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ABSTRACT
Recently, we have developed a probabilistic framework for segment-
based speech recognition that represents the speech signal as a network
of segments and associated feature vectors [2]. Although in general,
each path through the network does not traverse all segments, we ar-
gued that each path must account for all feature vectors in the network.
We then demonstrated an efficient search algorithm that uses a single
additional model to account for segments that are not traversed. In
this paper, we present two new extensions to our framework. First,
we replace our acoustic segmentation algorithm with “segmentation
by recognition,” a probabilistic algorithm that can combine multiple
contextual constraints towards hypothesizing only the most likely seg-
ments. Second, we generalize our framework to “near-miss modeling”
and describe a search algorithm that can efficiently use multiple mod-
els to enforce contextual constraints across all segments in a network.
We report experiments in phonetic recognition on the TIMIT corpus
in which we achieve a diphone context-dependent error rate of 26.6%
on the NIST core test set over 39 classes. This is a 12.8% reduction in
error rate from our best previously reported result.

1. INTRODUCTION

Unlike recognizers that use an acoustic representation based
on a temporal sequence of frames, theSUMMIT speech recog-
nizer developed by our group uses a more general representa-
tion based on a temporal network of segments, where each seg-
ment is associated with a fixed-dimensional feature vector [2].
Segment-based representation enables the extraction of infor-
mation from the speech signal based on hypothesized segment
start and end times. However, before we can exploit this ability
in recognition, we must address issues in segmentation, model-
ing and search.

One requirement of segment-based recognition is to explicitly
hypothesize segment start and end times. Since the number of
possible segments grows as the square of the number of frames,
it is computationally expensive to model and search all seg-
ments. In order to reduce computation, we hypothesize a seg-
ment network and only model and search the segments in the
network. However, deletion and insertion errors in segmenta-
tion are irreparable and place an upper bound on recognition
performance. In general, computation and performance trade
off, and the smaller the number of segments, the larger the num-
ber of errors. These tradeoffs have confounded the evaluation
of segment-based approaches, as losses in segmentation may be
larger than gains in modeling.

We have been using a segmentation algorithm based on local
acoustic change [2]. This algorithm hypothesizes a reason-
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able number of segments with a reasonable number of errors.
However, segmentation depends on many factors that are dif-
ficult to capture by local acoustic measures alone. For exam-
ple, although transitions between vowels and consonants may
correspond to large acoustic discontinuities, vowel-vowel tran-
sitions may not. In this paper, we present “segmentation by
recognition,” a probabilistic framework that hypothesizes seg-
ments through the process of recognition. This framework can
combine multiple constraints, such as acoustic context and lan-
guage models, towards hypothesizing only the most probable
segments.

Another requirement of segment-based recognition is to explic-
itly model and search the entire segment network. A segment
network provides alternative segmentations, each of which de-
fines a unique subset of contiguous segments that span the net-
work. Each path through the network traverses only one seg-
mentation and therefore only one subset of segments. However,
probabilistically, each path must account for the entire set of
feature vectors in the network. Since in general, the number of
segmentations grows exponentially as the number of segments,
it is computationally expensive to re-process the entire network
once for each segmentation.

We have recently developed an efficient search algorithm based
on the introduction of a “not” model for segments that are not in
a segmentation [2]. For segments at the phonetic level, we also
refer to this additional model as the “anti-phone.” The “not”
model can normalize each path to account for all segments in
the network. However, the many segments that are not in a seg-
mentation represent distinct segments of the speech signal that
are difficult to capture by a single class. For example, although
“not” segments through vocalic regions may share acoustic sim-
ilarities, they may not resemble consonantal segments. In this
paper, we generalize “not” modeling to “near-miss modeling”
and use multiple classes to model segments that are not in a
segmentation as “near-misses” of segments that are. In addi-
tion, we present a search algorithm that can efficiently enforce
these contextual constraints across all segments in a network.

In the following sections, we further describe the ideas of “seg-
mentation by recognition” and “near-miss modeling.” We also
describe a set of experiments in phonetic recognition on the
TIMIT corpus and show significant improvements to our pre-
viously reported results. Overall, we achieve an error rate of
26.6% on the NIST core test set for 39 classes.

