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Abstract

Let C(X) be the ring of all continuous real valued functions defined on
a completely regular T1−space. For each ideal I in C(X) let mI be the
pure part of the ideal I.

In this article we show that mI = Oθ(I), where θ(I) =
�

f∈I

clβXZ(f).

The pure part of many ideals in C(X) is calculated.
We found that mCK(X), the pure part of the ideal of functions with

compact support, is finitely generated if and only if βX-θ(CK(X)) is com-
pact, mCK(X) is countably generated if and only if βX-θ(CK(X)) is Lin-
delőff and mCK(X) is generated by a star finite set if and only if βX-
θ(CK(X)) is paracompact. Similar results are obtained for the pure part
of the ideal CΨ(X), the ideal of functions with pseudocompact support.

1. INTRODUCTION

Let X be a completely regular T1-space, βX the Stone-
∨

Cech compactification
of X and υX the Hewitt realcompactification of X. Let C(X) be the ring of all
continuous real valued functions defined on X. For each f ∈ C(X), let Z(f)
= {x∈X: f(x) = 0}, coz f = X-Z(f), the support of f = SX(f) = clXcoz(f),
SυX(fυ) = clυX(υX-Z(fυ)), where fυ is the extension of f to υX, SβX(fβ) =
clβX(βX-Z(fβ)), where fβ is the continuous extension to βX for the function

f∗(x) =







1 f(x) ≥ 1
f(x) −1 ≤ f(x) ≤ 1
−1 f(x) ≤ −1

If I is an ideal in C(X), then coz I =
⋃

f∈I

coz f.

For each subset A⊆ βX, let MA = {f ∈C(X): A⊆clβXZ(f)} and OA =
{f ∈C(X): A⊆IntβX clβXZ(f)} = {f ∈C(X): A⊆IntβXZ(fβ)}.
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An ideal I of C(X) is called a pure ideal if for each f ∈ I , there exists g ∈
I such that f = fg. It is clear that in this case g = 1 on SX(f).

For any undefined terms here the reader may consult [12].
Purity attracted the attention of a lot of people working in ring and module

theories. A large class of commutative rings can be classified through the pure
ideals of the ring. The pure ideals in C(X) were completely characterized in [3].

Arbitrary sum and finite intersection of pure ideals is a pure ideal, see [7].
One might ask whether intersection of arbitrary family of pure ideals is pure.
In fact the answer is not true in general. The following example was given in
[3]. Let R be the space of reals. The ideal I = O(0,1) =

⋂

x∈(0,1)

Ox in C(R) is not

pure, since the function f(x) =

{

0 x ≤ 1
x − 1 x > 1

belongs to I, while there is no g ∈ I such that f = fg, since in this case
SR(f) = [1,∞) ⊆ coz g which implies that (0,1) * IntX(Z(g)).

Recall that a space X is called basically disconnected if for each f ∈C(X),
SX(f) is open in X. We will show that intersection of arbitrary family of pure
ideals in C(X) is pure if and only if X is basically disconnected, but first we’ll
need some preliminaries.

Proposition 1.1 (Al-Ezeh [3]). An Ideal I of C(X) is pure if and only if
I = OA for some closed subset A⊂ βX.

Proposition 1.2 (Abu Osba [1]). For each A ⊆ βX. The ideal OA is pure
if and only if OA = OclβXA.

Theorem 1.3. Intersection of any family of pure ideals in C(X) is pure if
and only if OA is pure for each A ⊆ βX.

Proof. Suppose the condition is satisfied. Then for each A⊂ βX, OA =
⋂

x∈A

Ox is an intersection of pure ideals and so it is pure.
Conversely, Let I =

⋂

α∈∆

Iα, where Iα is pure for each α ∈ ∆. Then it follows

by Proposition 1.1 that Iα = OAα for some closed subset Aα ⊂ βX.

So I =
⋂

α∈∆

OAα = O
( �
α∈∆

Aα)

is pure.�

Theorem 1.4. The following statements are equivalent:
(1) The space X is basically disconnected.
(2) The ideal OA is pure for each A⊂ βX.

