are interpreted, we can expand the earlier
example associated with Figure 5 to consider the possibility of an additional
explanatory variable—the square of the number of years of experience, X

3
. The

X3 variable is designed to capture the fact that for most individuals, salaries in-
crease with experience, but eventually salaries tend to level off. The estimated
regression line using the third additional explanatory variable, as well as the first
explanatory variable for years of experience (X1) and the dummy variable for sex
(X

2
), is

Y = $14,085 + $2,323X1 + $1,675X2 – $36X3
^ (9)

The importance of including relevant explanatory variables in a regression
model is illustrated by the change in the regression results after the X

3
 and X

1

variables are added. The coefficient on the variable X
2
 measures the difference

in the salaries of men and women while holding the effect of experience con-
stant. The differential of $1,675 is substantially lower than the previously mea-
sured differential of $10,979. Clearly, failure to control for job experience in
this example leads to an overstatement of the difference in salaries between men
and women.

Now consider the interpretation of the explanatory variables for experience,
X1 and X3. The positive sign on the X1 coefficient shows that salary increases
with experience. The negative sign on the X3 coefficient indicates that the rate
of salary increase decreases with experience. To determine the combined effect
of the variables X1 and X3, some simple calculations can be made. For example,
consider how the average salary of women (X2 = 0) changes with the level of
experience. As experience increases from 0 to 1 year, the average salary increases
by $2,251, from $14,085 to $16,336. However, women with 2 years of experi-
ence earn only $2,179 more than women with 1 year of experience, and women
with 3 years of experience earn only $2,127 more than women with 2 years.
Furthermore, women with 7 years of experience earn $28,582 per year, which
is only $1,855 more than the $26,727 earned by women with 6 years of experi-
ence.66 Figure 6 illustrates the results; the regression line shown is for women’s
salaries; the corresponding line for men’s salaries would be parallel and $1,675
higher.

66. These numbers can be calculated by substituting different values of X
1
 and X

3
 in equation (9).
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Figure 6. Regression Slope
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IV. Determining the Precision of the Regression Results
Least-squares regression provides not only parameter estimates that indicate the
direction and magnitude of the effect of a change in the explanatory variable on
the dependent variable, but also an estimate of the reliability of the parameter
estimates and a measure of the overall goodness-of-fit of the regression model.
Each of these factors is considered in turn.

A. Standard Errors of the Coefficients and t-Statistics
Estimates of the true but unknown parameters of a regression model are num-
bers that depend on the particular sample of observations under study. If a dif-
ferent sample were used, a different estimate would be calculated.67 If the expert
continued to collect more and more samples and generated additional estimates,
as might happen when new data became available over time, the estimates of
each parameter would follow a probability distribution (i.e., the expert could
determine the percentage or frequency of the time that each estimate occurs).
This probability distribution can be summarized by a mean and a measure of

67. The least-squares formula that generates the estimates is called the least-squares estimator, and
its values vary from sample to sample.
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dispersion around the mean, a standard deviation, which usually is referred to as
the standard error of the coefficient, or the standard error (SE).68

Suppose, for example, that an expert is interested in estimating the average
price paid for a gallon of unleaded gasoline by consumers in a particular geo-
graphic area of the United States at a particular point in time. The mean price
for a sample of ten gas stations might be $1.25, while the mean for another
sample might be $1.29, and the mean for a third, $1.21. On this basis, the expert
also could calculate the overall mean price of gasoline to be $1.25 and the stan-
dard deviation to be $0.04.

Least-squares regression generalizes this result, by calculating means whose
values depend on one or more explanatory variables. The standard error of a
regression coefficient tells the expert how much parameter estimates are likely
to vary from sample to sample. The greater the variation in parameter estimates
from sample to sample, the larger the standard error and consequently the less
reliable the regression results. Small standard errors imply results that are likely
to be similar from sample to sample, whereas results with large standard errors
show more variability.

