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Abstract

Let C(X) be the ring of all continuous real valued functions defined on
a completely regular T;—space. For each ideal I in C(X) let mI be the
pure part of the ideal I.

In this article we show that mI = O°Y) where (1) = (] clgxZ(f).

fer

The pure part of many ideals in C(X) is calculated.

We found that mCxk(X), the pure part of the ideal of functions with
compact support, is finitely generated if and only if SX-0(Ck (X)) is com-
pact, mCk(X) is countably generated if and only if 3X-0(Ck (X)) is Lin-
delsff and mCk(X) is generated by a star finite set if and only if GX-
0(Ck (X)) is paracompact. Similar results are obtained for the pure part
of the ideal Cy(X), the ideal of functions with pseudocompact support.

1. INTRODUCTION

Let X be a completely regular T1-space, 38X the Stone—éech compactification
of X and vX the Hewitt realcompactification of X. Let C(X) be the ring of all
continuous real valued functions defined on X. For each f € C(X), let Z(f)
= {xeX: f(x) = 0}, coz f = X-Z(f), the support of f = Sx(f) = clxcoz(f),
Sux(f¥) = clyx(VX-Z(f")), where fv is the extension of f to vX, Spx(f”) =
clgx (BX-Z(f?)), where f# is the continuous extension to X for the function
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If T is an ideal in C(X), then coz I = |J coz f.
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For each subset AC (X, let M* = {f €C(X): ACclgxZ(f)} and O* =
{f €eC(X): ACIntgx clgxZ(f)} = {f €C(X): ACIntgxZ(f?)}.



An ideal T of C(X) is called a pure ideal if for each f € I, there exists g €
I such that f = fg. It is clear that in this case g =1 on Sx(f).

For any undefined terms here the reader may consult [12].

Purity attracted the attention of a lot of people working in ring and module
theories. A large class of commutative rings can be classified through the pure
ideals of the ring. The pure ideals in C(X) were completely characterized in [3].

Arbitrary sum and finite intersection of pure ideals is a pure ideal, see [7].
One might ask whether intersection of arbitrary family of pure ideals is pure.
In fact the answer is not true in general. The following example was given in
[3]. Let R be the space of reals. The ideal I = O(®Y) = ] O in C(R) is not
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belongs to I, while there is no g € I such that f = fg, since in this case

Sr(f) = [1,00) C coz g which implies that (0,1) Z Intx(Z(g)).

pure, since the function f(z) =

Recall that a space X is called basically disconnected if for each f €C(X),
Sx(f) is open in X. We will show that intersection of arbitrary family of pure
ideals in C(X) is pure if and only if X is basically disconnected, but first we’ll
need some preliminaries.

Proposition 1.1 (Al-Ezeh [3]). An Ideal I of C(X) is pure if and only if
I = O for some closed subset AC 3X.

Proposition 1.2 (Abu Osba [1]). For each A C 8X. The ideal O* is pure
if and only if O = Q°lex A,

Theorem 1.3. Intersection of any family of pure ideals in C(X) is pure if
and only if O? is pure for each A C gX.

Proof. Suppose the condition is satisfied. Then for each AC X, O% =
z€EA
O* is an intersection of pure ideals and so it is pure.

Conversely, Let I = [ I, where I, is pure for each o € A. Then it follows
acA

by Proposition 1.1 that I, = O*« for some closed subset A, C 3X.

N (U Ao
SoI= [) Of« =0 eca is pure.[d
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Theorem 1.4. The following statements are equivalent:
(1) The space X is basically disconnected.
(2) The ideal O* is pure for each AC 3X.

. 6y .
(3) For each f € C(X), the ideal O1™sx%(f") is pure.

Proof. (1) = (2): Suppose that X is basically disconnected, then so is X,
see [12]. Let AC X, then O°lxA C OA.



Let f €0A, then AC IntgxZ(f”). But IntgxZ(f?) is closed in BX since SX
- IntpxZ(fP) = clgx(BX - Z(f?)) = Spx(f?) is open in BX.