(3) For each f ∈ C(X), the ideal OIntβXZ(fβ) is pure.

Proof. (1) ⇒ (2): Suppose that X is basically disconnected, then so is βX,
see [12]. Let A⊂ βX, then OclβXA ⊆ OA.

2



Let f ∈OA, then A⊂ IntβXZ(fβ). But IntβXZ(fβ) is closed in βX since βX
- IntβXZ(fβ) = clβX(βX - Z(fβ)) = SβX(fβ) is open in βX.

Hence clβXA ⊂ IntβXZ(fβ), and f ∈OclβXA.

Thus OA = OclβXA is pure by Proposition 1.2.
(2) ⇒ (3): Clear.

(3) ⇒ (1): Let f ∈ C(X). Then f ∈ OIntβXZ(fβ) = OclβXIntβXZ(fβ). So
clβXIntβXZ(fβ) ⊆ IntβXZ(fβ) ⊆ clβXIntβXZ(fβ). Hence SβX(fβ) = βX - IntβXZ(fβ)
is clopen in βX.

Now, coz f = coz f∗= (βX - Z(fβ)) ∩ X.
SX(f) = clX((βX − Z(fβ))∩ X) = clβX((βX - Z(fβ)) ∩ X) ∩ X.
= clβX((βX - Z(fβ)) ∩ clβXX) ∩ X, since βX - Z(fβ) is open in βX.
= clβX((βX - Z(fβ)) ∩ βX) ∩ X.
= clβX((βX - Z(fβ)) ∩ X.
= SβX(fβ) ∩ X.
Thus SX(f) is open in X for each f ∈ C(X), which implies that X is basically

disconnected.�

Recall that a ring R is called a PP-ring if every principal ideal of R is a
projective R-module.

Corollary 1.5. The following statements are equivalent:
(1) The space X is basically disconnected.
(2) The ring C(X) is a PP-ring.
(3) Intersection of arbitrary family of pure ideals in C(X) is pure.

Proof. For the equivalence of (1) and (2) see[9].�

The above corollary shows that in a basically disconnected space X, the pure
ideals of C(X) form a complete lattice with I ∨ J = I + J and I ∧ J = I ∩ J.

If the ideal is not pure, then one can study the pure part of the ideal which
have some interesting properties and it is a tool for studying the ideal itself.

Definition 1.6. For each ideal I of C(X), let mI = {f ∈ C(X): f ∈ fI}.
The ideal mI will be called the pure part of I.

It is clear that, mI ⊆ I and I is pure if and only if I = mI. It is shown in
[7] that for any ideal I of C(X), mI is a pure ideal.

The pure part of the ideal was studied by many authors, such as in [5], [7],
[10], [14] and [15]. Studying the pure part of the ideal is a tool for studying the
ideal itself. In fact it is easier to deal with the pure part since it is pure.

In section 2, we characterize the pure part of the ideal I to be the ideal
Oθ(I). In paricular, we show that the pure part of a maximal ideal Mx is the
ideal Ox and mMA = OclβXA.
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In section 3, we find the pure part for some important well known ideals in
C(X), such as CK(X), the ideal of functions with compact support, the ideal
CΨ(X), the ideal of functions with pseudocompact support, ...etc.

In section 4, we study the relations between the generators of the ideal
mCK(X) and the topological properties of the set βX - θ(CK(X)). Similar results
are obtained for the generators of mCΨ(X) and the topological properties of βX
- θ(CΨ(X)).

2. THE PURE PART OF THE IDEAL

For each ideal I of C(X), let θ(I) = {x ∈ βX: I ⊆ Mx}.

Proposition 2.1( Gillman and Jerison[12]). For each ideal I of C(X), θ(I)
=

⋂

f∈I

clβXZ(f).

It is clear that for each ideal I of C(X), Oθ(I) is a pure ideal, since θ(I) is a
closed set in βX.