Under appropriate assumptions, the least-squares estimators provide “best”
determinations of the true underlying parameters.69 In fact, least-squares has
several desirable properties. First, least-squares estimators are unbiased. Intu-
itively, this means that if the regression were calculated over and over again with
different samples, the average of the many estimates obtained for each coefficient
would be the true parameter. Second, least-squares estimators are consistent; if
the sample were very large, the estimates obtained would come close to the true
parameters. Third, least-squares is efficient, in that its estimators have the small-
est variance among all (linear) unbiased estimators.

If the further assumption is made that the probability distribution of each of
the error terms is known, statistical statements can be made about the precision
of the coefficient estimates. For relatively large samples (often, thirty or more
data points will be sufficient for regressions with a small number of explanatory
variables), the probability that the estimate of a parameter lies within an interval
of 2 standard errors around the true parameter is approximately .95, or 95%. A
frequent, although not always appropriate, assumption in statistical work is that
the error term follows a normal distribution, from which it follows that the
estimated parameters are normally distributed. The normal distribution has the

68. See David H. Kaye & David A. Freedman, Reference Guide on Statistics § IV.A, in this manual.
69. The necessary assumptions of the regression model include (a) the model is specified correctly;

(b) errors associated with each observation are drawn randomly from the same probability distribution
and are independent of each other; (c) errors associated with each observation are independent of the
corresponding observations for each of the explanatory variables in the model; and (d) no explanatory
variable is correlated perfectly with a combination of other variables.
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property that the area within 1.96 standard errors of the mean is equal to 95% of
the total area. Note that the normality assumption is not necessary for least-
squares to be used, since most of the properties of least-squares apply regardless
of normality.

In general, for any parameter estimate b, the expert can construct an interval
around b such that there is a 95% probability that the interval covers the true
parameter. This 95% confidence interval70 is given by

b ± 1.96 × (SE of b) (10) 71

The expert can test the hypothesis that a parameter is actually equal to 0 (often
stated as testing the null hypothesis) by looking at its t-statistic, which is defined
as

SE(b)
t = b

(11)

If the t-statistic is less than 1.96 in magnitude, the 95% confidence interval
around b must include 0.72 Because this means that the expert cannot reject the
hypothesis that β equals 0, the estimate, whatever it may be, is said to be not
statistically significant. Conversely, if the t-statistic is greater than 1.96 in abso-
lute value, the expert concludes that the true value of β is unlikely to be 0
(intuitively, b is “too far” from 0 to be consistent with the true value of β being
0). In this case, the expert rejects the hypothesis that β equals 0 and calls the
estimate statistically significant. If the null hypothesis β equals 0 is true, using a
95% confidence level will cause the expert to falsely reject the null hypothesis
5% of the time. Consequently, results often are said to be significant at the 5%
level.73

As an example, consider a more complete set of regression results associated
with the salary regression described in equation (9):

Y = $14,085 + $2,323X1 + $1,675X2 – $36X3
^

  (1,577)       (140)        (1,435)     (3.4)
t  =     8.9           16.5           1.2       –10.8

(12)

The standard error of each estimated parameter is given in parentheses directly

70. Confidence intervals are used commonly in statistical analyses because the expert can never be
certain that a parameter estimate is equal to the true population parameter.

71. If the number of data points in the sample is small, the standard error must be multiplied by a
number larger than 1.96.

72. The t-statistic applies to any sample size. As the sample gets large, the underlying distribution,
which is the source of the t-statistic (the student’s t distribution), approximates the normal distribution.

73. A t-statistic of 2.57 in magnitude or greater is associated with a 99% confidence level, or a 1%
level of significance, that includes a band of 2.57 standard deviations on either side of the estimated
coefficient.
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below the parameter, and the corresponding t-statistics appear below the stan-
dard error values.

Consider the coefficient on the dummy variable X2. It indicates that $1,675 is
the best estimate of the mean salary difference between men and women. How-
ever, the standard error of $1,435 is large in relation to its coefficient $1,675.
Because the standard error is relatively large, the range of possible values for
measuring the true salary difference, the true parameter, is great. In fact, a 95%
confidence interval is given by

$1,675 ± 1,435 × 1.96 = $1,675 ± $2,813 (13)

 In other words, the expert can have 95% confidence that the true value of the
coefficient lies between –$1,138 and $4,488. Because this range includes 0, the
effect of sex on salary is said to be insignificantly different from 0 at the 5% level.
The t value of 1.2 is equal to $1,675 divided by $1,435. Because this t-statistic is
less than 1.96 in magnitude (a condition equivalent to the inclusion of a 0 in the
above confidence interval), the sex variable again is said to be an insignificant
determinant of salary at the 5% level of significance.