2. SEGMENTATION BY RECOGNITION

In order to extract segment-based features, we must address the
problem of segmentation. The goal of segmentation is to hy-
pothesize a small number of segments without introducing a
large number of deletion and insertion errors. These goals are
conflicting, thus making segmentation a difficult problem. In
addition, segmentation is often based on local acoustic mea-
sures without the benefit of higher level constraints used in



recognition. These issues have contributed to the difficulty in
pursuing segment-based approaches.

Towards improving this situation, we have developed “segmen-
tation by recognition,” a probabilistic framework that can ap-
ply more powerful constraints to the problem of segmentation.
In segmentation by recognition, we explicitly create a segment
network in the process of running a first pass recognizer with a
suitable search. For example, we can use a forward pass Viterbi
search to consider all possible segmentations of a set of frames
and then use a backwardsA� search to create a network. This
idea shares similarities with other work in segmentation and
search [1, 4].

Segmentation by recognition has several desirable characteris-
tics. First, it is flexible and can use any first pass recognition
strategy. This strategy may be simple or complex depending
on available computation. For example, we can still use lo-
cal acoustic measures, or we can combine context-dependent
acoustic and language models.

Second, it is accurate and hypothesizes only the most likely seg-
ments. This “minimizes” the number of deletion and insertion
errors in a given number of segments. By using a powerful first
pass recognizer, we can achieve an upper bound in segmenta-
tion performance and allow the exploration of segment-based
strategies with less concern over segmentation.

Third, it is adaptive and adjusts to all sources of variability,
whether from the segment, word, utterance, speaker or environ-
ment. While it tends towards a singular segmentation in regions
of confidence, it hypothesizes multiple alternatives in regions
of uncertainty. This focuses subsequent segment-based compu-
tation where it is most needed.

Finally, since segmentation by recognition runs a first pass rec-
ognizer, it hypothesizes not only the most likely segments but
also their scores and most likely labels. This information can
be used in subsequent segment-based recognition. For exam-
ple, since our recognition framework is general and allows both
frame and segment-based features, we can directly re-use scores
from first pass recognition in subsequent segment-based recog-
nition [2]. This allows us to combine complementary recogniz-
ers that take advantage of different recognition strategies.

Furthermore, we can explore hierarchical strategies in segment-
based recognition. For example, since most confusions in pho-
netic classification occur between phones of the same manner
class, we can focus on reducing these confusions by design-
ing a set of segment-based features specifically to discriminate
between the phones of each class [3]. In training, we produce
multiple sets of models, one for each set of class-dependent fea-
tures. However, in testing, we only score each segment against
a single set of models based on first pass hypotheses. This
enables us to use class-dependent features without sacrificing
probabilistic integrity or computational efficiency.

3. MODELING

While segmentation allows the extraction of segment-based fea-
tures, we must address problems in modeling and search in or-
der to use these features in recognition. To explain the issues,
we first review our probabilistic framework [2]. The goal of
recognition is to find the sequence of words,W �, that maxi-
mizes thea posterioriprobability of the speech signal which is
represented by acoustic features,A:

W
� = argmax

W
P (W jA) = argmax

W
P (AjW )P (W )

To findW �, P (AjW ) andP (W ) are estimated by acoustic and
language models, respectively.

a1

a2 a3

Figure 1: A hypothetical segment network that contains three features,
a1, a2 anda3, and two segmentations.

In frame-based recognition,A is a temporal sequence of fea-
tures. Each segmentation of the speech signal,S, accounts for
all frames and therefore allA. As a result,P (AjW ) can be
efficiently computed.

In contrast, for segment-based recognition,A is a temporal net-
work of features. Each segmentation,S, accounts for only a
subset of all segments and therefore only a subset,AS , of A.
In order for a path throughS to account for allA, it must also
account forA �S , whereA = AS [A �S .

For example, Figure 1 shows a hypothetical segment network.
For this network,A contains three features,a1, a2 anda3, and
two segmentations. A path through the top segmentation,Stop,
must account for bothAStop , containinga1, andA �Stop

, contain-
ing a2 anda3.