We give now another characterization for mI using the set θ(I). This new
characterization is some times helpful.

Theorem 2.2. For each ideal I of C(X), mI = Oθ(I).

Proof. Let f ∈Oθ(I). Then θ(I) ⊆ IntβXZ(fβ) ⊆ Z(fβ).
So βX-Z(fβ) ⊆ SβX(fβ) ⊆ βX - θ(I) =

⋃

g∈I

βX-clβXZ(g). Compactness of

SβX(fβ) implies that there exists n∈ N such that SβX(fβ) ⊆
n
⋃

i=1

βX-clβXZ(gi),

where gi ∈ I for each i.

Hence SX(f) =SβX(fβ) ∩ X ⊆ (
n
⋃

i=1

βX-clβXZ(gi)) ∩ X ⊆
n
⋃

i=1

X-Z(gi) = coz

g, where g =
n
∑

i=1

g2
i . It is clear that g ∈ I.

Define h(x) =

{

f
g
(x) x ∈ SX(f)

0 otherwise

Then h ∈ C(X) and f = gh ∈ I. So Oθ(I) ⊆ I. But Oθ(I) is a pure ideal,
since θ(I) is a closed set in βX, see 1.1 above. So there exists k ∈ Oθ(I) ⊆ I

such that f = fk ∈ fI which implies that f ∈ mI. Thus Oθ(I) ⊆ mI.

Now, if f ∈ mI, then f = fg, for some g ∈ I. Then fβ= fβgβ , which implies
that SβX(fβ) ⊆ βX - Z(gβ).

So θ(I) ⊆ clβXZ(g) ⊆ Z(gβ) ⊆ βX - SβX(fβ) ⊆ Z(fβ).
Hence f ∈ Oθ(I).�
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We now characterize the pure part of any maximal ideal in C(X). This char-
acterization would be very useful in the rest of this article. But first we find the
pure part for an intersection of maximal ideals.

Theorem 2.3. For each subest A ⊆ βX, mMA = OclβXA.

Proof. It follows by Proposition 1.1 that OclβXA is pure, so OclβXA ⊆ mMA.

Let f ∈ mMA, then there exists g ∈ MA such that f = fg,which implies
that fβ = fβgβ.

Hence βX - Z(fβ) ⊆ SβX(fβ) ⊆ βX - Z(gβ).
So A ⊆ clβXZ(g) ⊆ Z(gβ) ⊆ βX-SβX(fβ) ⊆ Z(fβ), which implies that clβXA

⊆ Z(gβ) ⊆ IntβXZ(fβ).
Hence f ∈OclβXA.�

The following corollary is an easy consequence of the above theorem and it
characterizes the pure part of a maximal ideal in C(X). Recall that a point x
∈ βX is called a P-point if Mx = Ox.

Corollary 2.4. For each x ∈ βX, mMx = Ox, and so Mx is pure if and
only if x is a P-point.

Recall that a subset A ⊆ βX is called a round subset of βX if OA = MA,

see [13].

Corollary 2.5. Let A ⊆ βX, then MA is pure if and only if clβXA is a
round subset of βX.

Proof. The ideal MA is pure if and only if MA = mMA if and only if

M
clβXA

= MA = OclβXA if and only if clβXA is a round subset of βX.�

Theorem 2.6. For each A⊆ βX, mOA = OclβXA.

Proof. Since OclβXA is a pure ideal contained in OA, it follows that OclβXA

⊆ mOA ⊆ mMA = OclβXA.�

Corollary 2.7. For each A⊆ βX, MA is pure if and only if OA is pure and
A is a round subset of βX.

Proof. If MA is pure, then OA ⊆ MA =mMA= O
clβXA

⊆ OA. So OA = MA

= O
clβXA

which implies that A is a round subset of βX and OA is pure. For the
converse, we have OclβXA = OA = MA, and hence the result.�

For each space X we have βX - υX is a round subset of βX, but MβX−υX is
not always pure, see [1]. If T is the Tychonoff blank, then Ot0 is pure but Mt0

is not, since Mt0 6= Ot0 , where {t0} = βT −T, see [12]. This shows that the two
conditions are both necessary in the above corollary to prove that MA is pure.
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3. EXAMPLES

We now find the pure part for some important ideals in C(X). We will use
the results obtained in the previous section to characterize some properties of
the space X using purity of these ideals.