Note also that experience is a highly significant determinant of salary, since
both the X

1
 and the X

3
 variables have t-statistics substantially greater than 1.96 in

magnitude. More experience has a significant positive effect on salary, but the
size of this effect diminishes significantly with experience.

B. Goodness-of-Fit
Reported regression results usually contain not only the point estimates of the
parameters and their standard errors or t-statistics, but also other information
that tells how closely the regression line fits the data. One statistic, the standard
error of the regression (SER), is an estimate of the overall size of the regression
residuals.74 An SER of 0 would occur only when all data points lie exactly on
the regression line—an extremely unlikely possibility. Other things being equal,
the larger the SER, the poorer the fit of the data to the model.

For a normally distributed error term, the expert would expect approximately
95% of the data points to lie within 2 SERs of the estimated regression line, as
shown in Figure 7 (in Figure 7, the SER is approximately $5,000).

R-square (R2) is a statistic that measures the percentage of variation in the
dependent variable that is accounted for by all the explanatory variables.75 Thus,
R2 provides a measure of the overall goodness-of-fit of the multiple regression
equation.76 Its value ranges from 0 to 1. An R2 of 0 means that the explanatory

74. More specifically, it is a measure of the standard deviation of the regression error e. It sometimes
is called the root mean square error of the regression line.

75. The variation is the square of the difference between each Y value and the average Y value,
summed over all the Y values.

76. R2 and SER provide similar information, because R2 is approximately equal to
1 – SER2/Variance of Y.
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variables explain none of the variation of the dependent variable; an R2 of 1
means that the explanatory variables explain all of the variation. The R2 associ-
ated with equation (12) is .56. This implies that the three explanatory variables
explain 56% of the variation in salaries.

Figure 7. Standard Error of the Regression
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What level of R2, if any, should lead to a conclusion that the model is satisfac-
tory? Unfortunately, there is no clear-cut answer to this question, since the
magnitude of R2 depends on the characteristics of the data being studied and, in
particular, whether the data vary over time or over individuals. Typically, an R2

is low in cross-section studies in which differences in individual behavior are
explained. It is likely that these individual differences are caused by many factors
that cannot be measured. As a result, the expert cannot hope to explain most of
the variation. In time-series studies, in contrast, the expert is explaining the
movement of aggregates over time. Since most aggregate time series have sub-
stantial growth, or trend, in common, it will not be difficult to “explain” one
time series using another time series, simply because both are moving together.
It follows as a corollary that a high R2 does not by itself mean that the variables
included in the model are the appropriate ones.

As a general rule, courts should be reluctant to rely solely on a statistic such as
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R2 to choose one model over another. Alternative procedures and tests are avail-
able.77

C. Sensitivity of Least-Squares Regression Results
The least-squares regression line can be sensitive to extreme data points. This
sensitivity can be seen most easily in Figure 8. Assume initially that there are
only three data points, A, B, and C, relating information about X1 to the vari-
able Y. The least-squares line describing the best-fitting relationship between
Points A, B, and C is represented by Line 1. Point D is called an outlier because
it lies far from the regression line that fits the remaining points. When a new,
best-fitting least-squares line is reestimated to include Point D, Line 2 is ob-
tained. Figure 8 shows that the outlier Point D is an influential data point, since
it has a dominant effect on the slope and intercept of the least-squares line.
Because least squares attempts to minimize the sum of squared deviations, the
sensitivity of the line to individual points sometimes can be substantial.78

Figure 8. Least-Squares Regression

•  A

B
•

•  C

Line 1

Line 2

•  D

77. These include F-tests and specification error tests. See Pindyck & Rubinfeld, supra note 31, at
88–95, 128–36, 194–98.

78. This sensitivity is not always undesirable. In some instances it may be much more important to
predict Point D when a big change occurs than to measure the effects of small changes accurately.



