# Adaptation of Reference Library and Structured Sparse Representations for Spectroscopic Imaging 

Jack Xin

Department of Mathematics
University of California, Irvine

## Collaborators and Acknowledgements

- Ernie Esser, Mathematics, UC Irvine
- Yifei Lou, Mathematics, UC Irvine
- Penghang Yin, Mathematics, UC Irvine
- Partially supported by NSF
- Thanks to B. Finlayson-Pitts and L. Wingen (Atmospheric Chemistry, UC Irvine)
- Thanks to J. Stutz (Atmospheric Chemistry, UCLA).


## Outline

- Demixing problems in spectroscopic imaging when uncertainties exist in reference spectra.
- Sparse representation with group structured (adaptive) basis, limitations of $I_{1}$.
- Group sparsity, $l_{1} / I_{2}$ regularization, geometric and analytical properties.
- Optimization algorithms based on $I_{1} / I_{2}, I_{1}-I_{2}$ penalties.
- Applications to differential optical absorption spectroscopy (DOAS) and hyperspectral imaging ( HSI ).


## Introduction

- Demixing data $b$ with given reference spectra (columns of full rank matrix $A$ ):

$$
x=\operatorname{argmin}_{x \geq 0}\|A x-b\|^{2}
$$

a nonnegative least squares problem. Uniqueness under sparsity for the under-determined case if columns of $A$ are incoherent enough (Candes, Tao et al 2005; Bruckstein et al 2008). Greedy and $L_{1}$ methods (Tibshinani 96, Donohu et al. 98, Tropp 04, Osher et al 08, among others).

- Due to measurement error (e.g. wave length misalignment in DOAS), columns of $A$ contain uncertainty. Multiple reference spectra correspond to the same material, measured under different conditions. No clear which one is optimal to use for mixture data $b$.


## Introduction

- Putting all reference spectra to form $A$ leads to coherence of columns.
- Model uncertainty by enlarging dictionary: including translations and scaled versions of each standard dictionary element (Lou, Bertozzi, Soatto 2011).
- Goal: Select one vector from each group (1 intra-sparsity), minimal number of groups (inter-sparsity).
- Optimization with sparsity promoting penalties $\left(I_{1} / I_{2}, I_{1}-I_{2}\right)$, comparing with $I_{1}$ and greedy $I_{0}$ method. The ratio norm $I_{1} / l_{2}$ has been used in nonnegative matrix factorization (Hoyer 2002), blind deconvolution and deblurring (Fergus et al; J. Cai, Z. Shen et al; 2011-2012).


## Example of Coherent Dictionary and Sparsity

- Let $p \in(0,1]$ and two distinct dense $b^{1}, b^{2} \in R^{n}(n \geq 2)$ so that $b=b^{1}+b^{2}$ is also dense; $a=\left\|\left(b^{1}, b^{2}\right)\right\|_{p}, A=\left[b^{1}, b^{2}, a I_{n}, a I_{n}\right]$, $I_{n}=n \times n$ identity matrix. Consider $A x=b, x \in R^{2+2 n}$, sparse solutions and their $p$-norms are:

$$
\begin{gathered}
x_{s}=[1,1,0, \cdots, 0]^{\prime}, \quad s p=2, \quad\left\|x_{s}\right\|_{p}=2^{1 / p}, \\
x_{*}^{\prime}=\left[0,1, b^{1} / a, 0\right]^{\prime}, \quad x_{*}^{\prime \prime}=\left[1,0,0, b^{2} / a\right]^{\prime}, s p \geq 3, \\
x_{*}=\left[0,0, b^{1} / a, b^{2} / a\right]^{\prime}, \quad s p \geq 4 . \\
\left\|x_{*}^{\prime}\right\|_{p}=\left(1+\left\|b^{1}\right\|_{p}^{p} / a^{p}\right)^{1 / p} \in\left(1,2^{1 / p}\right), \\
\left\|x_{*}^{\prime \prime}\right\|_{p}=\left(1+\left\|b^{2}\right\|_{p}^{p} / a^{p}\right)^{1 / p} \in\left(1,2^{1 / p}\right), \\
\left\|x_{*}\right\|_{p}=\left\|\left(b^{1}, b^{2}\right)\right\|_{p} / a=1 .
\end{gathered}
$$