The following sets and facts are well known:
CK(X) = { f ∈C(X): SX(f) is compact } = OβX-X.

CΨ(X) = { f ∈C(X): SX(f) is pseudocompact } = OβX-υX = MβX-υX.

Cρ(X) = { f ∈C(X): SX(f) is realcompact }.
I(X) = MβX-X.

OυX-X = { f ∈C(X): SX(f) = clυXSX(f) }.
MυX-X = { f ∈C(X): coz(f) is realcompact }.

The following lattice of inclusions exists in the general case.

CΨ(X)
↗

CK(X) → I(X)
↓ ↘

OυX-X → Cρ(X) → MυX-X

A space X is called µ−compact ( λ−compact) if OβX-X = MβX-X(OυX-X =
MυX-X).

For more informations about these ideals and spaces the reader may consult
[6].

For each space X, let XL = {x ∈ X: x has a compact neighborhood in X}.
Then XL =

⋃

f∈CK(X)

coz f = coz(CK(X)) = IntβXX, the space X is locally

compact if and only if X = XL, see [2]. We also have βX - XL = βX−IntβXX =
clβX(βX-X) = θ(CK(X)).

For each space X, let kX = {x ∈ υX: x has a compact neighborhood in υX}.
Then kX = {x ∈ βX: CΨ(X) * Mx} =

⋃

f∈CΨ(X)

υX - Z(fυ) = coz(CK(υX)) =

IntβX(υX), the space υX is locally compact if and only if υX = kX, see [1]. We
also have βX - kX = βX- IntβX(υX) = clβX(βX-υX) = θ(CΨ(X)).

Now, mCK(X) = mOβX-X = OclβX(βX-X) = OβX-XL .

mCΨ(X) = mMβX-υX = OclβX(βX-υX) = OβX-kX and CΨ(X) is pure if and
only if βX-kX is round.

mI(X) = mMβX-X = OclβX(βX-X) = OβX-XL and I(X) is pure if and only if
βX - XL is round if and only if CK(X) is pure and X is µ−compact.

mMυX-X = OclβX(υX-X) and MυX-X is pure if and only if clβX(υX - X) is
round if and only if OυX-X is pure and X is λ−compact. Note that in this case
Cρ(X) would be an ideal of C(X), see [16].
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If MυX-X and CΨ(X) are pure ideals, then so is I(X), since βX - X = (βX -
υX)

⋃

(υX - X) and the union of two round subsets is round, see [13].

4. GENERATORS FOR THE PURE PART OF CK(X) AND CΨ(X)

In this section we study the relations between the topological properties
of βX-θ(CK(X)), βX-θ(CΨ(X)) and the generators of the ideals mCK(X) and
mCΨ(X) respectively.

It was proved in [1] that for each ideal I ⊆ CK(X), I is pure if and only if
coz I =

⋃

f∈I

SX(f). We will use this result quite often later on.

Lemma 4.1. For each ideal I of C(X) coz mI = coz I.

Proof. The element x ∈ coz I if and only if x ∈ X and I * Mx if and only
if x ∈ X and mI * Mx if and only if x ∈ coz mI , since I ⊆ Mx if and only if
mI ⊆ Mx, see [14].�

Corollary 4.2. For each space X, coz(mCK(X)) = coz(CK(X)) = XL, and
coz (mCK(υX)) = coz(CK(υX)) = kX.

Recall that f = f2 if and only if f(x) =

{

1 x ∈ coz f

0 otherwise
and in this case coz f = SX(f), see [4].

Theorem 4.3. The ideal mCK(X) is finitely generated if and only if XL is
compact.