Reference Manual on Scientific Evidence

218

What makes the influential data problem even more difficult is that the effect
of an outlier may not be seen readily if deviations are measured from the final
regression line. The reason is that the influence of Point D on Line 2 is so
substantial that its deviation from the regression line is not necessarily larger than
the deviation of any of the remaining points from the regression line.79 Al-
though they are not as popular as least-squares, alternative estimation techniques
that are less sensitive to outliers, such as robust estimation, are available.

V. Reading Multiple Regression Computer Output
Statistical computer packages that report multiple regression analyses vary to
some extent in the information they provide and the form that the information
takes. Table 1 contains a sample of the basic computer output that is associated
with equation (9).

Table 1. Regression Output

Dependent Variable: Y SSE 62346266124 F Test 174.71
DFE 561 Prob >  F 0.0001
MSE 111134164 R2 0.556
Parameter

Variable DF Estimate Standard Error t-stat Prob >|t|

Intercept 1 14084.89 1577.484 8.9287 .0001

X1 1 2323.17 140.70 16.5115 .0001

X2 1 1675.11 1435.422 1.1670 .2437

X3 1 -36.71 3.41 -10.7573 .0001

Note: SSE = sum of squared errors; DFE = degrees of freedom associated with the error term; MSE = mean
square error; DF = degrees of freedom; t-stat = t-statistic; Prob = probability.

In the lower portion of Table 1, note that the parameter estimates, the stan-
dard errors, and the t-statistics match the values given in equation (12).80 The
variable “Intercept” refers to the constant term b0 in the regression. The column
“DF” represents degrees of freedom. The “1” signifies that when the computer
calculates the parameter estimates, each variable that is added to the linear re-
gression adds an additional constraint that must be satisfied. The column labeled
“Prob > |t|” lists the two-tailed p-values associated with each estimated param-

79. The importance of an outlier also depends on its location in the data set. Outliers associated
with relatively extreme values of explanatory variables are likely to be especially influential. See, e.g.,
Fisher v. Vassar College, 70 F.3d 1420, 1436 (2d Cir. 1995) (court required to include assessment of
“service in academic community,” since concept was too amorphous and not a significant factor in
tenure review), rev’d on other grounds, 114 F.3d 1332 (2d Cir. 1997) (en banc).

80. Computer programs give results to more decimal places than are meaningful. This added detail
should not be seen as evidence that the regression results are exact.
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eter; the p-value measures the observed significance level—the probability of
getting a test statistic as extreme or more extreme than the observed number if
the model parameter is in fact 0. The very low p-values on the variables X1 and
X

3
 imply that each variable is statistically significant at less than the 1% level—

both highly significant results. In contrast, the X
2
 coefficient is only significant at

the 24% level, implying that it is insignificant at the traditional 5% level. Thus,
the expert cannot reject with confidence the null hypothesis that salaries do not
differ by sex after the expert has accounted for the effect of experience.

The top portion of Table 1 provides data that relate to the goodness-of-fit of
the regression equation. The sum of squared errors (SSE) measures the sum of
the squares of the regression residuals—the sum that is minimized by the least-
squares procedure. The degrees of freedom associated with the error term (DFE)
is given by the number of observations minus the number of parameters that
were estimated. The mean square error (MSE) measures the variance of the
error term (the square of the standard error of the regression). MSE is equal to
SSE divided by DFE.

The R2 of 0.556 indicates that 55.6% of the variation in salaries is explained
by the regression variables, X1, X2, and X3. Finally, the F-test is a test of the null
hypothesis that all regression coefficients (except the intercept) are jointly equal
to 0—that there is no association between the dependent variable and any of the
explanatory variables. This is equivalent to the null hypothesis that R2 is equal to
0. In this case, the F-ratio of 174.71 is sufficiently high that the expert can reject
the null hypothesis with a very high degree of confidence (i.e., with a 1% level
of significance).