## Example of Coherent Dictionary and Sparsity

- $x_{s}$ cannot be recovered by minimizing $I_{p}$ norm st. $A x=b$. At least three solutions exist with less sparsity and smaller $l_{p}$ norm than $\left\|x_{s}\right\|_{p}$.
- The $I_{1} / l_{2}$ ratio norm for nonnegative $x$ :

$$
\|x\|_{1} /\|x\|_{2}=\mathbf{1} \cdot x /\|x\|_{2}=\|\mathbf{1}\|_{2} \cos \angle(\mathbf{1}, x)
$$

Minimization moves $x$ towards coordinate planes, helping sparsity.

- However, minimizing $I_{1} / I_{2}$ does not give the sparsest solution in general.


## Example of Coherent Dictionary and Sparsity

Ratio norms are:

$$
\begin{gathered}
\left\|x_{s}\right\|_{1} /\left\|x_{s}\right\|_{2}=\sqrt{2}, \\
\left\|x_{*}^{\prime}\right\|_{1} /\left\|x_{*}^{\prime}\right\|_{2}=\left\|\left(a, b^{1}\right)\right\|_{1} /\left\|\left(a, b^{1}\right)\right\|_{2}, \\
\left\|x_{*}^{\prime \prime}\right\|_{1} /\left\|x_{*}^{\prime \prime}\right\|_{2}=\left\|\left(a, b^{2}\right)\right\|_{1} /\left\|\left(a, b^{2}\right)\right\|_{2} \\
\left\|x_{*}\right\|_{1} /\left\|x_{*}\right\|_{2}=\left\|\left(b^{1}, b^{2}\right)\right\|_{1} /\left\|\left(b^{1}, b^{2}\right)\right\|_{2} .
\end{gathered}
$$

We want $\left\|x_{*}^{\prime}\right\|_{1} /\left\|x_{*}^{\prime}\right\|_{2}>\sqrt{2}$ or:

$$
\begin{gathered}
\left(2\left\|b^{1}\right\|_{1}+\left\|b^{2}\right\|_{1}\right) /\left(\left(\left\|b^{1}\right\|_{1}+\left\|b^{2}\right\|_{1}\right)^{2}+\left\|b^{1}\right\|_{2}^{2}\right)^{1 / 2}>\sqrt{2}, \\
\left(2\left\|b^{1}\right\|_{1}+\left\|b^{2}\right\|_{1}\right)^{2}>2\left(\left\|b^{1}\right\|_{1}^{2}+\left\|b^{2}\right\|_{1}^{2}+2\left\|b^{1}\right\|_{1}\left\|b^{2}\right\|_{1}+\left\|b^{1}\right\|_{2}^{2}\right), \\
2\left\|b^{1}\right\|_{1}^{2}>\left\|b^{2}\right\|_{1}^{2}+2\left\|b^{1}\right\|_{2}^{2} .
\end{gathered}
$$

- Likewise $\left\|x_{*}^{\prime \prime}\right\|_{1} /\left\|x_{*}^{\prime \prime}\right\|_{2}>\sqrt{2}$ requires:

$$
2\left\|b^{2}\right\|_{1}^{2}>\left\|b^{1}\right\|_{1}^{2}+2\left\|b^{2}\right\|_{2}^{2}
$$

The above inequalities reduce to: $\left\|b^{i}\right\|_{1}>\sqrt{2}\left\|b^{i}\right\|_{2}, \quad i=1,2$, if the first two columns of $A$ satisfy $\left\|b^{1}\right\|_{1}=\left\|b^{2}\right\|_{1}, b^{1} \neq b^{2}$.