Proof. If mCK(X) is finitely generated, then it is generated by an idempo-
tent, since it is a pure ideal. So there exists f ∈ mCK(X), such that f = f2 and
mCK(X) = (f). Then XL = coz f = SX(f) is compact.

Conversely, suppose that XL is compact.

Define f(x) =

{

1 x ∈ XL

0 otherwise
Then f ∈ mCK(X) and mCK(X) = (f).�

A family of sets { Uα : α ∈ ∆ } is called star finite (countable) if for
each α ∈ ∆, Uα∩ Uβ = φ for all but finitely (countably) many β ∈ ∆. A family
of functions {fα : α ∈ ∆} is called star finite (countable) if the family {coz
fα : α ∈ ∆} is star finite (countable).

Theorem 4.4. The following statements are equivalent:
(1) The space XLis strongly paracompact.
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(2) The space XL is paracompact.
(3) The ideal mCK(X) is generated by a star finite family.
(4) The ideal mCK(X) is generated by a star countable family..

Proof. (1) ⇒ (2): Clear.
(2) ⇒ (3): Since mCK(X) is pure, SX(f) ⊆ XL for each f ∈ mCK(X). Now

the result follows from [8, 3.6 and 3.10].
(3) ⇒ (4): Clear.
(4) ⇒ (1): Suppose that mCK(X) = (fα : α ∈ ∆), where the family {fα :

α ∈ ∆} is star countable.
Let {Uβ : β ∈ Λ} be any open cover of XL. For each α ∈ ∆, SX(fα) ⊆

XL ⊆
⋃

β∈Λ

Uβ, which implies that coz fα ⊆SX(fα) ⊆
nα
⋃

i=1

Uβi
.

Thus the family {coz fα ∩Uβi
: α ∈ ∆, i = 1, 2, 3, ..., nα} is a star countable

refinement of {Uβ : β ∈ Λ}, and therefore XL is strongly paracompact. �

Theorem 4.5. The ideal mCK(X) is countably generated if and only if XL

is Lindelőff.

Proof. Suppose that mCK(X) = (f1, f2, f3, ...). For each f ∈ mCK(X),

f =
n
∑

i=1

gifi, and coz f ⊆
n
⋃

i=1

coz fi.

Hence
∞
⋃

i=1

SX(fi) ⊆
⋃

g∈mCK(X)

SX(g) =
⋃

g∈mCK(X)

coz g = XL =
∞
⋃

i=1

coz fi ⊆

∞
⋃

i=1

SX(fi). Thus XL is σ−compact and so it is Lindelőff.

Conversely, assume that XL is Lindelőff. Then XL =
∞
⋃

i=1

coz fi, where

fi ∈ mCK(X) for each i.

Let f ∈ mCK(X), then SX(f) ⊆ XL =
∞
⋃

i=1

coz fi. Compctness of SX(f)

implies that there exists n ∈ N such that SX(f) ⊆
n
⋃

i=1

coz fi = coz g, where g

=
n
∑

i=1

f2
i .

Define h(x) =

{

f
g
(x) x ∈ SX(f)

0 otherwise

Then h ∈ C(X) and f = hg = h
n
∑

i=1

f2
i =

n
∑

i=1

(hfi)fi ∈ (f1, f2, f3, ...).

Hence mCK(X) is countably generated.�

We now turn to the pure part of the ideal CΨ(X). The isomorphisim f → fυ

from C(X) onto C(υX) maps CΨ(X) onto CK(υX) and maps mCΨ(X) onto
mCK(υX), see [1]. Then the following results are easily obtained.
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Theorem 4.6. The ideal mCΨ(X) is finitely generated if and only if kX is
compact.

Theorem 4.7. The following statements are equivalent:
(1) The space kX is strongly paracompact.
(2) The space kX is paracompact.
(3) The ideal mCΨ(X) is generated by a star finite family.
(4) The ideal mCΨ(X) is generated by a star countable family.

Theorem 4.8. The ideal mCΨ(X) is countably generated if and only if kX
is Lindelőff.
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