VI. Forecasting
In general, a forecast is a prediction made about the values of the dependent
variable using information about the explanatory variables. Often, ex ante fore-
casts are performed; in this situation, values of the dependent variable are pre-
dicted beyond the sample (e.g., beyond the time period in which the model has
been estimated). However, ex post forecasts are frequently used in damage analy-
ses.81 An ex post forecast has a forecast period such that all values of the depen-
dent and explanatory variables are known; ex post forecasts can be checked
against existing data and provide a direct means of evaluation.

For example, to calculate the forecast for the salary regression discussed above,
the expert uses the estimated salary equation

Y = $14,085 + $2,323X1 + $1,675X2 - $36X3
^ (14)

81. Frequently, in cases involving damages, the question arises, what the world would have been
like had a certain event not taken place. For example, in a price-fixing antitrust case, the expert can ask
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To predict the salary of a man with two years’ experience, the expert calculates

Y(2) = $14,085 + ($2,323 × 2) + $1,675 - ($36 × 22) = $20,262^ (15)

The degree of accuracy of both ex ante and ex post forecasts can be calculated
provided that the model specification is correct and the errors are normally
distributed and independent. The statistic is known as the standard error of
forecast (SEF). The SEF measures the standard deviation of the forecast error
that is made within a sample in which the explanatory variables are known with
certainty.82 The SEF can be used to determine how accurate a given forecast is.
In equation (15), the SEF associated with the forecast of $20,262 is approxi-
mately $5,000. If a large sample size is used, the probability is roughly 95% that
the predicted salary will be within 1.96 standard errors of the forecasted value.
In this case, the appropriate 95% interval for the prediction is $10,822 to $30,422.
Because the estimated model does not explain salaries effectively, the SEF is
large, as is the 95% interval. A more complete model with additional explana-
tory variables would result in a lower SEF and a smaller 95% interval for the
prediction.

There is a danger when using the SEF, which applies to the standard errors of
the estimated coefficients as well. The SEF is calculated on the assumption that
the model includes the correct set of explanatory variables and the correct func-
tional form. If the choice of variables or the functional form is wrong, the esti-
mated forecast error may be misleading. In some instances, it may be smaller,
perhaps substantially smaller, than the true SEF; in other instances, it may be
larger, for example, if the wrong variables happen to capture the effects of the
correct variables.

The difference between the SEF and the SER is shown in Figure 9. The
SER measures deviations within the sample. The SEF is more general, since it
calculates deviations within or without the sample period. In general, the differ-
ence between the SEF and the SER increases as the values of the explanatory
variables increase in distance from the mean values. Figure 9 shows the 95%
prediction interval created by the measurement of 2 SEFs about the regression
line.

what the price of a product would have been had a certain event associated with the price-fixing
agreement not occurred. If prices would have been lower, the evidence suggests impact. If the expert
can predict how much lower they would have been, the data can help the expert develop a numerical
estimate of the amount of damages.

82. There are actually two sources of error implicit in the SEF. The first source arises because the
estimated parameters of the regression model may not be exactly equal to the true regression param-
eters. The second source is the error term itself; when forecasting, the expert typically sets the error
equal to 0 when a turn of events not taken into account in the regression model may make it appropri-
ate to make the error positive or negative.
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Figure 9. Standard Error of Forecast
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Glossary of Terms
The following terms and definitions are adapted from a variety of sources, in-
cluding A Dictionary of Epidemiology (John M. Last et al. eds., 3d ed. 1995)
and Robert S. Pindyck & Daniel L. Rubinfeld, Econometric Models and Eco-
nomic Forecasts (4th ed. 1998).

alternative hypothesis. See hypothesis test.

association. The degree of statistical dependence between two or more events
or variables. Events are said to be associated when they occur more frequently
together than one would expect by chance.

bias. Any effect at any stage of investigation or inference tending to produce
results that depart systematically from the true values (i.e., the results are
either too high or too low). A biased estimator of a parameter differs on
average from the true parameter.

coefficient. An estimated regression parameter.

confidence interval. An interval that contains a true regression parameter
with a given degree of confidence.

consistent estimator. An estimator that tends to become more and more
accurate as the sample size grows.

correlation. A statistical means of measuring the association between variables.
Two variables are correlated positively if, on average, they move in the same
direction; two variables are correlated negatively if, on average, they move in
opposite directions.