Hence clgxA C InthZ(fﬁ)7 and f €O%lsxA

Thus O* = O°xA is pure by Proposition 1.2.

(2) = (3): Clear.

(3) = (1): Let f € C(X). Then f € OMaxZ(f”) = QelaxIntaxZ(f") g,
clgxlntm(Z(fﬁ) - IntBXZ(fB) - clﬁxlntm(Z(fﬁ). Hence ng(fﬁ) =f3X- Int5XZ(fB)
is clopen in gX.

Now, coz f = coz f*= (BX - Z(f%)) N X.

Sx(f) = Ax((BX — Z(f7)N X) = clax (8 - Z(%) N1 X) N X,

= clgx((BX - Z(f9)) N clpxX) N X, since X - Z(f”) is open in BX.

— clx((BX - Z(%)) N BX) A X.
lax((6X - Z(7)) N X.

= Spx(f%) N X.

Thus Sx(f) is open in X for each f € C(X), which implies that X is basically
disconnected.[]

Recall that a ring R is called a PP-ring if every principal ideal of R is a
projective R-module.

Corollary 1.5. The following statements are equivalent:

(1) The space X is basically disconnected.

(2) The ring C(X) is a PP-ring.

(3) Intersection of arbitrary family of pure ideals in C(X) is pure.

Proof. For the equivalence of (1) and (2) see[9].00

The above corollary shows that in a basically disconnected space X, the pure
ideals of C(X) form a complete lattice with IVJ=I+Jand INJ =INJ.

If the ideal is not pure, then one can study the pure part of the ideal which
have some interesting properties and it is a tool for studying the ideal itself.

Definition 1.6. For each ideal I of C(X), let mI = {f € C(X): f € fI}.
The ideal mI will be called the pure part of I.

It is clear that, mI C I and I is pure if and only if I = ml. It is shown in
[7] that for any ideal I of C(X), mI is a pure ideal.

The pure part of the ideal was studied by many authors, such as in [5], [7],
[10], [14] and [15]. Studying the pure part of the ideal is a tool for studying the
ideal itself. In fact it is easier to deal with the pure part since it is pure.

In section 2, we characterize the pure part of the ideal I to be the ideal
0?0 In paricular, we show that the pure part of a maximal ideal M is the
ideal O* and mM” = Q¢lsxA,



In section 3, we find the pure part for some important well known ideals in
C(X), such as Ck(X), the ideal of functions with compact support, the ideal
Cyg(X), the ideal of functions with pseudocompact support, ...etc.

In section 4, we study the relations between the generators of the ideal
mCxk (X) and the topological properties of the set X - §(Ck (X)). Similar results
are obtained for the generators of mCyg(X) and the topological properties of 5X

- 0(Cy(X)).

2. THE PURE PART OF THE IDEAL

For each ideal I of C(X), let 0(I) = {x € gX: I C M"}.

Proposition 2.1( Gillman and Jerison[12]). For each ideal I of C(X), 6(I)
= ﬂ Clng(f).

fel

It is clear that for each ideal I of C(X), O%() is a pure ideal, since §(I) is a
closed set in GX.

We give now another characterization for mI using the set 6(I). This new
characterization is some times helpful.

Theorem 2.2. For each ideal I of C(X), mI = 0%,

Proof. Let f €00, Then 0(I) C IntgxZ(f?) C Z(f7).
So BX-Z(fP) C Spx(fP) C BX - (1) = | BX-clpxZ(g). Compactness of
gel
Sﬁx(fﬁ) implies that there exists n€ N such that ng(fﬁ) C U pX-clgxZ(g:),
i=1

where g; € I for each i.
n

Hence Sx(f) =Sgx(f?) N X C (U BX-clgxZ(g:)) N X C _Q X-Z(gi) = coz

i=1

n
g, where g = > g2. It is clear that g € I.
i=1

Define h(x) = { g(x) N SX.(f)
0 otherwise

Then h € C(X) and f = gh € I. So O’) C . But 0 is a pure ideal,
since 6(I) is a closed set in 5X, see 1.1 above. So there exists k € o) C 1
such that f = fk € fI which implies that f € mI. Thus O?) C mI.