- Kashin-Garnaev-Gluskin inequality: there exist a set $S$ of [ $n / 2$ ]-dimensional subspaces of $R^{n}$ with probability at least $1-\exp \left\{-c_{0} n\right\}$, such that for any $b^{i} \in S(i=1,2), b^{i} \neq 0$ :

$$
\left\|b^{i}\right\|_{1} /\left\|b^{i}\right\|_{2} \geq c_{1} \sqrt{n} / \sqrt{1+\log 2}
$$

where $c_{0}$ and $c_{1}$ are positive constants independent of $n$. If $n>$ an absolute constant, $x_{s}$ has the smallest ratio norm among the 4 solutions, ruling out the counter example to $I_{1}$ minimization.

- Minimizing the ratio norm does not always give the sparsest solution. First, for any $y \in \mathbb{R}^{n}$

$$
\operatorname{Ker}(A)=\operatorname{span}\left\{\left[1,0,-b^{1} / a, 0\right]^{\prime},\left[0,1,-b^{2} / a, 0\right]^{\prime},[0,0,-y, y]^{\prime}\right\}
$$

Let

$$
x^{*}=x_{s}+\left[1,0,-b^{1} / a, 0\right]^{\prime}-\left[0,1,-b^{2} / a, 0\right]^{\prime}=\left[2,0,\left(b^{2}-b^{1}\right) / a, 0\right]^{\prime}
$$

$$
\left\|x^{*}\right\|_{1} /\left\|x^{*}\right\|_{2} \leq \frac{2+\left\|b^{2}-b^{1}\right\|_{1} / a}{2}<\left\|x_{s}\right\|_{1} /\left\|x_{s}\right\|_{2}=\sqrt{2}
$$

if

$$
\left\|b^{2}-b^{1}\right\|_{1} / a<2 \sqrt{2}-2 \approx 0.828
$$

- Not stringent, as $\left\|b^{2}-b^{1}\right\|_{1} / a \leq\left(\left\|b^{2}\right\|_{1}+\left\|b^{1}\right\|_{1}\right) / a=1$.


## Example of Coherent Dictionary and Sparsity

- In summary, $x^{*}=\left[2,0,\left(b^{2}-b^{1}\right) / a, 0\right]^{\prime}$ is a less sparse solution than $x_{s}=[1,1,0, \cdots, 0]^{\prime}$ with smaller ratio of $I_{1} / l_{2}$ norm (if $b^{1}-b^{2}$ is small enough). Minimization of $I_{1} / I_{2}$ does not yield $x_{s}$.
- On the other hand, $x^{*}$ contains a large peak (height 2 ), and many smaller peaks $\left(\left(b^{1}-b^{2}\right) / a\right)$ if $b^{1} \approx b^{2}$, resembling a perturbation of 1 -sparse solution $[2,0, \cdots, 0]^{\prime}$ when $b^{1}=b^{2}$.
- (Continuity) The minimizer of $I_{1} / I_{2}$ goes from exact 1 -sparse structure when $b^{1}=b^{2}$ to an approximate 1 -sparse structure when $b^{1} \approx b^{2}$.
- (Discreteness) the $I_{0}$ minimizer $x_{s}$ experiences a jump from $[2,0,0,0]^{\prime}$ to $[1,1,0,0]^{\prime}$.


## Example of Coherent Dictionary and Sparsity

- Discrete character of $I_{0}$ makes it subtle to recover the least $I_{0}$ solution by minimizing $I_{1} / l_{2}$.
- If we view $b^{1}$ and $b^{2}$ as dictionary members in a group, minimizing $I_{1} / I_{2}$ selects only one of them (intra sparsity).
- Similarly, if we view corresponding columns (1st and ( $n+1$ )-th, 2nd and ( $n+2$ )-th, etc) of $\left[\alpha I_{n} \alpha I_{n}\right]$ as vectors in a group (of 2 elements), then $x^{*}$ selects one member out of each group.
- Minimizing $l_{1} / I_{2}$ has the tendency of removing redundencies or preferring intra-sparsity in a coherent and over-determined dictionary. L1 minimization does not do as well in terms of intra-sparsity, using all group elements except for knocking out the $b^{1}, b^{2}$ group.