cross-section analysis. A type of multiple regression analysis in which each
data point is associated with a different unit of observation (e.g., an individual
or a firm) measured at a particular point in time.

degrees of freedom (DF). The number of observations in a sample minus the
number of estimated parameters in a regression model. A useful statistic in
hypothesis testing.

dependent variable. The variable to be explained or predicted in a multiple
regression model.

dummy variable. A variable that takes on only two values, usually 0 and 1,
with one value indicating the presence of a characteristic, attribute, or effect
(1) and the other value indicating its absence (0).

efficient estimator. An estimator of a parameter that produces the greatest
precision possible.

error term. A variable in a multiple regression model that represents the cumu-
lative effect of a number of sources of modeling error.
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estimate. The calculated value of a parameter based on the use of a particular
sample.

estimator. The sample statistic that estimates the value of a population parame-
ter (e.g., a regression parameter); its values vary from sample to sample.

ex ante forecast. A prediction about the values of the dependent variable that
go beyond the sample; consequently, the forecast must be based on predic-
tions for the values of the explanatory variables in the regression model.

explanatory variable. A variable that is associated with changes in a depen-
dent variable.

ex post forecast. A prediction about the values of the dependent variable
made during a period in which all the values of the explanatory and depen-
dent variables are known. Ex post forecasts provide a useful means of evalu-
ating the fit of a regression model.

F-test. A statistical test (based on an F-ratio) of the null hypothesis that a group
of explanatory variables are jointly equal to 0. When applied to all the explana-
tory variables in a multiple regression model, the F-test becomes a test of the
null hypothesis that R2 equals 0.

feedback. When changes in an explanatory variable affect the values of the
dependent variable, and changes in the dependent variable also affect the
explanatory variable. When both effects occur at the same time, the two
variables are described as being determined simultaneously.

fitted value. The estimated value for the dependent variable; in a linear regres-
sion this value is calculated as the intercept plus a weighted average of the
values of the explanatory variables, with the estimated parameters used as
weights.

heteroscedasticity. When the error associated with a multiple regression model
has a nonconstant variance; that is, the error values associated with some
observations are typically high, whereas the values associated with other ob-
servations are typically low.

hypothesis test. A statement about the parameters in a multiple regression
model. The null hypothesis may assert that certain parameters have specified
values or ranges; the alternative hypothesis would specify other values or
ranges.

independence. When two variables are not correlated with each other (in the
population).

independent variable. An explanatory variable that affects the dependent vari-
able but is not affected by the dependent variable.

influential data point. A data point whose deletion from a regression sample
causes one or more estimated regression parameters to change substantially.
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interaction variable. The product of two explanatory variables in a regression
model. Used in a particular form of nonlinear model.

intercept. The value of the dependent variable when each of the explanatory
variables takes on the value of 0 in a regression equation.

least-squares. A common method for estimating regression parameters. Least-
squares minimizes the sum of the squared differences between the actual val-
ues of the dependent variable and the values predicted by the regression equa-
tion.

linear regression model. A regression model in which the effect of a change
in each of the explanatory variables on the dependent variable is the same, no
matter what the values of those explanatory variables.

mean (sample). An average of the outcomes associated with a probability
distribution, where the outcomes are weighted by the probability that each
will occur.

mean square error (MSE). The estimated variance of the regression error,
calculated as the average of the sum of the squares of the regression residuals.

model. A representation of an actual situation.

multicollinearity. When two or more variables are highly correlated in a mul-
tiple regression analysis. Substantial multicollinearity can cause regression pa-
rameters to be estimated imprecisely, as reflected in relatively high standard
errors.

multiple regression analysis. A statistical tool for understanding the relation-
ship between two or more variables.

nonlinear regression model. A model having the property that changes in
explanatory variables will have differential effects on the dependent variable
as the values of the explanatory variables change.

normal distribution. A bell-shaped probability distribution having the prop-
erty that about 95% of the distribution lies within two standard deviations of
the mean.

null hypothesis. In regression analysis the null hypothesis states that the results
observed in a study with respect to a particular variable are no different from
what might have occurred by chance, independent of the effect of that vari-
able. See hypothesis test.