Now, if f € mI, then f = fg, for some g € I. Then fP= f#¢?, which implies
that Spx (f°) C BX - Z(g”).

So (1) C claxZ(g) C Z(9”) € BX - Spx (/%) € Z(f?).

Hence f € 0.0



We now characterize the pure part of any maximal ideal in C(X). This char-
acterization would be very useful in the rest of this article. But first we find the
pure part for an intersection of maximal ideals.

Theorem 2.3. For each subest A C X, mMA = Q¢lsxA |

Proof. Tt follows by Proposition 1.1 that O%sx4 is pure, so O18xA C mMA.

Let f € mMA, then there exists g € M? such that f = fg,which implies
that f7% = f8¢P.

Hence X - Z(f?) C Spx(f?) C BX - Z(g°).

So A C clgxZ(g) C Z(g ) C BX-Spx(f?) C Z(f?), which implies that clgx A
C 2(g") C IntxZ(f7).

Hence f €O°sxA 0

The following corollary is an easy consequence of the above theorem and it
characterizes the pure part of a maximal ideal in C(X). Recall that a point x
€ X is called a P-point if M* = O~.

Corollary 2.4. For each x € X, mM” = O, and so M” is pure if and
only if x is a P-point.

Recall that a subset A C X is called a round subset of X if 04 = M?,
see [13].

Corollary 2.5. Let A C X, then M” is pure if and only if clgxA is a
round subset of 8X.

Proof. The ideal MA is pure if and only if M4 = mM?* if and only if
M™% = MA = OcloxA if and only if clgxA is a round subset of 5X.0]

Theorem 2.6. For cach AC X, mO# = Qclsx4,

Proof. Since O°#xA is a pure ideal contained in O?, it follows that O°exA
C mOA € mMA = O%lexA [

Corollary 2.7. For each AC X, M is pure if and only if O* is pure and
A is a round subset of GX.

Proof. If M is pure, then O* C M* =mMA= ot C 0% S0 0A = MA
= 0™"" Wwhich implies that A is a round subset of X and O* is pure. For the
converse, we have Qx4 = 0% = M*, and hence the result.[]

For each space X we have X - vX is a round subset of X, but MAX—vX ig
not always pure, see [1]. If T' is the Tychonoff blank, then O is pure but M
is not, since M #£ O where {to} = 87 — T, see [12]. This shows that the two
conditions are both necessary in the above corollary to prove that M# is pure.



3. EXAMPLES

We now find the pure part for some important ideals in C(X). We will use
the results obtained in the previous section to characterize some properties of
the space X using purity of these ideals.

The following sets and facts are well known:

Ck(X) = { f €C(X): Sx(f) is compact } = OFXX,

Cy(X) = { f €C(X): Sx(f) is pseudocompact } = OFX-vX = MBX-vX,
C,(X) = { f €C(X): Sx(f) is realcompact }.

I(X) = MPXX,

OvX = { f €C(X): Sx(f) = cluxSx(f) }-

MYX-X = [ f €C(X): coz(f) is realcompact }.

The following lattice of inclusions exists in the general case.

Cy(X)

OUX—X N CP(X) N M'UX—X

A space X is called u—compact ( A—compact) if OFXX = MAX-X(QvX-X =
MUX-X)_

For more informations about these ideals and spaces the reader may consult
[6].

For each space X, let Xp, = {x € X: x has a compact neighborhood in X}.

Then Xy, = |J coz f = coz(Ck(X)) = IntgxX, the space X is locally
feCk(X)

compact if and only if X = Xy, see [2]. We also have X - X, = X —IntgxX =
clpx (BX-X) = 0(Ck (X))

For each space X, let kX = {x € vX: x has a compact neighborhood in vX}.
Then kX = {x € fX: Co(X)  M*} = U vX-Z(fY) = coz(Ck(vX)) =

feCe(X)

Intgx (vX), the space vX is locally compact if and only if vX = kX, see [1]. We
also have X - kX = X- Intgx (vX) = clgx(6X-vX) = 0(Cy(X)).