## Exact Recovery of $I_{1} / I_{2}$

- For $x \geq 0 \in \mathbb{R}^{n}$, let $S=\left\{i: x_{i}>0\right\}, Z=\left\{i: x_{i}=0\right\}$, sparsity of $x$ is $|S|=\|x\|_{0}=k>0$.
Define uniformity of $x$ :

$$
U(x)=\frac{\min _{i \in S} x_{i}}{\max _{i \in S} x_{i}} \leq 1
$$

$$
U(x)=1 \text {, if } k=1 \text {. }
$$

- Consider the following two problems:

$$
\begin{gathered}
P_{0}: \quad \min \|x\|_{0} \text {, s.t. } A x=A x_{0} \\
P_{1}: \quad \min \|x\|_{1} /\|x\|_{2}, \text { s.t. } A x=A x_{0}
\end{gathered}
$$

## Exact Recovery of $I_{1} / I_{2}$

## Theorem

Let $x_{0} \geq 0 \in \mathbb{R}^{n},\left\|x_{0}\right\|_{0}=k$, the unique solution to $P_{0}$. If

$$
U(x)>\max \left\{\frac{\sqrt{\|x\|_{0}}-\sqrt{\|x\|_{0}-k}}{\sqrt{\|x\|_{0}}+\sqrt{\|x\|_{0}-k}}, 1 / 2\right\}
$$

for all $x \neq x_{0}$ satisfying $A x=A x_{0}$, then $x_{0}$ uniquely solves $P_{1}$. In particular, if any feasible solution $x$ is a binary vector with entries 0 or 1, then the above inequality holds b.c. $U(x)=1$. Clearly, $P_{0}$ and $P_{1}$ are equivalent if all $x$ are binary, since $\|x\|_{1} /\|x\|_{2}=\sqrt{\|x\|_{0}}$.

## Exact Recovery of $I_{1} / I_{2}$

- If $U=U(x) \geq 1 / 2$,

$$
\frac{2 \sqrt{U}}{1+U} \sqrt{\|x\|_{0}} \leq \frac{\|x\|_{1}}{\|x\|_{2}}
$$

- The lower bound condition on $U$ without $1 / 2$ gives:

$$
\sqrt{k}<\frac{2 \sqrt{U}}{1+U} \sqrt{\|x\|_{0}}
$$

- Combining:

$$
\frac{\left\|x_{0}\right\|_{1}}{\left\|x_{0}\right\|_{2}} \leq \sqrt{k}<\frac{2 \sqrt{U}}{1+U} \sqrt{\|x\|_{0}} \leq \frac{\|x\|_{1}}{\|x\|_{2}}
$$

## Variational Models for Group Sparsity

Let the dictionary $A$ have $I_{2}$ normalized columns, consist of $M$ groups, each with $m_{j}$ elements. Write $A=\left[A_{1} \cdots A_{M}\right]$ and $x=\left[x_{1} \cdots x_{M}\right]^{T}$, each $x_{j} \in \mathbb{R}^{m_{j}}, N=\sum_{j=1}^{M} m_{j}$. The general non-negative least squares problem with sparsity constraints

$$
\begin{equation*}
\min _{x \geq 0} F(x):=\frac{1}{2}\|A x-b\|^{2}+R(x) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x)=\sum_{j=1}^{M} \gamma_{j} R_{j}\left(x_{j}\right)+\gamma_{0} R_{0}(x) \tag{2}
\end{equation*}
$$

Functions $R_{j}$ represent intra group sparsity penalties applied to each group of coefficients $x_{j}, j=1, \ldots, M$, and $R_{0}$ is the inter group sparsity penalty applied to $x$.