As a result, for each segmentation,S:

P (AjW ) = P (ASA �S jW )

The dependence ofP (AjW ) onA �S suggests that the entire seg-
ment network must be processed once for each segmentation.
However, in general, the number of segmentations grows ex-
ponentially as the number of segments, and such processing is
computationally daunting.

3.1. “Not” modeling

Recently, we have described an algorithm that efficiently com-
putesP (ASA �S jW ) for segment-based recognition by using an
additional nonlexical “not” model,�w, to account for all seg-
ments that are not in a segmentation and thereforeA �S [2]. As-
suming independence betweenAS andA �S , we can use the not
model, �w, to normalize each segmentation,S, to implicitly ac-
count for all segments:

P (ASA �S jW ) = P (AS jW )P (A �Sj �w)
P (AS j �w)

P (AS j �w)
= K

P (AS jW )

P (ASj �w)

whereK is constant for all segmentations. For eachS, rather
than scoringAS against the lexical models andA �S against the
“not” model, we can scoreAS against all models, including
both lexical and “not” models, and thereby avoid scoringA �S.

For example, in Figure 1, when scoring a path throughStop,
rather than scoringa1 against the lexical models anda2 anda3
against the “not” model, we can scorea1 against all models and
avoid scoringa2 anda3.

3.2. Near-miss modeling

Although “not” modeling is efficient, it requires mapping all
segments that are not in a segmentation to a single class. How-
ever, the many segments that are not in a segmentation are as
distinct as the segments that are in the segmentation, which we
map to multiple classes. In fact, each path contextually con-
strains the entire network, including all segments that are not
in its segmentation. For example, in Figure 1, ifa1 is hypothe-
sized to be an [� ], a2 must represent the start of that [� ], while
a3 must represent the end of that [� ].

Towards applying this contextual constraint in segment-based
recognition, we have generalized the idea of “not” modeling
to “near-miss modeling” and use multiple nonlexical classes to



model segments that are not in a segmentation as “near-misses”
of segments that are. However, since we cannot use multiple
classes to normalize each segmentation to account for all seg-
ments, we must re-address the search problem.

In order to efficiently computeP (ASA �S jW ) for near-miss
modeling, we have developed a search algorithm that associates
each segment with a near-miss subset drawn from all other seg-
ments in the network. Specifically, the near-miss subsets are
drawn such that for each segmentation,S, the near-miss sub-
sets of the segments inS are mutually exclusive and their union,
�AS , is A �S . Assuming independence betweenAS and �AS , we
can then compute for each segmentation,S:

P (ASA �S jW ) = P (AS jW )P ( �ASj �W )

where �W are the nonlexical models associated with the seg-
ments that are not inS.

One way of showing that there exist such near-miss subsets for
any segment network is based on the following observation: all
segments in a network that span a given time must not be in
the same segmentation. As a result, for each segment, we can
choose any time within the segment and add the segment to
the near-miss subsets of all segments that span the chosen time.
For each segmentation,S, since only one segment inS spans
each time, the near-miss subsets of all segments inS must be
mutually exclusive. In addition, since the segments inS span
all times, the union of their near-miss subsets must be the set of
all segments not inS.

For example, we can add each segment to the near-miss subsets
of all segments that span its midpoint. By this algorithm, in
Figure 1, we mapa1 to the near-miss subset ofa2 and botha2
anda3 to the near-miss subset ofa1. Then, a path throughStop
must account forAStop , containinga1, and �AStop , containing
a2 anda3.

There are three important ramifications of these observations.
First, since the near-miss subsets are mutually exclusive and
collectively exhaustive, near-miss modeling maintains the in-
tegrity of our probabilistic framework.

Second, since the near-miss subsets are local and time syn-
chronous, near-miss modeling allows the use of efficient search
strategies, such as Viterbi, to enforce context across the entire
segment network. Effectively, the score for each segment con-
tains not only its score against the lexical models but also the
score of the segments in its near-miss subset against the near-
miss models. For example, in Figure 1, the score fora1 includes
the score ofa1 against the lexical models and the score ofa2

anda3 against the near-miss models.