Now, mCg (X) = mOP#XX = Qclex(BX-X) — QFX-Xr

mCy(X) = mMAXUX = Qclsx(BX-vX) — QFXKX and Cy(X) is pure if and
only if §X-kX is round.

mI(X) = mMPXX = Qlex(BX-X) — OFX-Xe and 1(X) is pure if and only if
BX - Xy, is round if and only if Ck(X) is pure and X is p—compact.

mMVXX = Qlex(vX-X) and MUXX is pure if and only if clgx(vX - X) is
round if and only if O¥* is pure and X is A—compact. Note that in this case
C,(X) would be an ideal of C(X), see [16].



If MVX*X and Cy(X) are pure ideals, then so is I(X), since 8X - X = (8X -
vX) J (vX - X) and the union of two round subsets is round, see [13].

4. GENERATORS FOR THE PURE PART OF Cy(X) AND Cy(X)

In this section we study the relations between the topological properties
of BX-0(Ck (X)), fX-0(Cy (X)) and the generators of the ideals mCk(X) and
mCyg (X) respectively.

It was proved in [1] that for each ideal I C Ck(X), I is pure if and only if

coz I = |J Sx(f). We will use this result quite often later on.
fel

Lemma 4.1. For each ideal I of C(X) coz mI = coz I.

Proof. The element x € coz [ if and only if x € X and I ¢ M? if and only
if x € X and mI ¢ M? if and only if x € coz mI, since I C M* if and only if
mI C M*, see [14].00

Corollary 4.2. For each space X, coz(mCk(X)) = coz(Ck (X)) = X, and
coz (mCk(vX)) = coz(Ck(vX)) = kX.

Recall that f = f2 if and only if f(z) = { (1) ztiei‘;vzis";

and in this case coz f = Sx(f), see [4].

Theorem 4.3. The ideal mCk(X) is finitely generated if and only if X, is
compact.

Proof. If mCk(X) is finitely generated, then it is generated by an idempo-
tent, since it is a pure ideal. So there exists f € mCk(X), such that f = f? and
mCk(X) = (f). Then X1, = coz f = Sx(f) is compact.

Conversely, suppose that Xp, is compact.

1 zeXy
Define f(x) = { 0 otherwise
Then f € mCk(X) and mCk(X) = (f).0

A family of sets { Uy : @ € A } is called star finite (countable) if for
each a € A, U,N Ug = ¢ for all but finitely (countably) many 8 € A. A family
of functions {f, : a € A} is called star finite (countable) if the family {coz
fo : @ € A} is star finite (countable).

Theorem 4.4. The following statements are equivalent:
(1) The space X,is strongly paracompact.



(2) The space Xy, is paracompact.
(3) The ideal mCxk(X) is generated by a star finite family.
(4) The ideal mCxk(X) is generated by a star countable family..

Proof. (1) = (2): Clear.

(2) = (3): Since mCk(X) is pure, Sx(f) C Xy, for each f € mCk(X). Now
the result follows from [8, 3.6 and 3.10].

(3) = (4): Clear.

(4) = (1): Suppose that mCk(X) = (fo : @ € A), where the family {f, :
a € A} is star countable.

Let {Ug : B € A} be any open cover of Xp,. For each @ € A, Sx(fo) C
X1, € U Ug, which implies that coz fo CSx(fa) C Lj Us,.

BeEA =1

Thus the family {coz fo NUgs, : @« € A, i =1,2,3,...,n,} is a star countable

refinement of {Ug : # € A}, and therefore Xy, is strongly paracompact. [

Theorem 4.5. The ideal mCk (X) is countably generated if and only if Xy,
is Lindel6ft.
Proof. Suppose that mCk(X) = (f1, f2, f3,...). For each f € mCk(X),
f=2>9ifi;and coz f C |J coz f;.
i=1 i=1
Hence |J Sx(fi) C U Sx(g) = U cozg=Xy = coz f; C
i=1 gemCk (X) gemCk (X) i=1