## Variational Models for Group Sparsity

- We choose

$$
R_{j}\left(x_{j}\right)=\gamma_{j} \frac{\left\|x_{j}\right\|_{1}}{\left\|x_{j}\right\|_{2}}, \quad R_{0}(x)=\gamma_{0} \frac{\|x\|_{1}}{\|x\|_{2}}
$$

or

$$
S_{j}\left(x_{j}\right)=\gamma_{j}\left(\left\|x_{j}\right\|_{1}-\left\|x_{j}\right\|_{2}\right), \quad S_{0}(x)=\gamma_{0}\left(\|x\|_{1}-\|x\|_{2}\right)
$$

- For analysis of convergence, $\left\|x_{j}\right\|_{2}$ and $\|x\|_{2}$ are smoothed near origin, e.g. replacing $\|x\|_{2}$ by $\phi(x, \epsilon)+\frac{\epsilon}{2}$,

$$
\phi(x, \epsilon)=\inf _{y}\|y\|_{2}+\frac{1}{2 \epsilon}\|y-x\|^{2}= \begin{cases}\frac{\|x\|_{2}^{2}}{2 \epsilon} & \text { if }\|x\|_{2} \leq \epsilon  \tag{3}\\ \|x\|_{2}-\frac{\epsilon}{2} & \text { otherwise }\end{cases}
$$

so called Huber function. Alternatively, the approach of adding dummy variables.

## Abstract Model, Convex-Concave Splitting

- Our model is in the form:

$$
\min _{x \in X} F(x):=\frac{1}{2}\|A x-b\|^{2}+R(x)
$$

where:
(1) $X$ is a convex set,
(2) $R(x) \in C^{2}(X, R)$ and the eigenvalues of $\nabla^{2} R(x)$ are bounded on $X$.
(3) $F$ is coercive on $X$ : for any $x^{0} \in X,\left\{x \in X: F(x) \leq F\left(x^{0}\right)\right\}$ is a bounded set.

- Convex-concave splitting, $F=F^{C}+F^{E}$,

$$
F^{C}(x)=\frac{1}{2}\|A x-b\|^{2}+\|x\|_{C}^{2}, \quad F^{E}(x)=R(x)-\|x\|_{C}^{2}
$$

for an appropriately chosen positive definite matrix $C$.

## Minimize Upper Bound of Difference

- Quadratic Upper Bound:

Let $\lambda_{r}$ and $\lambda_{R}$ be lower and upper bounds resp. of eigenvalues of $\nabla^{2} R(x)$ for $x \in X$.

## Theorem

Let $C$ be symmetric positive definite and let $\lambda_{c}$ denote the smallest eigenvalue of $C$. If $\lambda_{c} \geq \lambda_{R}-\frac{1}{2} \lambda_{r}$, then for $x, y \in X$,

$$
F(y)-F(x) \leq(y-x)^{T}\left(\frac{1}{2} A^{T} A+C\right)(y-x)+(y-x)^{T} \nabla F(x) .
$$

- Iterate

$$
x^{n+1}=\arg \min _{x \in X}\left(x-x^{n}\right)^{T}\left(\frac{1}{2} A^{T} A+C_{n}\right)\left(x-x^{n}\right)+\left(x-x^{n}\right)^{T} \nabla F\left(x^{n}\right)
$$

for $C_{n}$ chosen to guarantee a sufficient decrease in $F$.

## Convergence

- $F\left(x^{n}\right)$ is non-increasing $\Longrightarrow x^{n}$ is bounded.
- $\left\|x^{n+1}-x^{n}\right\| \longrightarrow 0$.
- Any limit point $x^{*}$ of the sequence $\left\{x^{n}\right\}$ satisfies $\left(y-x^{*}\right)^{T} \nabla F\left(x^{*}\right) \geq 0$ for all $y \in X$, implying $x^{*}$ is a stationary point of $F$.
- Quadratic programming by Alternative Direction Method of Multipliers (ADMM).