Finally, near-miss modeling is general and allows all segments
in the network to be classed in any manner. In addition, the fact
that each segment and its near-misses must share temporal and
spectral information suggests interesting modeling strategies.
For example, by using the midpoint of each segment to map
near-miss subsets, we can “maximize” sharing between lexical
and nonlexical models. Then, we can introduce one near-miss
model for each lexical model. By this algorithm, in Figure 1, if
a1 is hypothesized to be an [� ], a2 anda3 are constrained to be
near-misses of an [� ].

4. EXPERIMENTS

In order to evaluate segmentation by recognition and near-miss
modeling, we have conducted phonetic recognition experiments
on the TIMIT corpus. For all experiments, we use the NIST
462 speaker training set and 24 speaker core test set and an
independent 50 speaker development set. We report error rates

on the test set for the 39 phonetic classes commonly used for
evaluation [2, 5, 7].

In the following subsections, we describe three recognizers we
have used in our experiments. All recognizers initially repre-
sent the speech signal using 10 Mel-scale cepstral coefficients
(MFCCs) every 10 ms. Each recognizer then further extracts
frame or segment-based features. However, regardless of the
specific features that are extracted, all features are modeled by
mixture of diagonal Gaussian models.

4.1. Context-dependent frames

The first recognizer is frame-based and uses diphone context-
dependent acoustic models and a trigram language model. This
recognizer is similar to an HMM recognizer that uses one state
per phone. All possible segmentations are allowed, and each
frame is either a transition between two phones or an internal
self-loop of a phone. For features, we extract three averages of
MFCCs over varying temporal durations before and after each
frame for a total of 60 dimensions per frame. This diphone
context-dependent frame-based recognizer achieves a phonetic
recognition error rate of 27.7%.

4.2. Context-independent Segments

The second recognizer is segment-based and uses context-
independent acoustic models and a bigram language model.
For features, we extract average MFCCs over segment thirds,
derivative MFCCs over segment boundaries, and log segment
duration for a total of 51 dimensions per segment. In addition
to the 61 phonetic labels in TIMIT, we model a single “not”
class. Using our acoustic segmentation algorithm, this recog-
nizer achieves an error rate of 38.7%. This error rate is higher
than the context-independent error rate reported in our previous
paper because we are modeling fewer dimensions per segment.

To evaluate segmentation by recognition, we hypothesize seg-
ment networks in the process of running the frame-based rec-
ognizer described above with a backwards A* search. We
have qualitatively compared these networks with the networks
hypothesized by our acoustic segmentation algorithm and ob-
served that the probabilistic networks are more adaptive, both
within and across utterances. In addition, we have measured
time alignment against the manual transcription using a Viterbi
algorithm and found the probabilistic networks are significantly
more accurate.

We can more quantitatively evaluate our probabilistic segmen-
tation framework by using it in place of our acoustic segmen-
tation for segment-based recognition. Although performance
improves as we increase the size of the networks, the improve-
ments become smaller and smaller. For the remaining experi-
ments in this paper, we have used the frame-based recognizer to
hypothesize networks that contain approximately half as many
segments as hypothesized by the acoustic segmentation algo-
rithm, which is approximately four times the number of seg-
ments in the manual transcription. Substituting these networks
in the context-independent recognizer described above reduces
the error rate to 34.3%.

To evaluate near-miss modeling, we model 61 near-miss
classes, one corresponding to each phonetic label. Adding these
models to the context-independent recognizer running segmen-
tation by recognition further reduces the error rate to 31.1%.

We have also used the labels from first pass recognition in a
hierarchical strategy that uses different features for vowels and
consonants derived by simple class-dependent principal com-
ponents rotations. The hierarchical models obtain an error rate
of 30.9%.



Description Error (%) � (%)
Acoustic Seg + CI Segments + Bigram 38.7 -
+ Segmentation By Recognition 34.3 11.3
+ Near-Miss Modeling 31.1 9.3
+ CD Segments + Trigram 28.4 6.8
+ CD Frames 26.6 6.3

Table 1: Phonetic recognition error rates on the TIMIT core test set
over 39 classes.

4.3. Context-dependent Segments

The third recognizer is a segment-based recognizer that
uses segmentation by recognition, diphone context-dependent
acoustic models and a trigram language model. Based on ex-
periments using the development set, we have chosen to model
right context. For each segment, we extract average MFCCs
over thirds and log duration. In addition, for each right context,
we extract three averages over the same temporal durations as
used in the frame-based recognizer. This yields 61 dimensions
per segment.