U Sx(fi). Thus Xy, is c—compact and so it is Lindel6ff.
i=1

Conversely, assume that Xy, is Lindeléff. Then Xy, = |J coz f;, where
i=1
fi € mCk(X) for each i.
Let f € mCk(X), then Sx(f) C X1, = |J coz f;. Compctness of Sx(f)

(2

=

1
n
implies that there exists n € N such that Sx(f) € |J coz f; = coz g, where ¢
n , i=1
=2 fi
i=1

Define h(x) = { é(x) z € Sx(f)

otherwise
Then h € C(X) and f =hg=nh fj 7= Enj(hfz-)fi € (f1, fa; f3,---)-

i=1 i=1
Hence mCxk (X) is countably generated.[]

We now turn to the pure part of the ideal Cy(X). The isomorphisim f — fv
from C(X) onto C(vX) maps Cy(X) onto Ck(vX) and maps mCg(X) onto
mCk (vX), see [1]. Then the following results are easily obtained.



Theorem 4.6. The ideal mCyg(X) is finitely generated if and only if kX is
compact.

Theorem 4.7. The following statements are equivalent:

(1) The space kX is strongly paracompact.

(2) The space kX is paracompact.

(3) The ideal mCy(X) is generated by a star finite family.

(4) The ideal mCy(X) is generated by a star countable family.

Theorem 4.8. The ideal mCy(X) is countably generated if and only if kX
is Lindeldft.

REFERENCES

[1] E. Abu Osba, Purity of the Ideal of Continuous Functions with Pseudo-
compact Support, Internat. J. Math. Math. Sci., 29:7 (2002), 381-388.

[2] E. Abu Osba and H. Al-Ezeh, Purity of the Ideal of Continuous Functions
with Compact Support, Math. Jor. Okayama Univ., 41 (1999), 111-120.

[3] H. Al-Ezeh, Pure Ideals in Reduced Gelfand Rings with Unity, Arch.
Math., 35 (1989), 266-269.

[4] H. Al-Ezeh, M. A. Natsheh and D. Husein, Some Properties of the Ring
of Continuous Functions, Arch. Math., 51 (1988), 60-64.

[5] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad, On Ideals
Consisting Entirely of Zero Divisors, Communications in Algebra, 28(2) (2000),
1061-1073.

[6] I. Blum and S. Swaminthan, A Note on Intersection of Ideals in Rings
of Continuous Functions, Colloquia Mathematica Societatis Jdnos Bolyai, 23
Topology, Budapest (Hungary), (1978), 155-162.

[7] F. Borceux and G. Van Den Bossche, Algebra in a Localic Topos with
Applications to Ring Theory, LNM 1038 Berlin-Heidelberg-New York, (1983).

[8] J. G. Brookshear, Projective Ideals in Rings of Continuous Functions,
Pacif. Jor. Math., 71(2) (1977), 313-333.

[9] J. G. Brookshear, On Projective Prime Ideals in C(X), Proc. Amer.
Math. Soc., 69 (1978), 203-204.

[10] G. DeMarco, Projectivity of Pure Ideals, Rend. Sem. Mat. Univ.
Padova, 68 (1983), 289-304.

[11] R. Engelking, General Topology, Sigma Series in Pure Math., 6 Hel-
dermann Verlag Berlin, (1989).

[12] L. Gillman and M. Jerison, Rings of Continuous Functions, Graduate
Texts in Math., 43 Berlin-Heidelberg-New York, (1976)

[13] M. Mandelker, Round z-Filters and Round Subsets of 8X, Israel J.Math.,
7 (1969), 1-8.

[14] D. Rudd, On Isomorphisms Between Ideals in Rings of Continuous Func-
tions, Trans. Amer. Math. Soc., 159 (1971), 335-353.



[15] D. Rudd, P-ideals and F-ideals in Rings of Continuous Functions, Fund.
Math., 88(1) (1975), 53-59.

[16] J. Schommer, Functions with Realcompact Support, Kyungpook Math.
J., 35 (1995), 93-103.

10