one-tailed test. A hypothesis test in which the alternative to the null hypoth-
esis that a parameter is equal to 0 is for the parameter to be either positive or
negative, but not both.

outlier. A data point that is more than some appropriate distance from a regres-
sion line that is estimated using all the other data points in the sample.
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p-value. The significance level in a statistical test; the probability of getting a
test statistic as extreme or more extreme than the observed value. The larger
the p-value, the more likely the null hypothesis is true.

parameter. A numerical characteristic of a population or a model.

perfect collinearity. When two or more explanatory variables are correlated
perfectly.

population. All the units of interest to the researcher; also, universe.

practical significance. Substantive importance. Statistical significance does
not ensure practical significance, since, with large samples, small differences
can be statistically significant.

probability distribution. The process that generates the values of a random
variable. A probability distribution lists all possible outcomes and the prob-
ability that each will occur.

probability sampling. A process by which a sample of a population is chosen
so that each unit of observation has a known probability of being selected.

random error term. A term in a regression model that reflects random error
(sampling error) that is due to chance. As a consequence, the result obtained
in the sample differs from the result that would be obtained if the entire
population were studied.

regression coefficient. Also, regression parameter. The estimate of a popula-
tion parameter obtained from a regression equation that is based on a particu-
lar sample.

regression residual. The difference between the actual value of a dependent
variable and the value predicted by the regression equation.

robust estimation. An alternative to least-squares estimation that is less sensi-
tive to outliers.

robustness. A statistic or procedure that does not change much when data or
assumptions are slightly modified is robust.

R-square (R2). A statistic that measures the percentage of the variation in the
dependent variable that is accounted for by all of the explanatory variables in
a regression model. R-square is the most commonly used measure of good-
ness-of-fit of a regression model.

sample. A selection of data chosen for a study; a subset of a population.

sampling error. A measure of the difference between the sample estimate of a
parameter and the population parameter.

scatterplot. A graph showing the relationship between two variables in a study;
each dot represents one subject. One variable is plotted along the horizontal
axis; the other variable is plotted along the vertical axis.
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serial correlation. The correlation of the values of regression errors over time.

slope. The change in the dependent variable associated with a 1-unit change in
an explanatory variable.

spurious correlation. When two variables are correlated, but one is not the
cause of the other.

standard deviation. The square root of the variance of a random variable. The
variance is a measure of the spread of a probability distribution about its
mean; it is calculated as a weighted average of the squares of the deviations of
the outcomes of a random variable from its mean.

standard error of the coefficient; standard error (SE). A measure of the
variation of a parameter estimate or coefficient about the true parameter. The
standard error is a standard deviation that is calculated from the probability
distribution of estimated parameters.

standard error of forecast (SEF). An estimate of the standard deviation of
the forecast error; it is based on forecasts made within a sample in which the
values of the explanatory variables are known with certainty.

standard error of the regression (SER). An estimate of the standard devia-
tion of the regression error; it is calculated as an average of the squares of the
residuals associated with a particular multiple regression analysis.

statistical significance. A test used to evaluate the degree of association be-
tween a dependent variable and one or more explanatory variables. If the
calculated p-value is smaller than 5%, the result is said to be statistically
significant (at the 5% level). If p is greater than 5%, the result is statistically
insignificant (at the 5% level).

t-statistic. A test statistic that describes how far an estimate of a parameter is
from its hypothesized value (i.e., given a null hypothesis). If a t-statistic is
sufficiently large (in absolute magnitude), an expert can reject the null hy-
pothesis.

t-test. A test of the null hypothesis that a regression parameter takes on a particular
value, usually 0. The test is based on the t-statistic.

time-series analysis. A type of multiple regression analysis in which each data
point is associated with a particular unit of observation (e.g., an individual or
a firm) measured at different points in time.

two-tailed test. A hypothesis test in which the alternative to the null hypoth-
esis that a parameter is equal to 0 is for the parameter to be either positive or
negative, or both.

variable. Any attribute, phenomenon, condition, or event that can have two
or more values.

variable of interest. The explanatory variable that is the focal point of a particular
study or legal issue.
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