When using a single “not” model, this diphone context-
dependent segment-based recognizer achieves an error rate of
29.0%. When using the 61 “near-miss” classes described above,
the error rate reduces to 28.4%.

Finally, we have directly re-used the scores from first pass
recognition in subsequent segment-based recognition. The
combined diphone context-dependent frame and segment-based
recognizer achieves a phonetic recognition error rate of 26.6%.

5. DISCUSSION

This paper describes two novel extensions to segment-based
recognition which yield significant improvements in phonetic
recognition. Table 1 summarizes our experiments. The descrip-
tions are cumulative and show how each extension further im-
proves performance. The overall result of 26.6% is a 31.3%
improvement over the baseline result of 38.7%. This is a 12.8%
improvement over our best previously reported result of 30.5%
and is competitive with the best results reported using other
approaches, including neural networks and the more common
HMMs [5, 7]. In the near future, we plan to run similar experi-
ments in word recognition.

We believe segmentation by recognition will facilitate working
with segment-based approaches. In comparison to the acous-
tic segmentation algorithm we have been using, segmentation
by recognition can improve recognition performance by 11.3%
while cutting the segment search space in half. Although the
frame-based recognizer used to achieve this performance is
computationally expensive, we believe we can significantly re-
duce first pass computation without overly sacrificing subse-
quent performance. For example, we have experimented with a
first pass landmark-based recognizer that represents the speech
signal as a temporal sequence of acoustically informative land-
marks. In addition to considering fewer frames, we can model
fewer broad classes to further reduce computation.

We believe near-miss modeling is an important extension of the
probabilistic framework for segment-based recognition that we
have been developing. By taking advantage of the ability to
draw suitable near-miss subsets, we can 1) use multiple classes
to model all segments in the network, 2) use efficient search
algorithms to constrain context across the entire network, and
3) maintain our probabilistic framework.

In comparison to the “not” model we have been using, near-
miss modeling can improve performance by 9.3% in context-

independent recognition and 2.1% in context-dependent recog-
nition. As the near-miss classes used to achieve this perfor-
mance are rather simple, we believe we can gain further im-
provements by exploring strategies for near-miss modeling.
For example, we have experimented with the use of context-
dependent near-miss models. In addition, we can class based
on other measures such as relative duration.

One of the main motivations of our work is the belief that
segment-based approaches offer advantages over the more
common frame-based approaches. In exploring the relative
strengths and weaknesses of these different strategies, our work
has taken advantage of a probabilistic framework that allows
both frame and segment-based representations.

We have been able to build a diphone context-dependent frame-
based recognizer that achieves a phonetic recognition error rate
of 27.7%. We believe the use of features that span varying
durations has contributed to this result. While the short aver-
ages capture transitional information, the long averages capture
steady state information. A similar HMM topology that uses
multiple states per phone should only do better.

We have also been able to build a diphone context-dependent
segment-based recognizer that achieves an error rate of 28.4%.
Although this result is not as good as the frame-based result, the
segment-based recognizer uses much simpler models trained on
approximately half the number of feature vectors and searches
over a much smaller space confined to the segment networks.
In addition, even with the high performance frame-based rec-
ognizer, the addition of the segment-based recognizer reduces
error rate by 4.0%. This suggests that segment-based features
can capture additional information in the speech signal that is
relevant to recognition.

Based on these results, we believe that better feature extrac-
tion and modeling can improve performance for both frame and
segment-based recognition. In this paper, we have briefly dis-
cussed one way to improve feature extraction and modeling us-
ing a hierarchical strategy. We plan to pursue this direction in
future research [3]. In addition, there are other techniques for
segment modeling that may be able to better capture correla-
tions across a segment [6].

Finally, we plan to continue exploring the similarities and dif-
ferences between frame and segment-based approaches. On the
one hand, we believe we can design more complementary rec-
ognizers that can reduce computation without sacrificing over-
all performance. On the other hand, we have seen similarities
between the strategies that we may be able to combine into a
better speech recognition framework.
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