## DOAS Data

- DOAS is an imaging technique for studying air pollution. It estimates the concentrations of gases in an air mixture by measuring (over a range of wavelengths) the reduction in the intensity of light shined through it.
- Based on Beer's law, given the mixture absorption data $J(\lambda)$ and reference spectra $\left\{y_{j}(\lambda)\right\}$, estimate fitting coefficients $\left\{a_{j}\right\}$ and the deformations $\left\{v_{j}(\lambda)\right\}$ from the model,

$$
\begin{equation*}
J(\lambda)=\sum_{j=1}^{M} a_{j} y_{j}\left(\lambda+v_{j}(\lambda)\right)+\eta(\lambda) \tag{4}
\end{equation*}
$$

where $M=$ total number of gases, $\eta$ Gaussian noise.

## DOAS Data

- Construct a dictionary by deforming each $y_{j}$ with a set of possible deformations.
- Approximate deformation by linear functions $v_{j}(\lambda)=p_{j} \lambda+q_{j}$, enumerate all possible deformations by choosing $p_{j}, q_{j}$ from two pre-determined sets $\left\{P_{1}, \cdots, P_{K}\right\},\left\{Q_{1}, \cdots, Q_{L}\right\}$.
- Let $A_{j}$ be a matrix whose columns are deformations of the $j$ th reference $y_{j}\left(\lambda+P_{k} \lambda+Q_{I}\right)$ for $k=1, \cdots, K$ and $I=1, \cdots, L$. Rewrite the model as:

$$
J=\left[A_{1}, \cdots, A_{M}\right]\left[\begin{array}{c}
x_{1}  \tag{5}\\
\vdots \\
x_{M}
\end{array}\right]+\eta
$$

where $x_{j} \in \mathbb{R}^{K L}$ and $J \in \mathbb{R}^{W}$.

## Dictionary Elements on HONO, NO2, O3



Figure: reference spectrum in red, three deformed spectra are in blue.

## Test and Comparison

- Total 441 linearly deformed references in each of the three groups.
- Randomly select one element for each group with random magnitude plus additive zero mean Gaussian noise to synthesize the input data $J(\lambda) \in \mathbb{R}^{W}$ for $W=1024$.
- random mixing magnitudes chosen at different orders with mean values of 1, 0.1, 1.5 for HONO, NO2 and O 3 respectively.
- std of noise $\eta=0.05, \epsilon_{j}=0.05$ for all three groups, $\gamma_{j}=0.1$.


## Comparison of Sparse Selection



Figure: computed (blue) on top of ground truth (red).

## Urban hyperspectral image and dictionary elements




## Images of Rows of Abundance Matrix -Fraction Planes



$I_{1}-I_{2}$



## Comparison of Concentration (Abundance)

- $l_{1}$ penalty promotes sparse solutions by trying to move coefficient vectors (concentration or abundance values) perpendicular to the positive face of the $I_{1}$ ball, shrinking the magnitudes of all elements.
- $I_{1} / I_{2}$ penalty, to some extent $I_{1}-I_{2}$, promote sparsity by trying to move tangent to the $l_{2}$ ball. They are better at preserving the magnitudes of abundances while enforcing a similarly sparse solution. This is reflected in their lower sum of squares errors.
- Fraction nonzero (NNLS, L1, L1/L2, L1-L2) $=(0.4752,0.2683$, $0.2645,0.2677$ ).
- Sum of Sq Error $=(1111.2,19107,1395.3,1335.6)$.


## Conclusion and Future Work

- Studied variational method for linear demixing problems where the dictionary contains multiple references for each material and we want to collaboratively choose the best one for each material present.
- Analyzed and used $I_{1} / I_{2}$ and $I_{1}-I_{2}$ penalties to obtain structured sparse solutions to non-negative least squares problems, reformulated as constrained minimization problems with differentiable but non-convex objectives.
- Exact recovery of $I_{1} / I_{2}$ minimization and convergence properties of algorithms.
- Study how to include relative likelihood of candidate references if certain prioir information is known, explore alternative sparsity penalties that can be adapted to the data set.

